Robotic Sensor-Motor _ _ , _
This project expands on earlier Navy work in

Transformations autonomous active machine vision [Blackburn et

al., 1987; Blackburn and Nguyen, 1990]. The
Michael R. Blackburn and machine vision system is being adapted to a stereo
Hoa G. Nguyen pan, tilt and vergence mechanism, and used to

control a five degree-of-freedom stationary robotic

manipulator arm, and a mobile robot platform. The

Naval Command, Control and project combines vision, navigation and

Ocean Surveillance Center manipulation to study learning of cross-modal
Research, Development, Test, and sensor-sensor and sensor-motor sequences.
Evaluation Division Mechanisms to demonstrate a motor (behavioral)

San Diego, CA 92152-7383 criterion of scale and rotation invariant recognition

are being developed. In addition, the visual-motor
algorithms are being applied on the mobile robot

Abstract to the problem of target discrimination, tracking,
and trailing while on the move.

This paper summarizes work performed at NRaD . ) )
during FY94 on the integration of robotic sensor1he algorithms of active perception employ both

and motor systerds Two robotic applications reflexive and adaptive mechanisms. Reflexive

- . echanisms provide low level, generic, and fault
were involved. These are the visual control of 6{2 P ' 9 '

five degrees of freedom manipulator arm in threed ;(taergt?(t)nscglgtlomnesm;ct)i or?roé)rll(ceim(fbsstgglr:a 2;5/ Oigagggé
dimensions, and the visual control of a mobile » S€9 ’ '

platform for target acquisition, tracking andwhile adaptive mechanisms provide intrinsically

T - . . modifiable solutions to difficult problems such as
trailing with obstacle avoidance. Solutions to both ve-hand calibration and target discrimination.

applications were constrained by the intentional’
restriction that information could only be gained, ,,. .
autonomously by the robot through vision and2 Visual Control of a Mobile Robot
proprioception (internal information on _. _ )
mechanical position). Furthermore, the only visuafiguré 1 shows our mobile robot under visual

information allowed was the frame-to-frame imagefontrol trailing a walking human target. The
flow derived from the contrast gradients. BothCircumstances that challenge this task include the

reflexive (reactive) and adaptive (learning) COMPplexity of the background, the proximity of the
algorithms were studied. target and the velocity of its image on the visual

field, the absence of human assistance or
intervention, the absence of unique distinguishing
features associated with the target, and the

limitations of on-board processing power and

The overall objectives of this research aré tQuepqy resources. Details of the algorithms and
design, develop, and test an artificial autonomoug. . yware used in this study are reported in a

visually guided motor system by using adaptivgeachnical paper contained in this volume

neural network computer algorithms that eXp”Citlyc}Blackburn and Nguyen, 1994a].
emulate the functional architecture of known an

hypothesized biological mechanisms. The goal is
to improve target recognition and discrimination
under different transformations of the target
image. The methods that we are exploring to
improve automatic target recognition involve
active perception and self-determined
manipulation of the target, or of the robot platform
relative to the environment.

1 Introduction
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mechanism. The target then is defined as any
source of motion that has been placed on the
central region of the receptor surface. Second the
robot must assess the behavior of the target and
respond appropriately. This is the tracking and
trailing task. If the motion in the central region of
the receptor surface is contracting, the target is
assumed to be receding and an approach response
is triggered. If the motion is expanding, the target
is probably looming and the robot's forward
motion is suspended. Lastly, the robot must
recognize and respond appropriately to non-target
objects (i.e. obstacles) without loosing sight of its
target. Obstacles are defined by any motion on the
peripheral receptor field after a target has been
acquired. Other researchers have divided these
objectives among different sensor modalities,
thereby simplifying the task that must be
accomplished by each sensor system. We accept
our limitations, however, to explore the full
potential of vision in the control of the mobile
robot.

Two  significant related problems  were

encountered in this work. First is the maintenance
of the target on the center of the visual field.
Second is the detection of the moving target while
the robot itself is moving through a visually

complex environment. Only partial solutions to
both problems have been achieved.

%

Figure 1. Autonomous visually controlled mobile robot
trailing a walking human in a visually cluttered We use a receptor surface that has an
environment. inhomogeneous resolution. Like the biological
retina, we incorporate a high resolution fovea and
The idea is to solve a difficult problem in a a peripheral retina whose resolution decreases as a
parsimonious way following the examples offunction of eccentricity. A log-polar
nature. We assume that natural selection favoremansformation is used to sample, integrate, and
efficiency. The need for parsimony in robotics ismap the receptor input to our computational plane.
also related to economics. For robots to beThis architecture is an efficient means of data
considered viable and accepted into the workplaceompression as only the central region is analyzed
they must be cost effective as well as competent. in detail. There are other advantages as well. The
larger receptive fields in the periphery integrate
At the present the robot vision system is the onlgontrast changes, increasing sensitivity to jiggle,
means by which we allow the robot to gain theand provide a larger separation for sampling the
necessary information about its externalhigher velocities that are expected there.
environment. To further restrict the nature of the
available information, we only analyze the imageln a mechanism such as ours that depends on
flow from the contrast gradients. Thus, motiontarget motion for detection, acquisition and
information alone is available. The autonomousevaluation, the successful localization and pursuit
robot must use this information for multiple of the target means that the target is stabilized on
purposes. First the robot must acquire andhe center of the receptor surface. Stabilization
maintain a target. A potential target is detected byccurs when the target motion is minimized, and
motion in the peripheral visual field. Targetthis eliminates the information upon which the
acquisition is accomplished through saccades ardrget is maintained so that the target may
smooth pursuit motions utilizing a pan and tiltdisappear. Due to the inhomogeneous resolution of



the receptor surface, the central region has BRor obstacle avoidance an advantage is gained
greater sensitivity to slow motion than does thewith the velocities that accompany auto motion.
peripheral region. Targets located at a distancBlearby obstacles result in easily detected flow on
may be pursued by the vision system withouthe peripheral retina. The lateral imbalance in this
generating competing motion in the periphery.flow is used to maneuver the robot around the
However, when the vehicle is underway, the selfobstacles.
induced optic flow is problematical to smooth
pursuit of a slowly moving target. The algorithms for visual motion analysis and
robot control were sufficiently efficient to run on
The second problem results from the competitiveéhe robot at eight frames per second using a pair of
mechanisms that select the best candidate for i860 co-processors in parallel with an 80486 PC
target. Motion again is the criterion. A moving located onboard the mobile robot. Much of this
platform creates relative motion on its sensotime is consumed in importing the image frame to
surface in the presence of visual contrast from botthe i860s from the frame grabber and in the
foreground and background objects. This inducedlefinition of the local receptive fields. The use of a
motion tends to be correlated however and thusision chip that could perform the data reduction
may be predictable with self awareness of selbf the log-polar mapping prior to digitization
motion. A moving target on the other hand carwould greatly increase frame rates.
have an unpredictable velocity on the sensor
surface. We developed a motion segmentatioifo improve trailing performance we need better
algorithm, based on a biological model, that takesnethods to maintain the fix or attention on a
advantage both of predictability and of localmoving target from a moving robot while avoiding
consistency. Local center surround mechanisms oobstacles. Some memory for the target's position
the motion field reduce the effects of correlatechnd behavior may allow recovery of the target
motion, and enhance unique motion. Furthermore&fter the vehicle has been deflected by an obstacle.
self-awareness of auto-motion in one direction calsome pattern processing that would uniquely mark
be used to reduce sensitivity to optic flow in thethe target could also help to maintain attention.
opposite direction. This inhibitory process
conflicts, however, with the mechanism of targetThe ability to detect and track a moving target
maintenance on the central region because while the robot platform is itself on the move has
eliminates necessary feedback for pursuit velocitymany applications among which are autonomous
Therefore, the central region has been exemptealitomobile navigation, battlefield unmanned
from auto-motion inhibition. forward observers, and automated factory or
warehouse material distribution. The common
While on the move, the robot vision system carelement in all of these applications is the relief of a
detect targets that are also in motion. Theéhuman operator from the burden of maintaining
mechanism of motion segmentation favors theattention to the tasks of target acquisition and
uniqgue motion of the target. Additionally, the maintenance, and of navigation through a complex
network is almost never without a target. Theand unpredictable environment.
camera is attracted to static objects during auto-
motion. These are only ignored after stabilizatior8 Robot Visual Control of a Manipulator
when they fail to further move. Cameraarm in Three Dimensions
stabilization during auto-motion further reduces

the induced optic flow of the static backgroundgigyre 2 shows our mobile robot parked before a
favoring the acquisition of animate targets. manipulator arm, over which it has assumed visual
e L _ .control. The problem addressed in this
The stabilization mechanism is as yet unreliable IBonfiguration is the visual direction of the
our implementation ~because of the poOmanipylator arm following a process that learned
performance of the smooth pursuit systeMy e jnverse kinematics model. This is a difficult
Currently, the maintenance of a moving targehoplem because the solutions can be non-unigue,
from a moving platform is more successfullyihe information available can be noisy, and because
performed by small corrective saccades becaujfe system calibration can change over time.
the pursuit system cannot keep up with the inducedeveral researchers have already addressed similar
velocities. problems, developing adaptive algorithms to learn
the inverse kinematics [Kuperstein and Rubinstein,



1989; Martinetz and Schulten, 1990; Li andend-effector exactly onto the target. The control
Ogmen, 1994]. We have made modesparameters of both phases of reaching to a target
improvements to these methods that enhanare learned by the robot through experience.
learning rates and accuracy, while reducing
computational complexity. The details of our workFour adaptive neural network algorithms were
on this problem are also available in a technicaleveloped and compared for stereo control of
report contained in this volume [Blackburn andeaching using a simulated 3 degree of freedom
Nguyen, 1994b]. manipulator arm. The network architectures
included the standard three layer perceptron with
Back Propagation learning, a two layer perceptron
with preprocessing using vertex-normal features, a
Kohonen self-organizing map, and an associative
mapping of distributed representations of
manipulator and camera joint space with
population coding. The performances of all
adaptive algorithms were superior to a look-up
table given the same numbers of exemplars.
Reaching accuracy differed among the algorithms,
but was primarily a function of network
complexity and training time. The most efficient
algorithm was the two layer perceptron with
vertex-normal feature preprocessing. The vertex-
Figure 2. Adaptive autonomous visual control of a robothormal feature preprocessing eliminated the need
manipulator arm. for one adaptive layer (the hidden layer) that is
requisite for non-linear mappings in the three layer
Work in three dimensions requires information orperceptron. Consequently, back propagation of
target position in X, Y and Z. A single camera carerror learning was not required, and the permitted
provide in a straight forward way the informationuse of the simpler delta rule learning greatly
on X and Y, and through active perceptionjncreased learning rates and run-time adaptability.
information on the relative depth of objects, based
primarily on motion parallax and occlusions. TwoThe addition of a second error correction strategy
cameras in binocular vision provide additionathat involved learning of velocity correlations
information on absolute depth through vergencender continuous visual feedback reduced errors to
measures and on relative depth through locaticem arbitrarily small degree and obviated the need
disparities in the projections. Primate visionfor either large networks, large numbers of
systems acquire and locate targets and direct aeremplars, or large training times.
motion using both binocular and monocular vision,
plus motion analysis. The architecture of the retindhe mobile robot manipulator arm system of
and the log-polar mapping of the receptor surfacEigure 2 presents difficulties in initial calibration
to the visual cortex permit a simple analysis ofs well as in the maintenance of calibration. It is
depth or relative positions of objects in the visuahot efficient to learn the calibration anew each time
field. The vergence that results from the fixation ofhe robot rolls up to the arm. We need to develop
both eyes on a selected target eliminates trelaptive calibration methods for arbitrary
binocular disparity of the target, but allows theconfigurations of the vision system and
assessment of the location of objects in the vicinityjnanipulator arm. To accomplish this the control
of the target. One such object of great importancagorithms could search the visual space for frames
for our purposes is the end-effector of theof reference and compute the transformations of
manipulator arm as it reaches for the target. We usiee image data needed for invariant association
panftilt/vergence information of a foveated targetvith the motor output.
to locate the target in the 3D coordinate system of
the robot and direct the ballistic phase of the robdWhile waiting for a stereo vision pan, tilt and
manipulator arm end-effector to the target locatiorvergence mechanism to arrive from the
Then in the final phase of reaching, we use thmanufacturer, we developed an active laser/vision
relative motion of the end-effector on the twotriangulation mechanism for target depth
retinae to correct any reaching errors and bring thdiscrimination. This system requires saccades to




each point in space from which absolute deptbomplexity). The path in (b) resulted from the
information is desired. The returned data substituiateraction of learned expectation and the available
for the missing vergence information of a binoculafeatures. The scan path after learning became more
system, but does not directly provide the relativeegular and the inter-saccade interval was reduced
depth information necessary to visually servo theompared to the naive state. The sequential visits
arm end-effector into the target. to the three locations on the sailboat represent the

"recognition” of the image and its associated
4 Invariant Recognition through Active appropriate behavior in the most simple sense.

Perception

Sensor-motor integration, in one form commonly
known as eye-hand coordination, is a process thai
permits the system to make and test hypothese:
about objects in the environment. In a sense, nature
invented the scientific method for the nervous |
system to use as a means to predict and prepare fc N — N )
significant events. A reactive organism must

depend on speed to survive, but a predictive systen (a) (b)

can avoid problems altogether.

Figure 3. Scan paths of a naive network (a) and of a

Th t t of fi texperienced network (b) to a static line drawing of boat.
€ motor component of percepion CoOmpensalggyqys indicate direction of saccades. New target

for an uncooperative environment. Not only doegegions of the image were detected by small oscillations
the use of effectors provide mobility, but it altersof the receptor surface, and selected competitively in the
the information available, uncovering newsuperior colliculus model network. Learning, based on
opportunities to exploit. Random motion canexperience scanning the image, provided a bias from the
achieve this, but at a cost in energy expendituiertex to the superior colliculus that favored the regions
and at the cost of opening the host to exploitatio®f visual space from which the most likely (expected)
Neither does random motion permit the testing ofaccade targets could be selected.

the spatial relationships of information. The ) ] ) -
development of purposive movement allows th&Ve propose that to achieve invariant recognition,
host to judiciously act in the environment anc®N appropriate behavior must be transformed by
sample the results. Prediction forms the basis of ti{ge image parameters. For the example of a scan
judgement to act, and the results are used Rfth behavior to an image that is presented at
formulate new predictions. The successful matcHifferent sizes, the saccade amplitudes must be
of prediction and results, just as in the scientifignodulated. This could be accomplished by the use
method, increases certainty of the validity of th@f @ scale factor derived from some independent
hypothesis or the prediction and can lead to nefpeasure of image size, however, the topographical
predictions and new associated actions. An actiof?apping that is common in the nervous system
sensation-prediction-action chain is establisheBermits a natural rescaling of saccade amplitude
through experience and conditioned learning th&ased upon the locus of activity on the output map.

allows the organism to efficiently meet its 10 change the locus of activity, itis only necessary
metabolic needs, survive and procreate. to match the expectation from the associative map

with the available sensor information. It is the

We demonstrated previously how an artificial€Xpectation that must be size invariant. We
vision system could learn” such a sequenc@PProached this by developing a progression of
[Blackburn and Nguyen, 1990]. One behaviorapbstract processing stages that integrated features
piece of evidence for the action-sensationfrom lower stages to the most abstract relationships
prediction sequence is the scan path. The scan piiat are then stored in associative memory
is a sequence of eye (or camera) saccades th@tackburn, 1992]. This pathway is paralleled by a
sample a target in a regular way to collecProgression of processing stages in reverse that
information. Figure 3 shows scan paths that we@ccomplishes  feature  reconstruction.  The
produced by our artificial vision system before anénformation is passed outward, providing an
after a period of learning. The path in (a), mad#creasing degree of spatial specificity when gated
before learning, is the result of random saccades hy the forward sequence of feature integrators.
regions of high information (defined by image



Figure 4 shows the development of a scan path todeliberate motion of the observer in relation to it.
simple square that is changing size. For thelumans deal with most inanimate targets in this
individual network that experienced the movingvay. Objects are viewed from different
square, the activation of complex features in thperspectives, or picked up and examined. We plan
highest associative processing layers resulting froto use the manipulator arm in just this role. Under
the selected locations on the image wouldisual control, the arm will be directed to grasp,
constitute its invariant perception of a square. Thetate, or otherwise justify an object to the
evidence that squares of different sizes arperceptual expectations of the machine vision
perceived similarly is that the scan paths areystem. This work is in progress.
similar.
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