

TECHNICAL REPORT 1883
April 2002

Managing Quality of Service
within Distributed Environments

SSC San Diego

Teknowledge

The Open Group Research Institute

System/Technology Development Corporation

Approved for public release;
distribution is unlimited

SSC San Diego

San Diego, CA 92152-5001

SB

SSC SAN DIEGO
San Diego, California 92152-5001

Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work described in this report was performed for the Defense Advanced Research Projects
Agency (DARPA) Information Technology Office (ITO) by the Advanced Concepts and Engineering
Division (Code 241), SSC San Diego; Teknowledge Corporation, Palo Alto, CA; The Open Group
Research Institute, Woburn, MA; and System Technology Development Corporation, Herdon, VA.

ACKNOWLEDGMENT
This report was compiled from research and experiments performed within the Quorum Integration,

Testbed and Exploitation (QUITE) project. This DARPA ITO Quorum project effort is structured as
follows: DARPA ITO, Sponsor; SSC San Diego, Technical/Contracting Lead; Teknowledge Corporation,
Integration Lead; System/Technology Development Corporation (S/TDC) and the Open Group (TOG);
Integration.

The individuals who directly contributed to this specific effort included Gary Koob, Quorum Program
Manager (DARPA ITO); John Drummond and Al Sandlin (SSC San Diego); Neil Jacobstein, Adam
Pease, Lou Coker, Jeff Vu, Joe Marclino, and Jim Reynolds (Teknowledge); Mustafizur Rahman and Jim
Carroll (TOG); and Arthur Robinson, Manoj Srivastava, Amarendranath Vadlamudi, and Shivakumar
Patil (S/TDC).

Active participation by all the QUITE project personnel included extensive discussion regarding the
research and experiments conducted within the QUITE project. This document has drawn upon the
research and the numerous quality of service management experiment design planning meetings and other
related informal writings developed throughout the QUITE project effort.

AwardBios™ is a trademark of Phoenix Technologies.
ACE™ and TAO™ are trademarks of Washington University and the University of California, Irvine.
Intel® and Pentium® are registered trademarks of the Intel Corporation.
3Com® is a registered trademark of the 3Com Corporation.
Windows NT® is a registered trademark of the Microsoft Corporation.
Linux® is a registered trademark of Linus Torvalds.
Red Hat® is a registered trademark of Red Hat, Inc.

 iii

EXECUTIVE SUMMARY

OBJECTIVE

The main objective of this research effort is developing a method for determining effective
management of quality of service (QoS) resources within a heterogeneous distributed environment.
Problems within the resource management environment have only been partially addressed. Success
with components such as the Quorum component, Dynamic, Scalable, Dependable, Real-Time
(DeSiDeRaTa), excludes network loading or bandwidth information in management decisions. These
decisions should be more reliable if application network QoS requirements and runtime network
loading information are considered. The object of this research was to construct an experiment that
examined efficiently managing QoS within distributed environments based upon network informa-
tion.

METHOD
Offering resource management facilities in a heterogeneous environment is a multifaceted

problem. Many factors must be considered to successfully solve the problem. The Quorum
Integration, Testbed and Exploitation (QUITE) project’s Quality of Service Metrics Services (QMS)
framework integrated the Quorum component, DeSiDeRaTa, with the Quorum component,
REsource MOnitoring System (Remos), to investigate a hypothesis. This research also included the
development of a specific test application that combined to create an experiment for determining
efficient management of QoS resources within a distributed environment.

CONCLUSION
Experiment results described in this report have successfully demonstrated individual Quorum

goals using integrated Quorum components. This experiment has integrated various Quorum
technologies from low level to high level and created a layered resource management system. This
work shows that this integration supports resource allocation and optimization at several different
levels and creates the capability to install and use Quorum technologies effectively together. Results
can be accessed through the QUITE framework and toolkit. These components, which include
Remos and DeSiDeRaTa, were integrated correctly to introduce new multidimensional QoS
management capabilities. The Conclusion section of this report provides a more detailed discussion
of the experiment results.

 v

CONTENTS
EXECUTIVE SUMMARY... iii

BACKGROUND... 1

INTRODUCTION.. 3
MAJOR ISSUE.. 3

Experiment Goals... 3
Experiment Description .. 3

EXPERIMENT ENVIRONMENT... 5
ARCHITECTURE.. 5
RESOURCE MONITORING SYSTEM .. 7
DYNAMIC, SCALABLE, DEPENDABLE, REAL-TIME... 8

EXPERIMENT REQUIREMENTS .. 11
HARDWARE... 11
SOFTWARE ... 11
HARDWARE SETUP .. 12

ANALYSIS PROCEDURE.. 13
HYPOTHESIS... 14
ASSUMPTIONS.. 14
DATA .. 14
EXPERIMENT EXECUTION... 15

Starting Remos .. 15
Starting DeSiDeRaTa Middleware.. 16
Starting the Test Application .. 17
Controlling the Processing Load .. 19

RUNNING EXPERIMENTAL SCENARIOS: AN OVERVIEW .. 21
Movement through CPU Stress.. 21
Stressing the Network Link .. 22

CONCLUSION... 25
EXPERIMENT RESULTS ... 25
DATA .. 26

REFERENCES... 27

APPENDIX A ..A-1

 vi

Figures
 1. Software concept ... 5
 2. Testbed architecture .. 6
 3. Remos network monitoring... 7
 4. Resource and QoS management software architecture ... 9
 5. DeSiDeRaTa architecture diagram... 10
 6. Hardware setup.. 12
 7. DeSiDeRaTa HCI ... 17
 8. HCI view of processes running on teksd6 host... 18
 9. Plot Dynamic Data pop-up menu.. 18
10. Latency information for the H:W:Testing path and applications.. 19
11. Test application GUI controller ... 19
12. BP process moved from one host to another ... 21

 1

BACKGROUND

Many factors must be considered in successfully providing resource management capabilities in a
heterogeneous environment. The Dynamic, Scalable, Dependable, Real-Time (DeSiDeRaTa)
approach excludes specific network information in its resource management decisions. These
decisions should be more reliable if they consider application network quality of service (QoS)
requirements and runtime network loading information.

An experiment was developed to examine this premise and determine the effectiveness of adding
network information into the QoS resource management decisions. This experiment examined the
integration of the Quorum component, DeSiDeRaTa, performing resource management functions,
and the Quorum component, REsource MOnitoring System (Remos), providing dynamic network
loading and bandwidth information with a test application.

The DeSiDeRaTa program controlled applications to manage the latency of execution paths
through a cooperating set of applications. The path(s) controlled had to be straight-line execution
paths that proceeded from start to finish. The progress of a particular path’s execution was monitored
by a series of messages sent from the applications to DeSiDeRaTa, which informed it of path
progress. It was assumed that each application in a path finished its work before the next application
in the path began its work. Multiple iterations of a given path could be active at any time.

Remos determined logical network topology from lists of hosts’ routers and switches in the
network by using the Simple Network Management Protocol (SNMP) facilities. All network systems
monitored required SNMP capability. After topology determination, Remos began to continuously
gather SNMP network traffic information from the hosts in the local area or wide area network
monitored and from any routers in the configuration. This information determined network traffic
volumes on individual segments and data flowing between hosts of interest to Remos clients. Remos
provides a client modeling application program interface (API) that specified and retrieved host
topology and flow information.

 3

INTRODUCTION

MAJOR ISSUE
The major issue examined in this experiment was whether application management decisions for

distributed applications were more effective when network bandwidth loading information and
application network bandwidth QoS requirements were considered.

Experiment Goals
The goals of the experiment were as follows:

• Determine whether considering network loading information allows DeSiDeRaTa to make
more effective application management action decisions.

• Determine under what network load circumstances this information supports better decisions
and when it does not.

Experiment Description
All the test application instances were started on a single DeSiDeRaTa-controlled host. The

operator caused DeSiDeRaTa to move a single instance to see where the application was moved. The
application’s maximum workload baseline was predetermined before execution. The application was
first started at a lower workload, then increased so that DeSiDeRaTa moved it again. This process
was repeated to gather ongoing data on DeSiDeRaTa management decisions.

Four test application instances were used for the test setup. Logically, only three applications were
needed to perform the test. However, due to the way in which DeSiDeRaTa V1.4 worked and the
specific experiment executed, the first instance of the application that initiated each path could not
be moved from its initial host. To ensure that this did not happen, four instances of the test
application were started. These applications were designated AP, BP, CP, and DP in path order. The
last three applications in the path were the ones potentially effected by the test changes and so
DeSiDeRaTa could move these applications. The message-input file was set large enough to use
significant bandwidth when multiple messages per second were sent.

During the test, outputs from all application instances were recorded using the QMS framework’s
Logging Plugin in a logfile. For analysis, only the output from the CP and DP applications were used
because these applications were the ones set to non-default behavior. The default-reporting interval
for each test application instance was once per 5 seconds. This interval was changed for CP and DP
to be once per second. The number of messages per second to send was manipulated, changing the
workload imposed on the application and the execution path. For this test application version, when
DeSiDeRaTa started or restarted an application instance, non-default parameters always had be reset
for that instance.

The test sequence to start the application path on a single machine was as follows:

1. Set the reporting interval on DP to once per second.

2. Set the workload of the CP application to exceed the path latency.

3. See where DeSiDeRaTa moved the application.

 4

4. Set the reporting on CP to once per second.

5. Set its workload to a level that should be attainable on an unloaded system with full bandwidth
available.

6. See whether DeSiDeRaTa will move the application or not. If not, set the workload (number of
messages per second) up to cause DeSiDeRaTa to move the application. Record the actions
performed in the note file and iterate.

The experiment tested combining Quorum components such as DeSiDeRaTa and Remos,
providing more functionality than either provided alone.

This experiment was run with test application(s) under DeSiDeRaTa control. The test application
provided a single execution path that DeSiDeRaTa controlled. It required a user-configurable
amount of network bandwidth. Network and central processing unit (CPU) workload varied.

The test application provided an end-to-end flow of network traffic with the user individually
controlling the volume of information between application instances. CPU workload could be
controlled for each application instance. The user or DeSiDeRaTa could dynamically re-locate
application instances. A graphics user interface (GUI) provided all application controls. The
application instances communicated through a Common Object Request Broker Architecture
(CORBA) interface. The application instances communicated with DeSiDeRaTa by the
DeSiDeRaTa Transport Control Protocol/Internet Protocol (TCP/IP) sockets’ API. The user
controlled the message size for messages between applications. The user supplied a file to be
transmitted for each instance of the application. The file could be any useful size.

For this experiment, messages were sent between instances of the test application with different
network segments set to different traffic levels. Network (iperf server/client) stressor applications
stressed selected network segments during the experiment to simulate reduced network availability.

To determine the performance of the test application, metrics were gathered detailing the network
workload over time in the network segments. DeSiDeRaTa measured path latencies and application
management actions were recorded. Test application message throughput information was also
gathered and comparisons were made with desired network traffic, network stress levels, application
latencies, and DeSiDeRaTa control actions during the experiment.

Two versions of DeSiDeRaTa were compared. The first version was standard DeSiDeRaTa V1.4 as
provided by Dr. Lonnie Welch and the DeSiDeRaTa project. The second version was V1.4, modified
to allow network inputs and thinning of possible hosts, which could be used for application hosting
based on data from Remos and test application network requirements specifications. The experiment
was run several times with varying loads for each DeSiDeRaTa version. The results were compared to
determine how standard DeSiDeRaTa compared with a network-enhanced DeSiDeRaTa in making
decisions on where to place applications when path latencies were exceeded and application
management actions were required.

 5

EXPERIMENT ENVIRONMENT

The testbed for these experiments was composed of several commercial off-the-shelf (COTS)-
available Intel®-based Pentium® II architectures with single-processor systems running at
400 MHz, containing generic components. The communication of these systems was through a
100 BaseT Ethernet. The network node PCs were inhabited by 3Com® 100BaseT network cards, and
a typical high-density display system based upon the Intel740® video accelerator. The operating
system was Microsoft Windows NT® version 4.0 build 1381 with Service Pack 6a. Standard generic
drivers were used during these tests, and no modifications were performed upon these devices.

The storage devices, primary and secondary, used on these systems were 512-MB SDRAM (60 ns)
and 16-GB NTFS format SCSI (with parity check enabled) respectively. The BIOS used by these
systems was AwardBIOS™ version 4.51, with HAL: MPS 1.4-APIC platform. The internal clock
mechanism used was the Microsoft Windows NT® multimedia timer, which provided clock
resolution of greater than 1-ms architecture.

ARCHITECTURE
The software concept for the managed QoS experiment included elements of software developed

within the Quorum program. These components included DeSiDeRaTa, Remos, QMS, and
specifically developed test applications. Figure 1 shows a simplified diagram of this relationship.

Figure 1. Software concept.

QMS

REMOS DESI

Test
App Test

App Test
App Test

App Test
App

 6

The design rationale for this experiment’s software architecture was to use DeSiDeRaTa for the
resource management functions, Remos for the feed of dynamic network information, and QMS for
the basic integration framework and network/application metrics and data recording. The application
program provided a good examination of the efficiency and proper functioning of the main Quorum
software components (Figure 2).

Figure 2. Testbed architecture.

100Mbit

Val Network

NT Host

Desi/QMS

NT Host

TestApp Target

NT Host

TestApp Target

Linux Host

REMOS

Iperf Server

NT Host

TestApp Target

Linux Host

Iperf Client

Switch

Hub

Hub

 7

RESOURCE MONITORING SYSTEM

The Quorum program Resource Monitoring System (Remos) project produced the Remos used in
this experiment. This project developed the Remos system at the Carnegie Mellon University School
of Computer Science.

Figure 3 shows the use of Remos to monitor network-specific information (DeWitt 2000). DeWitt
describes Remos as follows: “Remos supports two classes of queries. ‘Flow queries’ provide a
portable way to describe a communication step to the Remos implementation, which uses its
platform-dependent knowledge to return to the user the capacity of the network to meet this request.
‘Topology queries’ reverse the process, with the Remos implementation providing a portable
description of the network's behavior to the application.”

Figure 3. Remos network monitoring.

As further described in DeWitt (1998): “Remos is a query-based interface to the network state.
Queries can be used to obtain the structure of the network environment, or to obtain information
about specific sets of nodes and communication links on the network. The main features of the
Remos interface can be summarized as follows:

Logical Network Topology: Remos supports queries about the structure of the network
environment. The structure presented is a “logical topology,” i.e., a representation of the network
characteristics from an application’s standpoint, which may be different from the physical network
topology.

Flow-based queries: Queries regarding bandwidth and latency are supported for flows, which are
logical communication channels between nodes. Flows represent application-level connections, and
therefore, should be an easy to use abstraction for applications.

 8

Multiple flow types: Remos supports queries relating to fixed flows with a fixed bandwidth
requirement, variable flows that share bandwidth equally, and additional independent flows that can
absorb all unused bandwidth.

Simultaneous queries: An application can make queries about multiple flows simultaneously. The
Remos response will take any resources sharing by these flows into account.

Variable time-scale queries: Queries may be made in the context of invariant physical capacities,
measurements of dynamic properties averaged over a specified time window, or expectations of
future availability of resources.

Statistical measures: Remos reports all quantities as a set of probabilistic quartile measures along
with a measure of estimation accuracy. The reason is that dynamic measurements made by Remos
typically exhibit significant variability, and the nature of this variability often does not correspond to
a known distribution.

DYNAMIC, SCALABLE, DEPENDABLE, REAL-TIME

The resource management system used in this experiment was a product of the Quorum Program
Dynamic, Scalable, Dependable Real-Time (DeSiDeRaTa) Project. This system was developed by
the Laboratory for Parallel and Distributed Real-time Systems in the University of Texas Department
of Computer Science and Engineering, and Ohio University Laboratory for Intelligent Real-Time
Secure Systems School of Electrical Engineering and Computer Science.

As noted by Welch (2000): “The DeSiDeRaTa project is providing innovative QoS management
technology, which incorporates knowledge of needs in the distributed shipboard computing systems
domain.” The overall targets for this work are systems within environments, which have real-time
constraints. Welch provides the following explanation: “DeSiDeRaTa differs from previous work in
that it accounts for the complex features of dynamic real-time systems. These features include
previously overlooked issues with respect to granularity, variable periods, sporadic processes,
priorities, fault management and scalability.“

This resource management system is based upon a logical architecture that provides efficient
management behavior (Figure 4) and is further described by Welch: “The application programs of
real-time control paths send time-stamped events to the QoS metrics component, which calculates
path-level QoS metrics and sends them to the QoS monitor. The monitor checks for conformance of
observed QoS to required QoS, and notifies the QoS diagnosis component when a QoS violation
occurs. The diagnoser notifies the action selection component of the cause(s) of poor QoS and
recommends actions (e.g., move a program to a different host or LAN, shed a program, or replicate a
program) to improve QoS. Action selection ranks the recommended actions, identifies redundant
actions, and forwards the results to the allocation analysis component; this component consults
resource discovery for host and LAN load index metrics and determines a good way to allocate the
hardware resources in order to perform the actions, and requests the actions be performed by the
allocation enactment component.”

 9

Figure 4. Resource and QoS management software architecture.

Figure 5 shows the element-level integration of the DeSiDeRaTa system into the QUITE project
experiment. This diagram builds upon a previous illustration presented by Welch at a Quorum
principal investigator meeting in 1999. In this diagram the functional aspects of this experiment with
regard to the DeSiDeRaTa element are illustrated. During experiment execution, the Network Broker
derived a list of pair wise bandwidth measurements for the hosts that could support an application
component instance. The Network Analyzer then used this listing to develop a comprehensive
inventory of hosts that had adequate network resources. This list was then used to reduce the existing
list of hosts supplied by the Hardware Broker (based on its analysis of CPU use, etc.). This reduced
list was then composed of hosts that could support the processing and bandwidth requirements of the
application path.

Allocation
Enactment

Distributed
Hardware

RT paths

Resource
DiscoverySpec

File

QoS
Metrics

QoS
Monitor

QoS
Diagnosis

Allocation
Analysis

Action
Selection

H/W
Metrics

Sensor

Filter

Eval

Actuator

10

H
um

an

C
om

pu
te

r
In

te
rf

ac
e

U
se

r

H
ar

dw
ar

e
B

ro
ke

r

H
ar

dw
ar

e
M

on
ito

rs

R
es

ou
rc

e
M

an
ag

er

Pr
og

ra
m

C

on
tr

ol

Pa
rs

er

(D
sp

ec
)

Sy
st

em

B
ro

ke
r

Q
oS

M

on
ito

rs

Sp
ec

ifi
ca

tio
n

Fi
le

O
S

Fi
gu

re
 5

. D
eS

iD
eR

aT
a

ar
ch

ite
ct

ur
e

di
ag

ra
m

.

(fr
om

 a
 Q

uo
ru

m
 P

I m
ee

tin
g

pr
es

en
ta

tio
n

by
 L

on
ni

e
W

el
ch

—
Fe

br
ua

ry
 1

99
9)

Q
U

IT
E

N
et

w
or

k
St

at
us

En

ha
nc

em
en

ts

R
TC

S
N

et
w

or
k

An
al

yz
er

N
et

w
or

k
B

ro
ke

r

R
EM

O
S

Q
oS

 M
et

ric
s

Se
rv

ic
es

TA
O

 11

EXPERIMENT REQUIREMENTS

This section describes the hardware and software requirements for the managed QoS experiment.
The description is followed by setup and configuration procedures. Next, this section describes the
general execution and use of the software, which familiarizes the user with the software before actual
experimental runs are attempted. Finally, an overview of how to perform the experiments is
presented.

HARDWARE
The minimum hardware requirements for this managed QoS experiment includes the following

elements:

• Five Microsoft Windows NT® machines: PII-266, 128-MB RAM, 10/100 local area
network (LAN)

• One Red Hat® Linux machine: PII-266, 128-MB RAM, 10/100 LAN

• Cisco Catalyst® 2900 series XXL

• 10/100 LAN Hub

SOFTWARE
The software elements used for development and execution of these experiments included

operating systems, language compilers, middleware, software development environment tools, and
QMS. Two main operating systems are used for experiment execution. The Microsoft Windows NT®
operating system version 4.0 instituting Service Pack 6a and the Red Hat® Linux operating system
version 6.2. Other software includes the Java Development Kit. This section describes the use of the
QUITE project managed QoS experiment software. The fundamental software distribution consists
of four main pieces of software:

• Test Application (used to simulate the application path)

• DeSiDeRaTa middleware (modified by the QUITE team to make use of Remos data)

• QMS (used to relay information between Remos and DeSiDeRaTa and experiment data
collection)

• Remos with Instrumentation (Remos distribution with QUITE team instrumentation)

Windows NT® Machines

• Windows NT® 4.0 SP 3

• Java™ Development Kit (JDK)/Java™ Runtime Environment (JRE) 1.3

• Visual C++ 6.0

• The Adaptive Communication Environment (ACE™) Object Request Broker (ORB): The
ACE ORB (TAO™)

 12

Linux® Machines

• Red Hat® Linux® 6.0

• JDK/JRE 1.3

HARDWARE SETUP
In Figure 5, five Windows NT® machines and one Linux machine are used. Two Windows NT®

machines are connected to a 10-MB hub, which, in turn, is connected to the switch.

Figure 5. Hardware setup.

lan_teksd10(NT)

-Tao Naming

-Tao Event (QMS)

-All Desi Components

lan_teksd6(NT)

-Test App(AP,CP,DP)

-Desi NT monitor

-Desi sd

lan_teksd12(NT)

-iperf server

lan_teksd9(Linux)

-Bridge Collector

-Remos
Instrumentation

lan_teksd8(NT)

-Test App GUI

-iperf client

lan_teksd11(NT)

-Desi NT Monitor

-Desi sd

-Test App (BP)

10/100 Mb Switch

10 Mb Hub

 13

ANALYSIS PROCEDURE

This experiment measures the effect of network load requirement information on DeSiDeRaTa
management decisions. It is expected that better performance of the application will be seen when
the network load requirements of the application are met. The procedural elements of this managed
QoS experiment include the following:

• Extract network loads over time from QMS log

• Extract message throughput over time from QMS log

• Extract path latency information from DeSiDeRaTa QoS Manager log

• Thin latency information to one value per second elapsed

• Reconcile time lines of different data streams so that they are in line with consistent data
points (one point per second)

• Graph values over time and compare curves for different stress levels

• Compare graphs between DeSiDeRaTa versions to determine whether standard
DeSiDeRaTa or network-enhanced DeSiDeRaTa makes better decisions on process
placement

The experiment is performed by starting all of the test application instances on a single
DeSiDeRaTa-controlled host and causing DeSiDeRaTa to move a single instance and observe where
the application is moved. The application workload is set to determine its maximum workload. The
workload is then increased so that DeSiDeRaTa will move it again. This process is repeated to gather
ongoing data on DeSiDeRaTa management decisions.

Four test application instances are used for the given test setup. Logically, only three applications
are required to perform the test. However, due to the way in which DeSiDeRaTa V1.4 works, the
first instance of the application, which initiates each path, cannot be moved from its initial host. To
ensure that this will not happen, four instances of the test application are started. These applications
are designated AP, BP, CP, and DP in path order. The last three applications in the path are the ones
potentially effected by the test changes and so DeSiDeRaTa may move these applications. The
message-input file is set large enough to use significant bandwidth when multiple messages per
second are sent.

During the test, outputs from all application instances are recorded in the QMS log. For analysis,
only the output from the CP and DP applications are used because these applications are the ones set
to non-default behavior. The default reporting interval for each test application instance is once per
5 seconds. This interval is changed for CP and DP to be once per second and the number of messages
per second to send is then manipulated, thus changing the workload imposed on the application and
the execution path. For this version of the test application, when an application instance is started or
restarted by DeSiDeRaTa, any non-default parameters must always reset for that instance.

The test sequence, therefore, is to start the application path on a single machine. Set the reporting
interval on DP to once per second. Set the workload of the CP application to exceed the path latency,
see where DeSiDeRaTa moves the application, set the reporting on CP to once per second, set its

 14

workload to a level that should be attainable on an unloaded system with full bandwidth available,
and see whether DeSiDeRaTa moves the application or not. If not, set the workload (number of
messages per second) up to cause DeSiDeRaTa to move the application. Record the actions
performed in the notes file and iterate.

HYPOTHESIS
In distributed environments, applications control environments that take advantage of information

about communication requirements between host nodes will do a better job of resource management
and provide better QoS than those that do not.

We feel that one practical way to test this hypothesis is to use a working application manager and
modify it to consider network loading information and then compare the actions of the modified tool
with the unmodified tool. Our chosen tools for this test are DeSiDeRaTa and Remos working within
the QUITE QoS Toolkit framework and using QMS as an intermediary. For applications that make
significant use of a network, DeSiDeRaTa provides better latency management and resource use
with Remos-provided network information than without it.

ASSUMPTIONS
The experiment description in this document emphasized miscellaneous assumptions that directly

apply to this managed QoS examination. These assumptions are listed here as they are used during
the experiment.

The basic operational assumption for this experiment includes the presumption that DeSiDeRaTa,
Remos, and any/all other Quorum program components correctly execute as their design logically
requires.

Regarding the Remos element of this experiment, it is assumed that the Remos collector software
is functionally loaded and executing at the time the experiment is executing.

The DeSiDeRaTa software controls applications to manage the latency of execution paths through
a cooperating set of applications. It is assumed that the paths that are controlled are straight-line
execution paths that proceed from start to finish. Therefore, it is assumed that each application in a
path finishes its work before the next application in the path begins its work.

The fundamental communication infrastructure assumptions for this experiment include the
presumption that all tests will be performed within the QUITE project distributed testbeds. Most (or
all) of these experiment tests are LAN-based within a distributed environment.

DATA
This experiment is mainly concerned with the effects of adding network bandwidth awareness to

an existing process management and control tool to determine whether this improves or changes the
correctness of its management decisions. Bandwidth awareness is provided by integrating sensed
bandwidth data into the DeSiDeRaTa process control decision procedure. The bandwidth
information comes from the Remos tool. To support the needed analysis, data must be gathered on
how DeSiDeRaTa is reaching its decisions. The data required are the actual DeSiDeRaTa commands
issued, the network and other host metric data input to DeSiDeRaTa and output from Remos, the

 15

application path status inputs to DeSiDeRaTa, control inputs to DeSiDeRaTa and Remos,
configuration inputs, and static hardware configuration data.

Data are gathered from all QoS-related software used in this experiment and from the QUITE
validation software infrastructure. The QoS-related software is as follows:

• QUITE QMS

• DeSiDeRaTa

• DeSiDeRaTa instrumentation

• Remos and the QMS Remos probe instrumentation

• QUITE test application

Data gathered from these software applications include control and management data output by
these applications as part of their normal management and monitoring process and data gathered
from non-intrusive monitoring probes added by QUITE. DeSiDeRaTa has also been modified to
output text informational messages from its QoS Manager module detailing its path latency
calculation results and its decisions to take a management action for a process (move or copy the
process).

The QUITE infrastructure software includes the following:

• Iperf Network Stressor

• QMS Logger Plugin

Data gathered from the infrastructure software consists of various kinds of data metrics describing
the host, network, and processing environment in which the experiment is run.

EXPERIMENT EXECUTION

Starting Remos
To launch REMOS/QMS, the TAO naming and QMS event channel should be running. Two

scripts are provided on the Windows NT® machines to launch the TAO naming and event servers:

1. tao_naming.bat (launch this first)

2. qms_channel.bat (launch this next)

Next, launch Remos (on the Linux machine) by running the following script files provided:

Run_collector.sh

Run_bridgecoll.sh

Run_remos_int.sh

After running this last script file, you should see the Remos instrumentation connect to the QMS
event channel (via text messages displayed in console window).

 16

Starting DeSiDeRaTa Middleware
Once TAO naming, the QMS Event Channel, and Remos are running, the DeSiDeRaTa

middleware can be started. To launch the DeSiDeRaTa middleware (including the new QUITE
enhancements), the following processes must be started:

• DeSiDeRaTa Name Server

• DeSiDeRaTa System Broker

• DeSiDeRaTa Resource Manager

• DeSiDeRaTa Host Broker

• DeSiDeRaTa Host Analyzer (QUITE-modified version)

• Network Analyzer (new addition)

• Network Broker (new addition)

• DeSiDeRaTa NT®Monitor (host monitor)

• DeSiDeRaTa Program Control

• DeSiDeRaTa Startup Daemon

• DeSiDeRaTa Human–Computer Interface (HCI)

A batch file called testapp_startup.bat is available that starts each piece. Two GUIs appear: NT®

Monitor and HCI. Launch this batch file, pressing the space bar each time to continue launching the
various pieces. Once the HCI GUI is displayed, prepare the remote machines to act as potential
hosts.

To move processes from one machine to another, all eligible machines must first be specified in
the DesiderataHW.spec file and listed as a potential host in the Testapp.spec file.

Once the HCI GUI on the host DeSiDeRaTa machine appears, the following two DeSiDeRaTa
processes must be started on all remote Windows NT® migration target machines:

1. NT® Monitor – start the NT® Monitor.exe on the remote machine. A script called
desi_nt_monitor.bat executes the monitor and connects to the DeSiDeRaTa name server.

2. SD.exe – start the Start Daemon (SD.exe) on the remote machine by using a script called
desi_sd.bat.

The above processes (NT® Monitor and SD) should be started after the HCI on the host machine is
started. Do not start the test applications until all of the desired remote machines have started their
NT® Monitor and SD processes.

In the HCI GUI, select Connect under the File menu and enter the appropriate host and port where
the DeSiDeRaTa Name Server is running.

In the HCI GUI, various views can be started from the top menu bar:

A Host Window shows the various hosts and processes running on each host.

 17

A Path Window shows the application path. This view also provides access to a dynamic plot of
the latencies through a right mouse click inside this window.

A Console Window allows viewing text accounts of DeSiDeRaTa events.

Starting the Test Application
Once DeSiDeRaTa has started, from the DeSiDeRaTa HCI, on the top menu bar, select

StartSystems. To launch the test application path, select H:W. Figure 7 shows this action sequence.

Figure 7. DeSiDeRaTa HCI.

DeSiDeRaTa begins to launch the TestApp path. There are three processes that execute: AP, BP,
and CP. In the Host View window on the DeSiDeRaTa HCI, each process can be seen executing on a
host machine. As Figure 8 shows, the processes are running on host, teksd6 (in our particular
testbed).

 18

Figure 8. HCI view of processes running on teksd6 host.

Each process, AP, BP, and CP, execute inside an MS-DOS® window. These windows can be seen
on the machine corresponding to what is shown in the host view.

The DeSiDeRaTa HCI also features the ability to dynamically plot latency (in milliseconds)
information of the entire path and each application. Hitting the right mouse button inside the
H:W:Testing window of the DeSiDeRaTa HCI accesses this plot view.

This action brings up the pop-up menu shown in Figure 9. Select Plot Dynamic Data to view the
graphical data. Figure 10 shows an example of the latency graph.

Figure 9. Plot Dynamic Data pop-up menu.

 19

Figure 10. Latency information for H:W:Testing path and applications.

Controlling the Processing Load
The test application can be controlled by the provided GUI. After the applications have been

started, the user may launch the GUI Controller. A batch file inside the scripts subdirectory has been
provided called testapp_gui.bat. This file launches the GUI. Once the GUI starts up, click on the
connect button at the left corner of the GUI (you may need to resize the GUI to see things correctly.)
Figure 11 shows the connected GUI.

Figure 11. Test application GUI controller.

 20

As figure 11 shows, an Object View lists the objects registered with TAO CORBA Naming
Service. Below this view is a table describing where each object is executing. To the right of these
panels is the TestApp Control. This area allows dynamically modifying processing parameters in the
test application.

To make a modification to the processing of one of the application pieces (AP, BP, or CP), do the
following:

1. Select the process in the Object View. (NOTE: We have encountered problems with
DeSiDeRaTa in modifying the start of the application path, AP. We suggest that
modifications be made only to the middle of the path [in our case, BP]). Selecting
EventService and ScheduleService will have no effect.

2. In the TestApp Control panel, modify the desired value in the text box.

• Iterations = how many times to perform the sorting algorithm on the dataset.

• Array Size = how many data items to be sorted.

• Message Count = how many message units (see next item) to send each cycle.

• Message Size = how big the message unit will be. The message unit is defined as the
text message multiplied by the value of the message size. (The text message is
defined either in a text file or as the default string, Experiment 1. See the Appendix
chapter section on Experiment Setup and Configuration for more details on setting
the text message.). As an example, consider a message size of 4 and the text message
as the default string “Experiment 1”. This example would produce the following
message unit:

“Experiment 1 Experiment 1 Experiment 1 Experiment 1”

• Logging Time (seconds) = how often to log the test application data. The following
information is logged:

1. Length of the message.

2. Number of messages sent each cycle.

3. How many messages have been sent so far.

4. Size of the data array

5. How many times the data array is sorted.

6. Time stamp information.

When you are ready to send the modification, click on the corresponding button (i.e., for Array
Size, click on the Array Size button next to the text box). The modification will affect the process
selected/highlighted in the Object View.

Once DeSiDeRaTa decides that a move is necessary, the target process starts on a suitable host
and is killed on the former host. This move can be seen in the Host View window of the HCI. In
Figure 12, the BP process was moved from teksd6 to teksd10.

 21

Figure 12. BP process moved from one host to another.

RUNNING EXPERIMENTAL SCENARIOS: AN OVERVIEW
This section describes how to execute the basic experimental scenarios. Please read the previous

sections on running the various software components as they give a more detailed view of how to
operate each piece of software.

There are two types of scenarios explored in this section:

• Stressing a particular process in the path using the CPU workload parameters, thereby
causing that process to move to another machine.

• Stressing a particular link between processes, thereby causing certain hosts to be dropped
from consideration for moving.

Movement through CPU Stress
The first scenario involves stressing a particular process in the path (in our example, BP) using the

test application GUI. We assume that Remos collector is running. Please refer to documentation on
Remos and the QMS/Remos instrumentation for more details on setup and execution of that
component. What follows are the steps used to execute this first scenario.

1. Start TAO Name Server.

2. Start TAO Event Channel (qms_channel.bat).

3. Start Remos Instrumentation.

4. Start testapp_startup.cmd. This batch file starts up the DeSiDeRaTa middleware. Press the
spacebar to launch each part of the middleware.

5. Prepare the remote machines by launching the Windows NT® monitors and Start Daemons
on the remote hosts. This launch is accomplished by executing the desi_nt_monitor.bat and
the desi_sd.bat files.

6. On the DeSiDeRaTa HCI, select File->Connect and connect to the DeSiDeRaTa Name
Server by entering the host machine and port in the dialog box.

 22

7. On the DeSiDeRaTa HCI, select Hosts->Host View.

8. On the DeSiDeRaTa HCI, select Paths->H:W:Testing. When that window pops up, right-
click on it and select Plot Dynamic Data.

9. On the DeSiDeRaTa HCI, select StartSystems->H:W:Testing. This selection launches the
TestApplication as described in the section, Starting the TestApplication.

10. Once all the parts of the path have been launched and are executing (you should see text
scrolling rapidly in each of the TestApp windows), execute the TestApp GUI controller. The
file testapp_gui.bat launches the GUI.

11. Connect the GUI to the TAO Name Server by clicking on the connect button.

12. Causing the BP process to move to another host will vary depending on processor speed,
memory, network information, etc. Changing the array_size to 300 and the Iterations to 1300
will usually cause DeSiDeRaTa to move the BP process. These values can be changed using
the testapp GUI as explained in the above section.

13. Once DeSiDeRaTa detects path latency beyond the desired threshold, the BP process should
be moved to another host as shown in the previous section.

Stressing the Network Link
This section describes the second basic scenario in which the network link between processes is

stressed, thereby causing DeSiDeRaTa to remove certain hosts from the list of possible targets for
migration (Good Hosts). Consider the setup described in Figure 6.

In this scenario, there are six machines. Of these six, three hosts are possible migration targets for
DeSiDeRaTa. The idea behind this scenario is that by executing an outside network stressor such as
iperf between lan_teksd8 (connected by hub to lan_teksd11) and lan_teksd12, DeSiDeRaTa removes
lan_teksd11 from the list of potential migration targets because the network load on that link has
surpassed the desired threshold. Running the network stressor tool on any host will also change the
CPU use on that host. To prevent the effects of this CPU use on the experiment, we put teksd8 and
teksd11 on the same logical network segment using a hub. The approximate steps for executing this
scenario are as follows:

Start TAO Name Server.

Start TAO Event Channel (qms_channel.bat).

Start Remos Instrumentation.

Start testapp_startup.cmd (this batch file starts up the DeSiDeRaTa middleware. Press the
spacebar to launch each part of the middleware).

Prepare the remote machines by launching the Windows NT® Monitors and Start Daemons on the
remote hosts. This launch is accomplished by executing the desi_nt_monitor.bat and the desi_sd.bat
files.

On the DeSiDeRaTa HCI, select File->Connect and connect to the DeSiDeRaTa Name Server by
entering the host machine and port in the dialog box.

 23

On the DeSiDeRaTa HCI, select Hosts->Host View.

On the DeSiDeRaTa HCI, select Paths->H:W:Testing. When the window pops up, right-click in it
and select Plot Dynamic Data.

On the DeSiDeRaTa HCI, select StartSystems->H:W:Testing. This selection launches the
testApplication as described in the section, Starting the TestApplication.

Once all parts of the path have been launched and are executing (you should see text scrolling
rapidly in each of the testApp windows), execute the testApp GUI controller. The file testapp_gui.bat
launches the GUI.

Connect the GUI to the TAO Name Server by clicking on the connect button.

 Run iperf server on a machine connected to the switch by a hub. Use a command similar to
iperf –s

 Run an iperf client on a machine connected directly to the switch by using a command such as the
following:

Iperf –c [IP address of the iperf server] –w 50000 –t 900

(NOTE: see iperf –h for more help on iperf)

 In the Host Analyzer DOS window on the DeSiDeRaTa middleware machine, you should notice
that the host connected to the hub is no longer a potential migration target (Good Host).

Running the CPU stress as described in the previous section to the point that DeSiDeRaTa
migrates BP guarantees that DeSiDeRaTa does not migrate BP to the dropped host.

Increasing the Message Count and Message Size parameters in the testApp GUI forces
DeSiDeRaTa to drop undesirable hosts from the Good Host list as well. By varying these parameters,
you should get DeSiDeRaTa to move a process to a good host without the need for iperf or the CPU
stress.

 25

CONCLUSION

EXPERIMENT RESULTS
The conclusive statistics indicate that the resource management system, DeSiDeRaTa, when used

within this experiment, produces an elevated perception during the resource management decision
process when provided with dynamic network information such as network resource requirements
and availability. Experiment results also indicate that this improved resource management decision is
dependent upon available bandwidth (e.g., more effective at higher usage).

The network monitoring system, Remos, is a competent device for detecting network resource use
and accessibility. The integration of two Quorum program components is an effective approach to
efficient resource use, which contributes to overall QoS-level provisioning. The timing of the
DeSiDeRaTa and Remos components were well-matched and showed conclusively that efficient
information exchange contributes to effective resource control.

Experiment results also indicate that effective use of the QUITE project framework and the tools
to create the capability to install and use Quorum technologies work effectively together.

The results from this experiment include numerous run logs and the resulting illustrative chart
data. The data files collected for the series consist of following:

Unmodified DeSiDeRaTa series

• PmLog—path latency management log from DeSiDeRaTa’s QoS Manager

• QMS Log—test application output log messages

• Test notes—notes on the test runs taken during the experiment

Modified DeSiDeRaTa series

• PmLog—path latency management log from DeSiDeRaTa’s QoS Manager

• QMS Log—test application output log messages and Remos bandwidth data

• Test notes—notes on the test runs taken during the experiment

After the experiment, the data files were processed to support analysis. The QMS logs were
processed to extract data from their original XML format into data files that were suitable for
insertion into Excel® spreadsheets or some type of database. The QMS log’s original data had a
name of the form Runxxxqms.log. The extracted bandwidth data files were of the form Runxxxqms-
BW.out. Note that there were no bandwidth data for the series with unmodified DeSiDeRaTa. The
extracted test application output message data file was of the form Runxxxqms.out.

The PmLog files were processed to remove superfluous ID information and provided the data in
columnar format. The raw data files had a name of the form RunxxxpmLogfile.log. The processed
files had a name of the form RunxxxpmLogfile-proc’d.log.

 26

The experiment test notes are in two files: RunI-notes and RunJ-notes. The Run I notes are for the
series with the modified DeSiDeRaTa and Remos combination. The Run J notes are for the series
with the unmodified DeSiDeRaTa.

These files are provided for analysis in a set of Winzip format files that support their efficient
transport. They can be checked out of the Quite CVS repository from the CVS module Experiments/
Desi-Remos.

DATA
Besides simple formatting of the data, the data gathered must be processed to analyze it

appropriately. This processing is needed due to differences in time stamps and the frequency with
which the data were recorded.

PmLogs: Desi QoS Manager path latency data

These data were output whenever a completed path message from the Test Application was
processed by Desi. During these experiments, this processing occurred anywhere from twice per
second up to about 10 times per second. These data must be thinned manually to allow proper
comparison with the test application output data. Messages indicating when the QoS Manager
recommended moving an application must be removed from the data.

QMS Logs: Test Application Data

These data were output every 5 seconds by default. For the test, the rate was set manually during
the test to once per second. These data were output approximately once per second when set, but
some seconds are missed due to scheduling and other uncertainties in the test application. These data
must be manually formatted to allow graphing, mostly by adding blank records as placeholders for
missing second records. Note that the field used to support data editing was the Event Time field.

These logs and graphs are exceptionally large in size and could not be feasibly included within this
report. However, they can be accessed through the QUITE project by contacting Teknowledge or
SSC San Diego.

 27

REFERENCES

DeWitt, A., T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, D. Sutherland. 2000.
“Remos: Resource Monitoring for Network-Aware Applications,” CMU-CS-97-194, Carnegie
Mellon School of Computer Science, Pittsburgh, PA.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/www/remulac/remos.html

Welch, L., et al., 2000. “DeSiDeRaTa: Resource and QoS Management for Dynamic, Scalable,
Dependable Real-Time Systems: Manual for Use of Distributed QoS and Resource Management
Middleware, Laboratory for Parallel and Distributed Real-time Systems, Department of Computer
Science and Engineering, University of Texas at Arlington, and Laboratory for Intelligent, Real-
Time, Secure Systems School of Electrical Engineering and Computer Science, Ohio University.

 A-1

APPENDIX A
EXPERIMENT SETUP AND CONFIGURATION

Installing Remos
The Management of Quality of Service experiment requires the proper installation of Remos. The

instructions below will allow for the setup and configuration of the environment for Remos execu-
tion. These directions should be followed in the sequence noted below.

1. Edit quite-config/ENV.sh to reflect the correct path for REMOS_DIR and the PATH variable
for the location of JDK 1.2.2. Also edit the value for COLLECTOR to reflect the correct host name
and the same port as in the collector.config file.

2. Source the ENV.sh file by "source ENV.sh" in bash.

3. Edit $REMOS_DIR/Makefile.shared to locate ROOT_DIR - the location of this Remos
distribution. The Quite configuration assumes that JDK1.2.2 is located in /usr/local/share/jdk1.2.2 .
If this is not so, edit the Makefile.shared to change this path as well in the Linux section.

4. cd to the Remos root directory ($REMOS_DIR) and run "gmake rebuild_all" Everything should
compile cleanly with no errors.

5. Edit bridge.config to reflect the IP address of your switch and the right SNMP community
string. If it is a Cisco catalyst then use the communitystring@VLAN convention.

6. Edit collector.config and change the line that starts with "bridgecoll" to reflect the host that is
running the bridge collector. Leave the port number alone.

7. Now you are set to run Remos.

8. Verify that the "run_bridgecoll", "run_collector" and "run_visualizer" programs in
$REMOS_DIR/build have executable permissions.

 9. If you'd like to take Remos for a test spin, cd to quite-config/utilities and run "make all". This
will create two binaries "flowtest" and "graphtest" which will let you query Remos for information.

10. To run Remos, here's the order you execute things - cd to $REMOS_DIR/quite-config

 - Run Bridge collector with the following command

 "$REMOS_DIR/build/run_bridge_coll ./hostfile ./bridge.config"

 - Run SNMP collector with the following command

 "$REMOS_DIR/build/run_collector ./collector.config"

 - Run our test tool graphtest with the following command

 "$REMOS_DIR/quite-config/utilities/bin/graphtest -e -i 5 -s 10 -f ./hostfile"

 Run "graphtest -h" for an explanation of the options.

 - To run the Java visualizer, use the following command:

 "$REMOS_DIR/build/run_visualizer ./hostfile"

 A-2

QMS and REMOS
This section describes the installation and setup of the Remos software and the STDC Remos

instrumentation additions. Much of the text included here was taken from the readme files included
as a part of the Remos package.

The readme files included with the standard Remos distribution are as follows:

README.desc

README.build

README.collectors

README.required

README.run

README.version

In addition to these files, STDC has provided a Readme.first file located with the Remos
component in the quite-qvs repository. This file is located in the Remos/quite-config directory.

Building Remos from Scratch
Most likely, the Remos and the Remos instrumentation will be deployed as executables on the

QUITE distribution. If this is the case, skip to the next section, Configuring Remos. However, if you
want to build Remos from scratch, this section covers the steps required to do so. This section will
present excerpts from the instructions found in the above files on building Remos from scratch.
Please refer to the official Remos readme files listed above and the STDC Readme.first file located
in the quite-config directory for more detailed information.

First, install the remos software. This software usually comes in a tar or gzip format. Follow the
instructions as detailed in README.build for detailed instructions on how to build the Remos
software. The main requirements to build the package are gcc 2.7.2 or higher (ideally, egcs 1.0 or
later), gmake (ideally, 3.7 or later), and jdk 1.2.

1. Edit quite-config/ENV.sh to reflect the correct path for REMOS_DIR and the PATH variable
for the location of JDK 1.2.2. Also edit the value for COLLECTOR to reflect the correct host name
and the same port as in the collector.config file.

2. Source the ENV.sh file by "source ENV.sh" in bash.

3. Edit $REMOS_DIR/Makefile.shared to locate ROOT_DIR - the location of this Remos
distribution. The Quite configuration assumes that JDK1.2.2 is located in /usr/local/share/jdk1.2.2 .
If this is not so, edit the Makefile.shared to change this path as well in the Linux section.

4. cd to the Remos root directory ($REMOS_DIR) and run "gmake rebuild_all". Everything
should compile cleanly with no errors.

5. Edit bridge.config to reflect the IP address of your switch and the right SNMP community
string. If it is a Cisco catalyst then use the communitystring@VLAN convention.

 A-3

6. Edit collector.config and change the line that starts with "bridgecoll" to reflect the host that is
running the bridge collector. Leave the port number alone.

Configuring Remos
If the Remos with Remos_instrumentation package is delivered as a “ready to run” executable

package, then building Remos from scratch is not necessary.

1. On the Linux machine, cd to directory you want to install Remos.

2. Untar the Remos distribution using the command tar xvzf remos-all.tar.gz. Please note that this
will create the following subdirectories in the current directory:

Bin

Scripts

Config

Lib

3. In the scripts directory, open the file envsetup.sh. Edit this file to reflect the correct path for
TOP_DIR and the JDK12_HOME for the location of JDK 1.2.2. Also edit the value for
COLLECTOR to reflect the correct host name and the same port as in the collector.config file (see
step 5).

4. In the config directory, edit bridge.config to reflect the IP address of your switch and the right
SNMP community string.

5. Edit collector.config in the config directory and change the line that starts with "bridgecoll" to
reflect the host that is running the bridge collector. Leave the port number alone. For example, it
should read something similar to:

 bridgecoll teksd4 41271

TEST APPLICATION AND DeSiDeRaTa
This section describes the installation and configuration of the test application and the

DeSiDeRaTa middleware modified for use in this experiment. Please note that the QMS dll is also
included in the distribution tar file.

This document refers to the run-time installation of the TestApplication software and does not
cover the building of the software from source code. This run-time version will normally be
distributed as a zip file. Upon unzipping the file, the user will see the following subdirectories (note:
our top directory is desi-cvs-2000, but that may be different on your machine):

/bin

/config

1 We experienced a problem in our setup where we received the message: “Network Unreachable.” We did the

following: Route add –net 224.0.0.0 netmask 240.0.0.0 dev eth0.

 A-4

/lib

/scripts

The QUITE-modified version of DeSiDeRaTa is included in the TestApplication zip file. Setting
up the test application and the DeSiDeRaTa middleware to work in your environment mainly
involves re-configuring the batch files in the scripts directory. In envsetup.bat, modify the following
variables to match your local environment:
set TOP_DIR=d:\desi-cvs-2000

set COTS_HOME=c:\cots
set NT_HOME=C:\WINNT
set VCPP_HOME=c:\program files\Microsoft Visual Studio
set TAO_NAMING_HOST=teksd8

REM desi configuration
set DESI_NS_HOST=teksd8
set NS_MULTI_PORT=10013
set RMSPECDIR=%TOP_DIR%\config\specfiles

set JDK1.1_HOME=%COTS_HOME%\jdk1.1.7B
set JDK1.2_HOME=%COTS_HOME%\jdk1.2
set JDK1.3_HOME=%COTS_HOME%\jdk1.3

Note that this envsetup.bat file is called by envsetup1.3.bat. Since the test application GUI requires
jdk/jre 1.1.3. the testapp_gui.bat (which starts the Controller GUI) calls envsetup1.3.bat which in
turn calls envsetup.bat.

Additionally, there is a file called naming_util.properties located in the config directory. This file
is used by the test application GUI controller to connect to TAO naming. Replace the IP address with
the IP address of the machine where the TAO naming server is running.

DeSiDeRaTa is configured via specfiles. The specfiles used in DeSiDeRaTa reside in the
config/specfiles directory. The main things to modify are found in DesiderataHW.spec and
TestApp.spec. In the DesiderataHW.spec file modify the following variables to match your
environment:
HOST teksd12 {

Type "INTEL_PENTIUM_500";

OS "MS_Windows_NT";

Version "MS_Windows_NT_4.0";

Speed 500; //MHz

Memory 256; //MB

NumCPUs 1;

Threshold 0.1 ;

SPECint95 20.05 ;

SPECfp95 14.2 ;

Default-Network D_N:NH_250_Ethernet

}

 A-5

This file defines all the NT machines that will be potential targets for migration of processes. It is
important that the SPECint and SPECfp values match your machines. To find the values for your
system, visit www.spec.org. For more detailed information about these and other parameters, see the
DeSiDeRaTa documentation.

The TestApp.spec file details information about the test application. DeSiDeRaTa uses this
information along with the hardware information specified above to arrive at decisions about
resource management. Make sure that the hostnames and machine types match those defined in the
DesiderataHW.spec file. Please refer to the RM-Spec manual in the DeSiDeRaTa distribution for
detailed information about each of these parameters.

Make sure that all hosts that you want DeSiDeRaTa to consider a potential migration target are
listed under the Application subsection. For example, in the following section defining the CP
process:
APPLICATION CP {

… [text deleted]

//list of hosts that are the only h/w set up to run this app

Host lan_teksd10;

Host lan_teksd6;

Host teksd21;

Host lan_teksd11;

Host teksd5;

… [text deleted]

}

The CP process can migrate to any of these 5 machines: lan_teksd10, lan_teksd6, teksd21,
lan_teksd11or teksd5. If the subsection were specified as follows, the CP process would only be able
to migrate to teksd21 and teksd5:
APPLICATION CP {

… [text deleted]

//list of hosts that are the only h/w set up to run this app

Host teksd21;

Host teksd5;

… [text deleted]

}

 A-6

IMPORTANT NOTE: One important thing to remember is that DeSiDeRaTa parses ALL files
ending in the .spec extension in the specified directory. Therefore, it is important to rename or
remove any unwanted specfiles; otherwise, DeSiDeRaTa will parse them.

In the TestApp.spec file, the arguments to the test application are as follows:
//Ordered list of command line arguments

Arg "test_app"; // NAME OF THE EXECUTABLE

Arg "BP"; // NAME OF THIS NODE IN PATH

Arg "3"; // NUMBER OF MESSAGES TO PASS EACH CYCLE

Arg "10"; // CURRENTLY, NOT USED

Arg "d:\desi-cvs-nt\config\input_message.txt"

// PATH TO FILE WHICH DEFINES THE MESSAGE STRING

Arg "teksd10"; // DESI NAME SERVER HOST

Arg "7300"; // DESI NAME SERVER PORT

Arg "H:W:Testing"; // DESI QM NAME

Arg "AP"; // PREVIOUS NODE

Arg "CP"; // NEXT NODE

Arg "dummy"; // DUMMY STRING REQUIRED BY DESI

Note that a default value is used for the array size (200) of items to sort and the number of
iterations (10) it is sorted. These values can be modified dynamically via the test application GUI.

The fifth argument defines a path to a textfile which will store a user-defined string to be used as
the message to pass to the next node in the path. In the example above, the path is defined as
“d:\desi-cvs-nt\config\input_message.txt “. Note that this argument is passed to all Desi Startup
Daemons therefore this exact filepath must exist on all machines that will be running this particular
processing node. Alternatively, you can specify “DEFAULT_INPUT” instead of a filepath. In that
case, the test application will use the default string Experiment 1 instead of reading one from a file.

Adding additional parts to the path (advanced / optional section)
One important thing to note is that each process in the application path is defined in the

TestApp.spec file. That is, AP, BP, CP, and DP each have an APPLICATION section. If desired, it is
possible to create more parts to the path by performing the following steps. Note that this procedure
is not required to perform the experiments and is described here only in the case that the user wants
to conduct modified versions of the experiments on their own.

 A-7

In the TestApp.spec file, modify the PATH Testing section to include the additional pieces. For
example, the section currently states the following:
PATH Testing {

Connectivity {

(H:W:AP, H:W:BP);

(H:W:BP, H:W:CP);

(H:W:CP, H:W:DP);

}

 To add an additional piece to the path, this section must be changed to the following:
PATH Testing {

Connectivity {

(H:W:AP, H:W:BP);

(H:W:BP, H:W:NEWONE);

(H:W:NEWONE, H:W:CP);

(H:W:CP, H:W:DP);

}

Notice that H:W:NEWONE has been added to the path.

Next, add an additional APPLICATION subsection describing the H:W:NEWONE node. Again,
make sure that the hostnames and machine types match.

In the section describing the ordered list of command line arguments, make sure that the second
argument lists the name you wish to give to this new node. For example:
//Ordered list of command line arguments, static

Arg "test_app";

Arg "NEWONE"; // New node!!!

Arg "3";

Arg "10";

Arg "teksd10";

Arg "7300";

Arg "H:W:Testing";

// next process name

Arg "AP";

// previous process, in this case - this is the end path (keyword) for app
to find out if it

// needs to invoke the next process. Agian, in this case, it would not
invoke the next process

 A-8

Arg "CP";

// need to provide this dummy arg because some strange

//behaviour of startup deamon the way it handled the arguments

Arg "dummy";

Note that the first argument that describes the actual executable that runs is the same for all of the
applications, test_app.exe. This is because we use one single executable for all pieces of the path
customized by command line argument.

Again, please refer to Rmspec documentation for detailed information on the meaning of the
DeSiDeRaTa parameters.

ENVSETUP1.3 BATCH FILE
call envsetup1.3.bat

rem this now has been defined in envsetup.bat

rem set RMSPECDIR=%CONFIG%\specfiles

set HOST_PAIR_FILE=nb-host-pair.txt

start "DeSiDeRaTa Name Server" /min NS.exe %DESI_NS_PORT%

pause

start "DeSiDeRaTa System Broker" /min SB.exe SB %DESI_NS_HOST% %DESI_NS_PORT%

pause

start "DeSiDeRaTa Resource Manager" /min RM.exe RM %DESI_NS_HOST%
%DESI_NS_PORT% 7

pause

start "DeSiDeRaTa Hardware Broker" /min HB.exe HB 5 %DESI_NS_HOST%
%DESI_NS_PORT%

pause

start "DeSiDeRaTa Network Analyzer" NA.exe %DESI_NS_HOST% %DESI_NS_PORT% HA NB
60000000

pause

start "DeSiDeRaTa Host Analyzer" /min HA.exe %DESI_NS_HOST% %DESI_NS_PORT% RM
HB NA

rem start "DeSiDeRaTa Hardware Analyzer" /min HA.exe %DESI_NS_HOST%
%DESI_NS_PORT% RM HB

pause

 A-9

start "DeSiDeRaTa Network Broker" NB.exe 4 0 %DESI_NS_HOST% %DESI_NS_PORT% NA
%HOST_PAIR_FILE%

pause

start NTMonitor.exe 5 HB %DESI_NS_HOST% %DESI_NS_PORT%

pause

start "DeSiDeRaTa QM_Testing" QM.exe N RM SB %DESI_NS_HOST% %DESI_NS_PORT%
H:W:Testing F

start "DeSiDeRaTa Program Control" /min PC.exe PC RM %DESI_NS_HOST%
%DESI_NS_PORT%

pause

start "DeSiDeRaTa Startup Daemon" /min SD.exe PC %DESI_NS_HOST% %DESI_NS_PORT%

REM pause

REM start "DeSiDeRaTa HCI" /max HCI.exe

5f. WORK UNIT NUMBER

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHORS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

04–2002 Final

MANAGING QUALITY OF SERVICE WITHIN DISTRIBUTED
ENVIRONMENTS

 The Open Group Development Corp.
 Research Institute

SSC San Diego
San Diego, CA 92152–5001 TR 1883

DARPA-ITO

Defense Advanced Research Projects Agency
Information Technology Office
3701 Fairfax Drive
Arlington, VA 92203

Approved for public release; distribution is unlimited.

The objective of this research was to construct an experiment that examined efficiently managing QoS within distributed
environments based upon network information. Experiment results described in this report have successfully demonstrated
indivdual Quorum goals using integrated Quorum components. This experiment has integrated various Quorum technologies from
low level to high level and created a layered resource management system. Results can be accessed through the QUITE framework
and toolkit. These components, which include Remos and DeSiDeRaTa, were integrated correctly to introduce new multi-
dimensional QoS management capabilities.

Mission Area: Software Development
distributed environment network information
Quorum components resource management

U U U UU 52 (619) 553–4131

INITIAL DISTRIBUTION
20012 Patent Counsel (1)
20271 Archive/Stock (6)
20274 Library (2)

Defense Technical Information Center
Fort Belvoir, VA 22060–6218 (4)

SSC San Diego Liaison Office
C/O PEO-SCS
Arlington, VA 22202–4804

Center for Naval Analyses
Alexandria, VA 22311–1850

Office of Naval Research
ATTN: NARDIC (Code 362)
Arlington, VA 22217–5660

Government-Industry Data Exchange
 Program Operations Center
Corona, CA 91718–8000

Defense Advanced Research Projects Agency
 Information Technology Office
Arlington, VA 22203–1714

Naval Postgraduate School
Monterey, CA 93943–5101

Teknowledge
Palo Alto, CA 94303 (3)

The Open Group
Woburn, MA 01801 (3)

System/Technology Development Corporation
Herndon, VA 20170–4214 (3)

Approved for public release; distribution is unlimited.

	tr1883.pdf
	EXECUTIVE SUMMARY
	OBJECTIVE
	METHOD
	CONCLUSION

	BACKGROUND
	INTRODUCTION
	MAJOR ISSUE
	Experiment Goals
	Experiment Description

	EXPERIMENT ENVIRONMENT
	ARCHITECTURE
	RESOURCE MONITORING SYSTEM
	DYNAMIC, SCALABLE, DEPENDABLE, REAL-TIME

	EXPERIMENT REQUIREMENTS
	HARDWARE
	SOFTWARE
	HARDWARE SETUP

	ANALYSIS PROCEDURE
	HYPOTHESIS
	ASSUMPTIONS
	DATA
	EXPERIMENT EXECUTION
	Starting Remos
	Starting DeSiDeRaTa Middleware
	Starting the Test Application
	Controlling the Processing Load

	RUNNING EXPERIMENTAL SCENARIOS: AN OVERVIEW
	Movement through CPU Stress
	Stressing the Network Link

	CONCLUSION
	EXPERIMENT RESULTS
	DATA

	REFERENCES
	APPENDIX A�EXPERIMENT SETUP AND CONFIGURATION
	
	Installing Remos

	QMS and REMOS
	Building Remos from Scratch
	Configuring Remos

	TEST APPLICATION AND DeSiDeRaTa
	Adding additional parts to the path (advanced / optional section)

	ENVSETUP1.3 BATCH FILE

