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EXECUTIVE SUMMARY 
 

Assessing and understanding operator workload is an important factor for consideration during the 
development of new systems. It may also be important to understand fluctuations in workload within 
operational systems in order to efficiently apply automated processes and provide assistance at criti-
cal times. This paper describes how a simple workload measure obtained every 2-3 minutes during 
the evaluation of a prototype command and control console can be used to develop an operator’s 
workload profile as a function of other system parameters, such as track density on the tactical plot, 
and task loading. If system measures can be monitored regularly, functional models of operator 
workload can be derived, and workload levels can be interpolated to provide near-continuous work-
load estimates every 15-30 seconds. The resulting workload profiles can be used to identify condi-
tions that result in potential operator overload. Profiles from several operators may be used to study 
team workload distribution and to derive more efficient work allocation strategies. 

Also discussed in the present work is how the simple unidimensional workload measure relates to 
multidimensional measures that differentiate between mental demand, physical demand, frustration, 
and other aspects of work. Multidimensional measures require more extensive reporting and are thus 
not suitable for administration during system testing. A common multidimensional scale, the NASA 
Task Load Index (TLX), was administered at the conclusion of the each evaluation session. Regres-
sion analysis revealed that the 90th percentile from the distribution of unidimensional workload esti-
mates related to the NASA-TLX dimensions of mental effort and temporal demand in a group of 20 
operators. 

These findings indicate that near-continuous workload profiles may be built from simple subjec-
tive workload estimates combined with system-state information, and that the workload estimates can 
be linked to specific behavioral dimensions as captured by more complex workload assessment 
scales. 
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INTRODUCTION 
 

The confluence of increased computing power, pressure to increase productivity, and efforts to 
reduce costs associated with human oversight within process control, manufacturing, and command 
and control systems promises a greater role for automation in the future. Currently, there is an 
emphasis on maintaining or even reducing manning levels within new systems. It is quite evident that 
future operators will be required to supervise automated processes and work with automation in a 
manner not seen previously.  

Automation has been of interest to system developers for many years, and studies have generally 
shown that while system performance can generally be improved, performance may worsen under 
certain conditions. Failure of automation occurs most readily in systems that cannot be fully auto-
mated, and within which human operators must actively monitor and occasionally over-ride auto-
mated processes. Automation within dynamic settings can increase the workload of operators 
because of the extensive dialog with automated processes necessary to ensure proper functioning. 
Operator reliance on automation can result in a loss of situational awareness and complacency; this is 
problematical within systems requiring occasional operator control. Finally, operators may experi-
ence a loss of expertise as direct involvement in system control declines.  

Previous research has established that truly adaptive systems will require information on the 
human operator’s workload levels in real time (e.g., Byrne & Parasuraman, 1996). Parasuraman et al. 
(1992) have proposed that a combination of three assessment domains (environmental, activity, 
operator state) can provide estimates of workload with greater stability than any subset of measures.  
Environment or system-state information refers to knowledge of an operator’s task loading. For 
example, the number of aircraft that must be monitored by an air traffic controller may provide a 
general indication of workload. Communication activity (monitored on a radio circuit) might reflect 
the extent to which a set of aircraft requires attention by the controller. Psychophysiological meas-
ures, (e.g., heart rate variability, electroencephalograph [EEG] spectral measures) provide insight 
regarding an operator’s psychophysiological state, which in turn may correlate with workload 
(Kramer, Trejo & Humphrey, 1996; Van Orden, Jung & Makeig, 2000; Van Orden, et al. 2001).  

While recent studies have suggested that psychophysiological and behavioral models are useful for 
determining operator state to some degree, current findings from our laboratory indicated that greater 
fidelity in the estimation of workload may be achieved from more precise modeling of the operator’s 
task environment. During the course of developing a prototype command and control console for air 
defense warfare (ADW), Osga et al. (2001) focused on a Task-Centric Design (TCD) approach to 
meet the simultaneous requirements of reduced system manning and improved mission effectiveness. 
This design approach enabled moment-to-moment tracking of tasks to be performed by an operator. 
TCD was born from the realization that in order to reduce workload and assist the operator, the 
system must contain some knowledge of what the operator is attempting to accomplish. Hoc (2000) 
explains this in terms of a common frame of reference (COFOR) between the operator and machine. 
System “awareness” of task state and operator intent enables organization of task-supportive 
information, and development of tools to assist the operator in a manner that is specifically task 
supportive. For ADW, TCD required continuous assessment of track data to trigger tasks, the 
development of information sets to support those tasks, and the preparation of task products 
(outgoing reports, recommended tactical actions) for review by the operator. The goal in TCD is to 
support the operator through all task phases, from initiation to transition to new tasks. A central 
design feature is a task manager algorithm and display, which presents icons to the operator based 
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upon the system’s assessment of changes within the tactical database that require response or action 
(see Osga et al., 2001). 

System initiation and recording of task information proved to be highly valuable for moment-to-
moment estimation of operator workload. ADW requires that tasks be responded to rapidly after they 
have been instantiated, reducing the likelihood that tasks will not be attended to for prolonged peri-
ods. The ADW tasks, as structured and supported by information sets, are relatively straightforward 
in terms of actions and generally require confirmation by the operator to issue messages, query tracks 
of interest, and order air assets to inspect suspicious radar contacts.  

In Experiment 1, our goal was to determine the extent to which workload could be monitored using 
the frequency of tasks posted to the task manager display and the local track density of the tactical 
display. It was expected that real-time monitoring of tasks as they appeared on the task manager 
display would enable more precise real-time monitoring of operator workload. A simple unidimen-
sional workload estimation technique was employed, allowing non-obtrusive estimation by operators 
throughout a 30-min air defense scenario. This unidimensional estimate was strongly associated with 
tactical plot track density and the frequency of tasks identified by the system. In Experiment 2, the 
relationship of the unidimensional workload measure to a summary multidimensional measure 
(NASA-Task Load Index [TLX]) was examined. Methodological and theoretical issues as they relate 
to the application of automation within cooperative human–machine systems are subsequently 
discussed. 
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EXPERIMENT 1 

METHODS 
Participants: Eight subjects, affiliated with local commands, volunteered to complete a 30-min 

ADW task. All were generally familiar with ADW concepts and operator activities.  

Apparatus and Procedure: The experiment was run on a personal computer interfaced with two 
flat-panel color displays. The displays were arranged vertically with a tactical plot and associated 
information windows regarding tactical vehicles in the upper display, and a “task manager” display 
(Figure 1) located below. Subjects could interact with either display using touch or with a trackball.  

 

Figure 1. Task Manager display used in the experiments. Each icon represents a task, which 
was triggered by the system.  

During a 30-min air defense scenario, subjects were required to respond to system-initiated tasks 
(appearing as icons in the Task Manager display) concerning reports to be generated on the occur-
rence of new tracks, track identification changes, and uncorrelated electronic surveillance measures 
(ESM) activity. Initiating a task would highlight the pertinent track on the tactical plot, present the 
track’s summary information within summary information set windows, and produce a product (e.g., 
outgoing message, tactical action to be ordered) for review. Subjects were also required to observe 
the tactical plot and initiate level 1 queries (“who are you” questions) and level 2 warnings (“turn 
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away” statements) to unknown and suspect aircraft that crossed predetermined standoff distances 
from their ship. Standoff ranges were determined by range rings surrounding the ship and by graph-
ics depicting the boundary between territorial and international waters. Subjects were required to 
enter a simple workload estimate (7-point scale) every 2 minutes (see Figure 2). Roscoe (1987) has 
successfully used a similar method of eliciting subjective workload estimates from pilots involved 
with dynamic flight activity with little task interruption. His work was based upon a scale developed 
by Cooper and Harper (1969) for evaluation of pilots’ perception of aircraft handling characteristics. 
Denominations on these earlier 10-point scales were tied to a semantic decision tree regarding “toler-
ability” and “spare capacity” of perceived workload during the task. Roscoe concluded that the 
resulting output of the instrument was nonlinear with respect to task load. The 7-point scale used in 
the present study was anchored only by the descriptors shown in Figure 2. No nonlinearities were 
observed in the present data. 

The general uniformity among the tasks we studied allowed them to be considered as equivalent 
units of work; there was no need to apply distinct visual, auditory, cognitive, and psychomotor work-
load estimates (see McCracken and Aldrich, 1984) to each task in order to conduct workload mod-
eling studies. The queries and warnings tasks were initiated by the subjects and scored as three units 
of task work given the degree of track monitoring necessary to complete these tasks. 

 

Figure 2. Subjective workload estimation prompt that appeared on the subject’s display every 2 
minutes during the 30-min scenario. 

RESULTS AND DISCUSSION 
Figure 3 presents the target density data for the 30-min period of the scenario. These data are 

equivalent for each subject. Figure 4 presents the mean task loading data, obtained every 15 sec, for 
the eight subjects. Also plotted are the mean subjective workload estimates. While generally similar 
between subjects, task load data could vary as a function of how rapidly operators completed tasks. 
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Figure 3. Track density on the tactical plot during the 30-min scenario. 

 

Figure 4. Mean task load (left axis, solid line) and mean subjective workload (right axis, open circles) 
as a function of time (in sec) for the eight subjects. Mean task load was obtained every 15 sec. Mean 
subjective estimates were forward-lagged by 60 sec. 
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A regression analysis was conducted using the target density and mean task load data to predict 
mean workload estimation data. This analysis indicated that for all subjects, mean task load and track 
density accounted for a significant portion of the variance (57 percent) in estimated workload, 
F(2,12) = 8.12, p < .01, R = 0.76. The general model was: 
  Wkld = 0.45 * Task Load + 0.05 * Target Density + 1.32 

For the general model, task load (TL) accounted for 39 percent of the variance, while target den-
sity (TD) accounted for 19 percent. 

Individual models were constructed for each subject; their parameters are presented in Table 1. 
These models accounted for a statistically significant portion of estimated workload variance for six 
of eight subjects, and demonstrated considerable variability in component weighting factors. Individ-
ual and the general models based on 15 subjective estimates could then be used to interpolate work-
load at 15-sec intervals for the duration of the scenario—as would be desired in a functional real-time 
system.  

Table 1. Individual models. 

Subject TL TD Intercept R 

S1 .29* .09* .40 .76* 

S2 .21 .12* -.94 .71* 

S3 .82* .08 .66 .68* 

S4 .42 -.14 7.78 .60 

S5 .58* .03 1.26 .73* 

S6 -.09 .16* .12 .78* 

S7 -.02 .08* -.06 .57 

S8 1.18* .003 2.06 .69* 

GenMod: .45* .05* 1.32  .76* 

* indicates significance at p < 0.05 
 

Figure 5 presents moment-to-moment workload data derived from the general and individual mod-
els for Subject 1. As shown, the general and individual models produced similar workload profiles 
for this subject. Figure 6 presents similar output data, along with the original subjective workload 
estimates, for Subject 2. The difference between the workload profiles produced by the general and 
individual models are considerable for this subject, and raises some important questions. For exam-
ple, is this subject truly different from the group—and does the subject have the excess workload 
capacity indicated by the individual model? Or is his estimation scale biased towards using low num-
bers compared to other subjects? In this case, the excess capacity for additional work might evapo-
rate rapidly when this subject is challenged with additional tasks. Roscoe (1987) noted that individual 
variability in subjective ratings was common while using a similar instrument. The key to addressing 
this issue is repeated testing under conditions that drive the subjects into an overload state. Unfortu-
nately, limited test scenario resources prevented repeated testing in this experiment.  
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Figure 5. Workload estimates produced every 15 sec by the general and individual 
regression models developed from the 15 subjective workload estimation points. 

 

Figure 6. Moment-to-moment estimated workload data for Subject 2 based upon 
the general model and an individually tailored model. Original workload estimates 
provided by the subject during the scenario are shown as open circles. 
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EXPERIMENT 2 
 

The moment-to-moment workload measure used in the present series of studies was useful in 
identifying transient workload peaks and for modeling of workload as it related to task-based envi-
ronmental measures. Unidimensional workload measures have been criticized for lacking informa-
tion regarding what specific aspect of work (e.g., physical work, mental effort, temporal demand) is 
most affected by a given system and situation, prompting wide use of multidimensional workload 
scales such as NASA-TLX (Hart and Staveland, 1988). Because there are many situations in which 
multidimensional measures cannot be administered during an ongoing scenario, it is useful to under-
stand how the local-estimate unidimensional and summary multidimensional measures relate to each 
other. 

During the course of usability testing of our prototype command and control console, moment-to-
moment and summary NASA-TLX data were obtained from 20 subjects. Time constraints did not 
permit the establishment of the relative TLX subscale weighting factors as originally prescribed by 
Hart and Staveland (used for establishing a single weighted score from pairwise comparisons of the 
six subscales by every subject). However, it is common practice to use a simple average of the sub-
scale measures as at least one study (Nygren, 1991) has found no advantage to using the weighted 
TLX score over a simple average. Experiment 2 examined the relationship between the unidimen-
sional and multidimensional NASA-TLX measures. 

METHODS 
Participants & Procedure: Twenty subjects voluntarily participated. They completed between 30 

and 40 min of the ADW task described previously. Between 15 and 20 unidimensional workload 
estimation scores were obtained during the scenario, as well as the NASA-TLX measures at the con-
clusion of the session.  

RESULTS AND DISCUSSION 
Across all subjects, the correlation between the mean TLX score and the mean moment-to-moment 

workload estimation measure was weak and not statistically significant (r = 0.18, p > 0.05). Inspec-
tion of the TLX subscale data and the real-time estimates prompted a more thorough examination of 
their relationship. Table 2 presents the correlation matrix for the 90th percentile of the moment-to-
moment measures and the TLX subscale measures across the subject sample. There was considerable 
variability for correlations between the TLX subscales and the real-time workload estimation meas-
ures. The 90th percentile of the unidimensional measures were calculated because of the suspicion 
that the NASA-TLX measures would reflect the highest workload levels experienced during the 
session. The maximum and the mean of the unidimensional measures were found to be far less 
indicative as the 90th percentile measure to changes in the TLX subscale mean data.  
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Table 2. Correlation matrix of workload estimates and NASA-TLX subscale means. 

 90th 
Perc 

EFFORT PERFORM FRUSTRA TEMDEM MENDEM PHYSDEM

90th Perc 1.00 0.58 -0.27 -0.02 0.49 0.45 0.17
EFFORT  1.00 -0.17 -0.12 0.39 0.46 0.71

PERFORM  1.00 -0.08 -0.20 -0.18 -0.20

FRUSTRA  1.00 0.21 0.18 -0.13

TEMDEM  1.00 0.32 0.39

MENDEM  1.00 0.27

PHYSDEM   1.00

PERFORM, performance; FRUSTRA, frustration; TEMDEM, temporal demand; MENDEM, 
mental demand; PHYSDEM, physical demand 

 

The correlation between the TLX subscales of mental effort and physical demand (r = 0.71) 
approached a multicolinearity condition (in which predictor variables are highly correlate with each 
other) and proved troublesome during initial regression analyses. The physical demand subscale data 
was excluded from further analyses, as is often necessary in such cases in order to derive robust and 
generalizable models (Berry and Feldman, 1985). A forward-stepwise regression procedure was used 
to estimate the 90th percentile workload estimation data from the remaining TLX subscale means for 
the 20 subjects. The procedure yielded a significant model (F(2, 17) = 6.20, p < 0.01; R = 0.65) con-
taining the TLX subscale means of mental effort load and temporal demand load. The model 
accounted for 42 percent of the variance in 90th percentile moment-to-moment workload estimation 
measures. The model is expressed as follows: 
  WKLD90th = 0.11 * Mental Effort + 0.10 * Temporal Demand + 1.85 

Essentially, this model transforms TLX subscale ratings on a 20-point scale into a unidimensional 
90th percentile estimate of workload on a 7-point scale. Mental effort and temporal demand accounted 
for 34 and 8 percent of the variance, respectively. Increases in mental effort as a function of overall 
workload were likely due to decisions regarding which tasks to ignore versus execute as task load 
increased. These data indicate that automation might be useful in assisting operators during peak task 
load periods.  

The relationship between moment-to-moment workload estimates and TLX subscale measures 
described above enables some estimation of which aspects of work are changing within a situation 
monitored with a unidimensional measure. The relationship also raises questions about the simple 
averaging of TLX subscales to form a summary workload measure. Such an approach may have been 
appropriate within Nygren’s (1991) experimental paradigm; however, data within Table 2 might indi-
cate that simple averaging is not appropriate within the present application. It is quite possible that 
TLX subscales and weightings would vary between legacy and prototype command and control 
interfaces, as they would likely differ with respect to decision support features such as task 
management and other track history tools. Thus, care must be exercised when interpreting TLX 
means and subscale data. Modeling to unidimensional measures, as conducted in the present study, is 
necessary if moment-to-moment measures are used and different conditions are evaluated.  
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SUMMARY 
The present findings indicate that task-centric design principles and task management human–

computer interface (HCI), in combination with other task load data (such as track density), provide 
useful information that correlates strongly to operator workload. Despite concerns raised by Tsang 
and Wilson (1997) over the limitations of unidimensional workload scales, the assessment instrument 
used in our study was useful and non-intrusive, enabling the development of reasonable workload 
models that could then be interpolated to produce moment-to-moment workload estimates. Instruc-
tions to subjects have recently been revised (requiring immediate response to the probe when it 
appears on the display) reducing the need to lag the estimates backwards in time from 60 to 20 
seconds. A voice-input version of the estimation scale (following an auditory or visual icon) would 
enable use of fractional values and impart even less task interruption.  

Recently, the task and track density data have been augmented with operator activity data. Simply 
obtaining the number of items selected by the operator within overlapping 30-sec intervals provides 
indication of general operator use of the console. Task load and selection activity data from one sub-
ject are presented in Figure 7. Also presented in Figure 7 are the subjective workload estimates pro-
vided by the subject during the 40-min scenario. The data demonstrate some expected patterns: High 
concurrent activity and task load levels were associated with higher subjective workload estimates. 
Lower activity and task loading levels were associated with lower workload estimates. Of greater 
interest was the observation that intermediate workload estimates were often provided when selection 
activity was high and task loading was minimal. Regression modeling indicated that target density, 
task loading, and selection activity accounted for 70 percent of the variance in estimated workload 
for this subject, F(3,17) = 13.4, p < .001; R = 0.84. The regression analysis indicated that each of the 
input variables contributed significantly to explaining variance in estimated workload. 

The regression model, based upon the 20 subjective workload estimation points, was then used to 
interpolate estimated workload at 15-sec intervals throughout the entire 40-minute period. Figure 8 
presents the estimated workload, based upon the track density, task load, and selection activity data 
streams, for the subject. The output does contain some noise that could be smoothed in a real-time 
system. The results indicate that simple measures of operator activity can contribute significantly to 
the estimation of workload; research continues to examine the relative contributions of various meas-
ures to the estimation of operator workload. 

The simple task-weighting scheme used in the present study could easily be expanded to account 
for greater workload diversity between disparate tasks. It is conceivable that some tasks might 
require distinct weighting factors, adjustable depending upon the extent of automation support and 
appropriate automation dialog. A recent study by Vrendenburgh et al. (2000) used weighted tasks to 
derive local estimates of anesthesiologist’s workload during actual anesthetic cases. Limited support 
from automation and a wide variety of monitoring and problem-solving tasks resulted in significant 
variance of task weightings in this domain.  

Finally, patterns of operator activity may offer further indication of workload and operator state. In 
the presence of pending tasks, repeated sampling of information regarding a particular track or func-
tion might indicate elevated workload due to higher concern or confusion. In such cases, it might be 
possible to derive some measure of work efficiency. Similarly, sampling from a variety of tracks 
might indicate effort to more generally understand the tactical situation and predict future events. 
Workload associated with each of these activity profiles could be determined and thus improve over-
all workload estimation performance.  
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Figure 7. Task load (solid line) and selection activity (dashed line) as a function of time for 
one subject. Subjective estimates of workload are presented as filled squares.  
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Figure 8. Regression model-generated estimated workload profile for one subject during a 40-min 
ADW scenario based upon continuous track density, task load, and operator activity measures. 

 

Understanding how the interactions between the system, the operator, and the environment con-
tribute to elevations in operator workload allows human factors engineers to more efficiently develop 
systems and apply automated processes. The approach used herein is useful during the prototyping 
stage of system development, and as a real-time method of establishing workload from multiple 
operators for supervisory review and for intervention by automated processes. 
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