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FOREWORD

The calorimetry of any electrochemical cell involves two type of activities: data
collection and data evaluation. The required data are the cell potential-time
and cell temperature—time series. The evaluation is based on conservation laws
subject to constraints dictated by cell design and the adapted experimental
procedure.

Volume 2 of this report deals with the modeling and simulation of the Dewar-type
calorimeter. It was written by Professor Fleischmann to provide an authoritative
discussion of the calorimetry of electrochemical cells. The emphasis is on the
interpretation of data and the accuracy of the determination of the excess en-
thalpy generation via the appropriate selection of heat transfer coefficients. The
discussion of the calorimetry of the Dewar-type cells is presented in the form of
technical report for a number of reasons, among them: (i) its length would likely
prohibit publication in topical journals, (ii) to clarify misunderstandings regard-
ing the principles of calorimetry as applied to electrochemical cell in general and
to the cell employed by Fleischmann and his collaborators, in particular.

S. Szpak and P.A. Mosier—Boss, eds.
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INTRODUCTION

Apart from some fragmentary investigations, primarily related to the study of
the self-discharge of batteries, there exists no well defined set of studies in the
field of the electrochemical calorimetry. We note that such studies would allow
the investigation of the thermal behavior of a wide range of reactions, especially
irreversible processes. Thus, the establishment of an accurate model of an ex-
periment is very important. However, as this aspect is not generally understood,
we felt it necessary to produce this document.

In spite of its length, this volume only covers the analysis of a data set generated
by calculation and one measurement cycle for a “blank experiment.” We believe
that it is very important to produce a detailed analysis and account (as far
as is possible at this stage) of the methodology which we adopted. This is
especially important in view of the misleading comments which have been made
about the calorimetry of the Pd/D system. Taken at face value, one must
believe that the workers concerned do not understand the difference between
differential and integral coefficients, the disadvantages of differentiating “noisy”
data as compared to integrating such data, the differences between the precision
and accuracy of data evaluations, the recognition of “negative” and “positive
feedback,” the analysis of cooling curves, etc. They do not understand relaxation
nor recognize the presence of strange attractors and the way in which the effects
of such complications can be circumvented.!

It is relevant here to reflect on the precision and accuracy of the experiments.
Of course, if the precision is high, then there will be no difficulty in interpreting
changes in the rates of excess enthalpy generation as small as 1 mW at the 10 o

LOf course, it is possible that the researchers concerned do not understand any of these
matters, but what is so remarkable is that they have failed to understand these topics even
when they have been described to them.



level.2 Of course, the question of the magnitude of the errors raises three further
important questions: (i) what error limits are required so as to be able to detect
excess enthalpy generation at an adequate level of statistical significance? (ii)
what is the difference (if any) between the experiments carried out with ICARUS
systems and ICARUS look-alikes and with other types of calorimetry? (iii) how
can one assess the error limits of a given piece of instrumentation?

The answer is that one simply stops the development of the methodology when
one is able to make an adequate set of measurements. We note here that this
particular specification is itself dependent on the physical size of the systems
being investigated as well as the chosen operating conditions. In our particular
investigation the limit was certainly reached when the errors had been reduced
to the 0.01% level. Naturally, the first question impacts on the second and we
note that it is the use of less precise and accurate calorimetric methods which has
bedeviled so much of the research in this field. The reason is that with the use
of less precise/accurate methods, it becomes impossible to monitor the build-up
of excess enthalpy generation. This then brings us to the third question and the
answer to this is exactly with the methods outlined in this document, at least
as far as isoperibolic calorimetry is concerned (although it is not very difficult
to specify improvements in those methods!).? Tt is relevant that although errors
had undoubtedly been made in setting up these experiments, the detailed data
analyses had also shown the way in which such errors could be allowed for.*

To reiterate, we considered it necessary to produce this document for the follow-
ing reasons: Firstly, it is always essential to determine the Instrument Function
(or of a parameter or sets of parameters which define the Instrument Function)
and to validate the methods of data analysis. Such validation is best done us-
ing simulated/calculated data. Secondly, one needs to see the extent to which
“blank” experiments conform to expectations. Thirdly, one needs to investigate
the ways in which methods of data analysis may fail.

2However, the high precision of the instrumentation (relative errors below 0.01%) has been
converted into a 10% error by the group at NHE. It is hard to see how anybody can make such
an assertion while still keeping a straight face. If the errors were as high as this, then it would
be impossible to say anything sensible about calorimetry — for that matter, it would remove
one of the main planks of scientific methodology.

3The answer to this question brings us to very interesting further lines of enquiry which
can be summarized by the question: “why is it that NHE have never made any sets of raw
data for blank experiments available for further analysis?” If one considers this question in a
naive way, then one would say that there can hardly be any reason for not releasing data sets
which do not show any generation of excess enthalpy!

“Instead of seeking to establish the correct way(s) of calibrating the systems, the group
at NHE used the procedure leading to (k;éo),?,ez, probably coupled to timing errors in the
calibration pulse which they did not allow for. Needless to say, this produced nonsensical
results which they used as a justification for substituting an invalid method of data analysis.
Moreover, this invalid method of data analysis was applied to just two experiments, regarded
as being typical, although the fact that there were malfunctions in these experiments has also
been pointed out.



SYMBOLS USED

C - heat capacitance. [J(gMole) 'K™!]

E.(t) — cell voltage at time ¢. [V]

E4p,p — thermoneutral potential at bath temperature. [V]

F — Faraday constant. [coulombs(gMole)?]

AH - rate of enthalpy input. [W]

AH,, — rate of evaporative cooling. [W]

AHpe:(t) — rate of net enthalpy input at time £. [W]

k — heat transfer coefficient. [WK™%]

L - latent heat of evaporation. [J(gMole)~!]

M — number of moles of DO at ¢t = 0.

P — vapor pressure at the cell temperature. [bar]

P* — atmospheric pressure. [bar]

Qy(t) — rate of generation of excess enthalpy in the cell at time ¢. [W]
t — time. [s]

a — defined in Eq. (27).

~ — related to time dependence of the (k) coefficient defined in Eq. (20).
A — defined in Eq. (35).

A — defined in Eq. (36).

T — time. [s]

@ — bath temperature. [K]

A — temperature difference between the cell and the water bath. [K]






SECTION 1: THE EVOLUTION OF THE ICARUS DATA EVALU-
ATION STRATEGIES.

We have in the past used a variety of strategies to evaluate the experimentally
determined temperature—time and cell potential-time series. These strategies
can be described (at least in part) by the heat transfer coefficients which govern
the “Black Box” representing the calorimeters. We will confine attention here
to the particular forms of the heat transfer coefficients which were important for
the evolution of the data evaluation strategies used with the ICARUS Systems.
There is a considerable amount of material which needs to be considered even if
we pose this restriction.

The specification of the ICARUS Data Evaluation Strategies [1] (as modified in
part in [2]) was based mainly on the analysis of temperature—time and input
enthalpy—time series generated by simulations based on the differential equa-
tions representing the models of the calorimeters as well as on the evaluation
of suitable “blank experiments” (principally using Pt cathodes polarized in 0.1
M LiOD/D-0), compare [3—6]). For the first of these sets of tests, the validity
(or otherwise) of the methods used was judged by the recovery of the parame-
ters used in the simulations at adequately high levels of statistical significance.
These tests have now been reconstructed and are described in Section 5 where
it will be seen that they were sufficient for the specification of the ICARUS data
processing strategies (as well as for the specification of some of the shortcomings
of the various methodologies).

The validity (or otherwise) of the methods defined in the first set of tests was
then further evaluated by using data for “blank experiments.” This validity was
then assessed principally by investigating the degree of conformity with the pre-
dictions based on the first set of tests as well as by the statistical significance of
the methodologies; by determining the degree of correspondence of the “true”



and “lower bound” heat transfer coefficients and, related to this, the observation
of a “zero” rate of excess enthalpy generation [4]; by checking the relationship be-
tween the various forms of the heat transfer coefficient [3—6]; and by determining
whether the experimentally observed relaxations of the temperature—time series
conform to predictions based on simplified models of the calorimeters [4]. One
such set of tests for a “blank” experiment carried out using an ICARUS-2 sys-
tem is described in Section 6 (but excluding the test of the relaxation behavior).
The conclusions drawn from tests such as those described in Sections 5 and 6
are summarized in Section 7, where they are compared with the specifications
of the experimental protocols and data evaluation strategies contained in the
Handbook for the ICARUS-1 Systems [1].

It is perhaps not surprising that most of this material has never been pub-
lished. We could not imagine that any paper written on this topic would ever
be accepted by a scientific journal and believed that it would be sufficient for
us to specify the protocols and data evaluation strategies to be used with the
ICARUS Systems [1]. It is the deviation of the NHE group from the recom-
mended protocols and their use of inaccurate and/or invalid methods of data
evaluation [7] which makes it necessary to reconsider the background material
for the ICARUS-1 systems. Unfortunately, such a reconsideration makes it nec-
essary to give a more closely defined description for some of the heat transfer
coeflicients than has hitherto been used. This is contained in Section 2. We will
use the designation (k%;); j1, where i = 1,2,3 denotes “differential”, “backward
integration” and “forward integration” respectively; j is defined in Section 2 and
1l = 1,2 denotes “lower bound” and “true” respectively. We had hoped to cir-
cumvent the need for such an extended description so as to avoid overburdening
our accounts with redundant symbolism. Evidently, we were mistaken with our
descriptions.

Section 4 describes the method used in the simulations of the data evaluated in
Section 5. It will be seen that the first set of tests were incomplete although
they were sufficient for the specification of the second set of tests (Section 6)
and, in turn, for the specification of the ICARUS protocols and data processing
strategies [1].



SECTION 2: DEFINITION OF THE HEAT TRANSFER COEFFI-
CIENTS.

It is convenient to consider the form of the cell temperature—time series generated
by the simulation described in Section 3, Fig. 1. As will be shown in that Section,
the data have been generated using Eq. (31) in which the heat transfer from
the cell is described as being pseudo - conductive while the effects of “negative
feedback” are taken into account by writing the input enthalpy as

input enthalpy = (E — AA#)], (1)
where
E=E/(t=0)—Eup (2)
and
AB(t) =6(t) — By (3)

However, in order to prepare the way for the consideration of the “blank ex-
periment”, Section 5 as well as the later sections, the heat transfer coefficients
are defined by describing the heat transfer as being pseudo-radiative, Eq. (21),
giving the “temperature function”

f1(8) = [6, + AB()]* - 6;. 4)

For the case of the description of heat transfer being pseudo-conductive, we need
to replace the temperature function by A8,

f1(6) = Ae. (5)

We can then define a “lower bound heat transfer coefficient” (i.e., a coefficient
which assumes that the rate of excess enthalpy generation is zero) for any part



of the measurement cycle, Fig. 1,

[Ee(t) — Bung)l - AH.(t) - C,M(dA6/dt)

(k)1 = A0

. (6)

In our early work we evaluated this coefficient just before the start of the cal-
ibration pulse and designated this particular value as (k)1 (see [8]), a matter
which was evidently not understood [9] although the calculation scheme was set
out in Appendix 4 of [8]. The special value of (ki3)11 just before the end of the
calibration pulse had originally been designated as (kz)1. (Together with (k};)2
described below, these were the first two coefficients which we used in the data
analysis, hence their designation with the suffixes 1 and 2). It was our investiga-
tion of the “Harwell Data Sets” [10] which convinced us that the “lower bound
heat transfer coefficient” is more useful than just the two special values (ki)
and (k)4 leading to (k% )11 as derived in the “ICARUS (k/g)11-spreadsheets,”
see Section 6.

Having obtained (k%;)11, we frequently wish to establish the 11-point averages
(@)11 80 as to decrease the “noise.” This gives us ca 26 values for measurement
cycles lasting 1 day or, better ca 52 values for the recommended 2-day cycles.
In turn it is useful to evaluate the 6-point averages of (@)11 which we have

designated as (@)11. It is not useful to extend this averaging beyond 6 points
because any such extension makes the systematic errors (due to the residual
decrease of (kz)11 with time) larger than the random errors, that is, if the
systems are behaving sensibly.

It will become apparent that we need accurate values of Cp, M to make (kz)11
generally useful but, if we exclude regions where the temperature is varying
rapidly with time, then “guesstimates” of C\, M are quite adequate. We note
that if we rearrange Eq.(6) to the straight line form

y =mz +c, (7)

ie.,

(Ec(t) — Egnpll — AHy(t)  CpM(dA8/dt)

f1(6) f1(6)

then approximate values of C, M can be obtained from the slopes of the plots de-
rived for regions where the temperature is varying relatively rapidly with time.
We can distinguish four such plots which we have designated by the relevant
derived heat transfer coefficients: (k;’%o)lm, (kléo)lﬁl, (k}o)ln and (k}o)lsl ac-
cording to whether the fitting of Eq. (8) is carried at at times somewhat above
the origin, at times somewhat above #; (the time of application of the calibra-
tion pulse), at times somewhat above t2 (the time of cessation of the calibration
pulse) or by the combination of the last two time regions, Fig. 1. However, we

+ (KR40, (8)



note that there is a measure of ambiguity about the interpretation of the values
of(kz)1,5,1 derived, which will be discussed in Sections 5 and 6.

We note here that separate investigations showed that (dAf8(t)/dt) is best esti-
mated by using the second order central differences (i.e., the chords of the curves)
when using “real” data (i.e., experimental rather than simulated data). More
accurate values could be derived in principle by using higher order differences.
However, in practice, the repeated differentiation of the experimental data leads
to an increase in “noise” if we use differences higher than the second order. This
use of the central difference is of some importance when we consider the integra-
tion processes required for the derivation of the heat transfer coefficients based
on the forward integration of the experimental data (see below).

We note also that objections have often been raised to the procedures which we
have adopted based on the fact that we have not “binned the data,” i.e., we have
not signal averaged before the data analysis. However, “binning of the data”
must always be approached with great caution: one should only “bin data” or
“bin coeflicients” if these data or coefficients can be expected to be constant
over the averaging interval. This is not the case for (k)11 unless the effects of
the term CpM (dA8(t)/dt) have been taken into account. Once this is done, we

can, of course, bin the data as we have done in deriving (k})11 and (k)11

In the case of the interpretation of data derived with calorimeters relying on
radiative cooling, the position is further complicated by the fact that the differ-
ential equation representing the calorimeters, Eq. (20), is both nonlinear and
inhomogeneous. It does not follow therefore that coefficients derived by averag-
ing the data are the same as averages of the coefficients derived by using the raw
data. However, we did confirm in 1992 (when this whole saga was first investi-
gated) that we do in fact obtain an equivalence, provided we restrict attention
to regions where (dA6(t)/dt) is adequately small. We concluded that in such
regions the differential Eq. (20) could be sufficiently linearized and that second
order small differences were sufficiently small to allow such averaging. However,
as the values of (@)11 obtained in this way were identical to those obtained
following the procedure outlined above, there was evidently no justification in
pursuing the matter further (nor to complicate the instrumentation!).

We will refer to the averaging procedures further below when discussing the
heat transfer coeflicients based on the forward and backward integration proce-
dures. It is next necessary to evaluate the “true heat transfer coefficients.” The
value (k)2 near the end of the calibration period is obtained by including the
calibration pulse, AQ:



(K)o = AQ + [E (Af2,t3) — E.(Ab1,t1]] — AHey (Abs,t2) + AH,, (A61,t1)
R/2 —

f2(6)
_ CpM[(dA8/dt)ag,,., — d(A8/dt)rs,,, ] ©)
f2(6) ’
where we now have
f2(6) = [6s + (A8s,4,)]" — (6 + (A6 ,5,]". (10)

In order to carry out this evaluation, it is useful to construct Ad— or A3- sized
plots (European notation); see Sections 5 and 6, and then to obtain appropriate
averages using a transparent ruler. This type of analysis used to be a generally
accepted approach but then fell into disrepute. However, it is now again accepted
as giving so-called “robust estimates.”

We note that the errors in (kz)2 are measures of the accuracy of the “true
heat transfer coefficient” as the estimate is made in terms of the known Joule
enthalpy input to the calibration heater. Errorsin (k)1 or (klz)11 are measures
of the precision of the “lower bound heat transfer coefficients” as there is no
independent calibration and there may be excess enthalpy generation in the
system. It is important that (k)11 and (kj)2 are the least precise and least
accurate coefficients, which can be obtained from the raw data.’

We have always insisted that the construction and evaluation of plots of the
raw data is an essential prerequisite of the more elaborate data evaluation pro-
cedures. For one thing, it shows whether the “noise levels” in the experiments
were sufficiently low to justify more detailed evaluations and also points to mal-
functions in the operation of the experiments. It is very important therefore
to establish whether the group at NHE ever followed this particular instruction
and, if they did, what conclusions they may have drawn from any such plots.

Having obtained the “true heat transfer coefficient” at a single point (usually
near the end of the calibration pulse), it is important to ask: “what is the
true heat transfer coefficient (k%;)12 at any other time?” We can make such an
evaluation within the duration ¢; < t < ty of the calibration pulse simply by
using Eq. (9), giving (k)12 rather than (k%;)2. Note also that Eq. (9) can be
rearranged to the straight line form

5 Any statements that the errors are larger than this (as has been made, for example, in
the paper from the group at NHE [7]) simply show that mistakes have been made in the data
analysis procedures and/or the execution of the experiments.

10



AQ + [E.(As,t) — E.(A8y, )] — AH,y (Ao, t) + AH,, (A8, 1)
f2(0)

_ CpM[(dAB/dt)ng,, — (dA8/dt)ng, ] .4,
= f2(0) + (kR0)1627 (11)

which is applicable to times close to and above t;. It is evident, therefore, that
such data derived from the experiments can also be used to obtain estimates of
Cpy M, but the accuracy of such values is inevitably much lower than of those
obtained by the application of the corresponding expression for the “lower bound
heat transfer coefficient,” (k}o)wl, Eq. (8). Nevertheless, Eq. (11) is useful
because it allows the removal of the effects of the water equivalent on the “true
heat transfer coefficient,” (k;’%o)162, simply by extrapolating to zero value of the
abscissa.

In the regions in which there is no application of the heater pulse, i.e., for
0 <t <t and t2 < t < T, the “true heat transfer coefficient” can only be
obtained from the “heating” and “cooling curves,” i.e., the “driving force” is the
change in the enthalpy content of the calorimeters rather than AQ. It is now
sensible to cast Eq. (9) in the form

CI,M[(dAQ/dt)A@,t - (dAe/dt)Agl,t]

(0) =~
+ [E.(A82,t) — E(Af8:,8)]1 ;2?01;191, (Afs,t) + AH,, (A01,t)- (12)

If the system is functioning correctly, then it will be found that the L.H.S. of Eq.
(12) is essentially constant (although this constancy can only be probed over a
short time range). The second term on the R.H.S. of Eq. (12) will be much
smaller than the term on the L.H.S., i.e., it is in the nature of a correction term
to give the “point-by-point” values of (k%0)152 or (k}o)lm. It will be evident
that the accuracy of these versions of the “true heat transfer coefficient” is
limited by the accuracy of our estimates of C, M. This particular part of the
methodology is therefore only useful to serve as a check on the operation of the
cells and methods of data evaluation.® The importance of Egs. (11) and (12)
lies partly in the fact that these equations lead to the interpretation of what
we have classified as Cases 1 and 2 of the phenomenon of “Heat after Death”[3]
(and to other related versions of these Cases).

The assumption underlying this part of the account is that we can only determine
(kk)12 within the duration of application of the calibration pulse,

81t is not possible to combine the data in the regions just above t; and t2 to give a simple
equation leading to (k;éo)lgz, at least we should say that we have not been able to specify a

simple data processing strategy!
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t1 <t < tg, Fig 1, and at lower accuracy, (k%0)152 and (k}o)lm, in regions
adjacent to the origin and for times adjacent and above t;. However, this con-
clusion is incorrect. We need to make the additional assumption that the rate
of any excess enthalpy generation is constant during any particular calibration
period in order to determine (kj)12. This means that we can only obtain a single
value of this heat transfer coefficient per calibration period and, consequently,
a single value of (k)12 — (kg)11. Two important points follow from this con-
clusion. In the first place, the precision of (k)12 must be very nearly equal to
the precision of (kj)11 (this is discussed further in Section 6). Secondly, if we
extend the assumption that the rate of excess enthalpy generation is constant
during the period #; < ¢t < ¢ to saying that it is constant during the period
0 < ¢t < T, then it is immediately possible to derive (ki )12 over the whole of the
measurement cycle. The values obtained can be compared to the special values
of (k%0)152 and (k}o)ln in the relevant time regions.

Having obtained the local (differential) values of the “lower bound” and “true
heat transfer coefficient,” we naturally cast around for methods which would
increase their precision and accuracy. The reason for the limited precision and
accuracy is mainly due to the need to differentiate the noisy experimental data
sets. In our early work, we overcame this particular difficulty by using (k)4
and (ki)e as starting values for the nonlinear regression procedure leading to
the heat transfer coefficient (k%;)s. Here, we fitted the numerical integrals of the
differential equation governing the behavior of the calorimeters to the data sets
for complete measurements cycles. The relative errors in (kj)s which we could
achieve in this way were below 0.1%, even when using the unsatisfactory early
version of our calorimeters (i.e., those not silvered in their top portions).

The use of nonlinear regression procedure had the further distinct advantage that
we could adjust the integration interval in regions where the temperature was
varying rapidly with time so as to achieve the required accuracy in the integrals.
This is not possible for the methods which we will discuss below (and which
were part of the ICARUS data processing strategy) because the intervals for the
data acquisition were fixed. As a matter of fact, the interval 300 s was chosen
because such an interval does not degrade the evaluation of any of the series

(kR)o1, (kR)oe, (kﬁo)%l, (k;%,o)%m (kﬁo)%l, (k;%,o)%m (k%0)271, and (k%0)272-
However, it does degrade the evaluation of (ki)s1, (kj )ss1, (k"°%)s61, and

(kp))sm1 to some extent, and leads to a marked degradation of (kf)sz, (ki )ss2,
(k;%o)362, and (k%0)372. The fact that the data acquisition interval was too long
for straightforward estimations of the (kj)s,;,1 series of heat transfer coefficients
was already pointed out to NHE in the ICARUS-1 Handbook [1]. These matters

will be considered further in Sections 5 and 6.

We have pointed out on other occasions that the reason we opted for using
nonlinear regression fitting in our early work was because the pressure of events

12



did not allow us to go through the logical sequence of using linear regression,
multilinear regression and nonlinear regression (in fact, we had to opt for a
“catch—all” methodology). However, as we could not make nonlinear regression
“user friendly” with the computing power then available to us, so in 1991-92, we
investigated the application of linear regression, which became part and parcel
of the ICARUS-1 methodology.”

Attention has been drawn to some of these details because it would certainly be
possible to reimplement parts of these projects provided one could gain access
to the data sets. If one wishes to avoid the numerical differentiation of the
experimental data sets, then one can rely instead on the numerical integrations
of these data and compare these to the integrals of the differential equation
representing the model of the calorimeters. For the backward integrals starting
from the end of the measurement cycles at ¢ = T', we obtain

Jp AHna(T)dr  C,M[AB(t) — A§(T)]
Jz f1(6)dr J7 Fi(6)dr

(13)

while the corresponding equation for forward integration from the start of the
measurement cycle is

v Jy AHne(r)dr  C,MIAB(E) — AG(0)]
(kR)32 - f(f f1 (Q)dT f(f f1 (Q)dT . (14)

Here, the suffices 21 and 31 denote respectively “backward integration, lower
bound” and “forward integration, lower bound.” (k;)21 and (kj)s: are the cor-
responding integral heat transfer coeflicients defined at the time .

We note here that care is needed when integrating the term [net enthalpy input,
AHpe:(7)] around the discontinuities at ¢ = ¢; and ¢ = t2. This is a matter
which will be considered further in Sections 5 and 6. In our work we have at
various times used the trapezium rule, Simpson’s rule, or the mid-point rule
to carry out the integrations. Of these rules, only the mid-point rule is strictly

"While dealing with these “historical aspects,” we note also that in 1990-92 we investigated
the use of Kalman filtering (leading to an heat transfer coefficient labelled as (k';)s and we also
investigated the use of other filtering methods. Some of this was rather promising especially
that designed to extract information about “positive feedback,” but these projects had to be
abandoned. As part of these projects we also investigated the use of averaging techniques

other than the “square-box” version, which gives (E)n from k'3 )11 and (E)n from (k7% )11.

These projects were also promising, but again had to be abandoned. Finally, in 1994, the
change of the ICARUS systems to hardware based switching was investigated with a view to
allowing changes in the data acquisition intervals (thereby putting the (k';)s ;1 strategies on
a sounder basis). However, these switching systems were not incorporated in the ICARUS-2
systems.

13



speaking correct in that it agrees with the mathematical definition of an integral.
It is quite generally assumed that integrations carried out using the trapezium or
Simpson’s rule will converge onto the “correct” algebraic result if the integration
interval is made adequately small, but this does not necessarily follow. It is a
matter which needs to be investigated for each particular case.

The merits of the particular integration procedures coupled to the adequacy of
the chosen integration interval is revealed more clearly when we come to the
use of Eqgs. (13) and (14) to determine C, M and to carry out extrapolations to
remove the effects of the second term on the R.H.S. of Eqs. (13) and (14) on the
corresponding heat transfer coefficients. We will follow here the procedure laid
down in the ICARUS-1 Handbook [1] where the integrations were restricted to
the region of application of the heater calibration pulse. For backward integra-
tion, we obtain

Jio e (DT _ G, M[AB(E) — AB(22)]

+ (k3261 (15)
Jo F1(8)dr Jo f1(8)dr "
while for the forward integration we have
t
AHpet(T)dT  C,M[AB(t) — AB(¢
ftl — 14 [ ( ) ( 2) + (klé0)361. (16)

JE f®)dr Ji f(®)dr

It will be seen in Sections 5 and 6 (more especially in Section 6) that Eq. (15) can
be used to derive accurate values of C, M while there is some minor degradation
when using the forward integration, Eq. (16). The application of Eq. (15)
to the data sets was the “target methodology” of the ICARUS systems and
the derived “lower bound heat transfer coefficient,” (k;’%o)Qﬁl was described as
(kR)21 in the Handbook [1] and the associated correspondence. The same types
of equation may be used to derive (k}o)%l, (k;’%o)271, and (k%0)281 as well as
(k;’%o)351, (k;’%o)371, and (k;%o)ggl; it is only necessary to start the interpretation
from the appropriate times, which also give the starting values of 8 for the R.H.S.
of the relevant equations. Of these sets of estimates, that leading to (k;’%o)281 is
especially useful and this particular fit also gives a good estimate of Cp M.

In order to obtain the “true heat transfer coefficients” it is necessary to combine
the integrals of the enthalpy inputs in Eqgs. (15) and (16) with thermal balances
made at one or a series of points.® We will confine attention here to the procedure
originally suggested in the Handbook for the ICARUS-1 system[1]. We make a

8This can be done in a number of ways and it is important that this part of the evaluation
was changed during the summer of 1994 following the receipt of the first two sets of data
collected by NHE.
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thermal balance just before the application of the calibration pulse and, if the
system has relaxed adequately and, if d8/d¢ = 0, then if we consider (k;)s2,

0 = [AHpe (t)][t = t1] + Qylt — t1] — (KR)s2[(8s + AB(81))" = 31t — 1] (17)

Combination with Eq. (14) eliminates the unknown rate of excess enthalpy
generation, (5. We obtain

Jy, AHuer(r)dr — [AHuet (][t —01]  C,M[AB() — AG(11)]

Ki)so =
(kr)2 fttl f2(8)dr fttl fo(8)dr

(18)

The corresponding equation for (k)22 follows from Eq. (18) on replacing ¢; by
£2.°

The corresponding equation for (kj)22, based on the backward integration of
the data sets, follows from Eq. (18) on replacing ¢, by t2. It is also convenient
to rewrite the derived equation in the straight line form:

Sy AHpet(1)dT — [AH ey (£2)] [t — 1] _ CpM[AB(t) — Ab(ts)]
Jy f2(0)dr J f2(6)dr

+ (K)262- (19)

(k;’%o)262 was the version of (k}3)22, which we used in our investigations prior to
the construction of the ICARUS-1 system. As we did not want to discuss the
differences between these two versions, we also labelled (k;’%o)262 with the suffices
22. Tt should be noted that Eq. (19) is soundly based (in a mathematical sense)
in that the extrapolation to [A#(t) — AB(t2)] = 0 gives the value of (k;’%o)262
at a well defined time, ¢ = t5. This extrapolation automatically removes the
effect of the term Cp M[(6(¢) —6(t2)]/ J, :2 f2(8)dr on the heat transfer coefficient.
This was one objective for our methodology because C, M is the, least accurate
parameter in the analysis; the application of Eq. (19) to the data sets was the
“target methodology” for evaluating the “true heat transfer coefficients.”

While it is also possible to write Eq. (18) in the form (19) to give (k;%o)362, this
method of analysis is not useful as the range of the extrapolation required is too
long as will be shown in Sections 5 and 6. For this reason we recommended in
the Handbook [1] that (kz)s2 be evaluated at times close to ¢ = ¢, using Eq.
(18). However, in view of the errors in the determination of Cp M, these values
of (kfy)s2 are inevitably less accurate than those of (k;%o)262.

9We note that NHE did not follow the instruction in the ICARUS-1 Handbook [1] to use
2-day measurement cycles and, for the reduced time scales of 1-day cycles in particular, it is
necessary to include the term Cp M (dA8/dt) in the thermal balances, Eq. (17). However, NHE
continued to use the original form of the equation. They also did not follow the instruction to
evaluate (kh)gz at times close to ts.
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We note here also that one must be somewhat careful in carrying out the re-
quired linear regression fitting procedures, a matter which is considered further
in Sections 5 and 6.
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SECTION 3: DIFFERENTIAL EQUATIONS GOVERNING THE
BEHAVIOR OF THE CALORIMETERS: SIMULATIONS OF THE
TEMPERATURE-TIME SERIES.

It has been established that at low to intermediate cell temperatures (say,
30 < 6 < 80°C) the behavior of the calorimeters is modelled adequately by
the differential equation

C,M(dAB/dt) = [E,(t) — B o)l + Qs(t) + [AQH(t — t1) — AQH(t — t,))]
—(3I/4F)[(P/P* — P)][(Cp,p:0,9 — Cp,0,0,4)A8 + L]

—(kKR)0; [1— 7t] [£1(6)/6; + 466] . (20)

With the calorimeters used in the ICARUS-type investigations, the conductive
contribution to heat transfer is small. We have therefore assumed that this term
can be “lumped” into the radiative term by allowing a small increase in the
radiative heat transfer coefficient:

radiative heat transfer = (k}o) [1 -~ [(6s + AO)* —6;] . (21)

If the time dependence of the heat transfer coefficient is not included explicitly
in this equation, then

radiative heat transfer = (ki )[(6, + A8)* — 6,]%], (22)
where the radiative heat transfer coefficient (k) now shows a weak time depen-

dence.

In calculating the rate of enthalpy removal by the gas stream,
BI/4F)[P/(P* — P)|[(Cp,p,0,9 — Cp,p,04)A0 + L], (23)

we have always assumed that the partial pressure of D3O (or H20) in this
gas stream can be calculated using the Clausius-Clapeyron equation with the
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latent heat of evaporation, L, being that at the boiling point. Evaporative
cooling only becomes a major term at temperatures close to the boiling point
(say, at A8 > 70°C) where these two assumptions are justified. At low to
intermediate temperatures, AH,,(t) is a minor correction term so that errors
due to the two assumptions introduce second order small quantities (for a further
approximation, see below).

In carrying out simulations to be analyzed by the methods outlined in Section
2, we have further usually assumed that the rate of excess enthalpy generation
is zero,

Qs(t) =0, (24)

and that the radiative heat transfer term can be linearized: rate of heat transfer,
A(Kp)B3 08 = (k) A8, (25)

i.e., that the heat transfer is now pseudo-conductive. This is an assumption
which we also used (with several restrictions) in our original investigation [8].
We note here that the heat transfer coefficients for the Dewar cells used at that
time were up to twice those which are calculated from the Stefan-Boltzmann
coefficient and the radiative surface area so that we had to assume that the
conductive contribution was appreciable. We attributed this conductive contri-
bution to conduction across the nominal vacuum gap due to inadequate evacua-
tion/baking of the Dewars. It was therefore not clear whether the heat transfer
term should be described as being pseudo-radiative or pseudo-conductive and
the experiments had to be carried out in such a way that the errors due to the
limiting assumptions were below those of the experiment. In our later work
(including that carried out with the ICARUS systems), we ensured that the
vacuum in the Dewars was sufficiently hard so that the radiative heat transfer
coefficient was now given by the product of the Stefan-Boltzmann coefficient and
the radiative surface area. However, it is evident that the vacuum in some of
the cells used in the NHE investigations had become rather soft.

The correct description of heat transfer from the cell is a matter which requires
further investigation. While the limiting assumptions introduce small errors, we
can ensure that these errors are less than those due to the experiment. It is
therefore better to use these assumptions rather than to attempt to separate
this term into the radiative and conductive contributions. However, a better
approach might well be that we should calculate the radiative term and then
derive the conductive contribution from the calibrations [3]. This would ensure
that we do not introduce an additional parameter into the modeling of the cells.
It should be noted that such a methodology would automatically ensure the
linearization of Eq. (20). In carrying out such modified procedures, we should
weight the radiative contribution appropriately (say 95% of the total) rather
than using the 50:50 split of the original analysis [3].
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The use of the descriptions and assumptions outlined above gives us the differ-
ential equation

CpyM®(dAG/dt) = [E.(t) — Eg )l + Qs (t) + AQH(t — t1) — AQH (t — to)—

AHe,(t) = (Kg)[1 — 7t][(6s + A6)* — 6]. (26)

In order to calculate the Af — ¢ series we have to deal with a further difficulty in
that the function E.(¢) is unknown. However, it is evident from the experimental
AB(t) —t and E,(t) — ¢t series that we can always observe “negative feedback,”
i.e., that E, decreases with Af. If we assume that this is the only cause of the
variation of E, with £, then

E.(t) = E.(0) — a(Af — A8°) = E. — a8 (27)
(i.e., we neglect any variation of the activation overpotentials with time) and
CpM(dAB/dt) = [E., — Epp — aAO]I + Q5 () + [AQH(t — t1) — AQH (t — t2)]

—AH,,(t) = (k7)) (1 = 78)[(8 + A8y)* — 63]. (28)

It was not clear during 1991-92 whether we should change our data processing
strategy to that later incorporated into the ICARUS systems or whether we
should continue to use nonlinear regression fitting. At that time, we therefore
investigated further the possibility of obtaining an analytic solution of Eq. (27)
80 as to speed up the latter procedure. Such a solution was derived and it was
shown that the numerical integration of Eq. (28) agreed with this solution to
better than 0.1%, the target figure for our data analyses (these solutions required
the assumption Q¢(¢) = constant, which is in any event necessary so as to achieve
calibrations of the systems). We believe that the residual discrepancy is due to
deficiencies in the numerical techniques, i.e., that the analytic solutions are exact.
This program of work was discontinued when it became clear that satisfactory
data analysis could be achieved by using linear regression procedures. However,
it may well be that this particular aspect of the data analysis procedures should
be restarted if we wish to develop a general investigation of existing data sets.

At that time, we also investigated the application of various data evaluation
procedures to simulated data sets. Attention was confined to linearized versions
of Eq. (28) with the additional assumptions,

Qst)=0 (29)
AH,, (t) =0, (30)

giving the equation,
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CoM(dA8/dt) = E'T + [AQH(t — t1) — AQH (t — t3)]
—(EYN[1 = 7t] A8 — o A8. (31)

With the additional assumption that the pseudo-conductive heat transfer coef-
ficient is independent of time we have

CoM(dA8/dt) = E\T + [AQH(t — t1) — AQH(t — t)] — (K2° + al)AB. (32)

Parts of these investigations have now been repeated. The integrations of (32)
follow immediately. For the initial condition

AG = Af;, t=0, (33)
we obtain
Af = Afie ™ + Ay (1 — e ) (34)
where
A= (K +al)/CyM (35)
and
Ay = ELJ(K:° +al) (36)

i.e., in the region 0 < t < t;. We assume

CyM°® =330JK! (37)
k0 =0.073WK ™! (38)
vI =0.00TWK™! (39)
Af; =11.75°C (40)
E'T = yIAG; = 1W. (41)

With the exception of the rather low value of Af;, these parameters are close
to those which we would derive for the blank experiment discussed in Section 6.
The reason why A#; has been set artificially low is so as to allow an examination
of the region close to t = 0. With (36) through (40), we obtain from Eq. (34)

A6 = 13.528125 — 1.778125¢[~0-000(24)1] (42)
while the enthalpy input is given by

input enthalpy = 0.987553 + 0.012447exp[—0.000(24.)t]. (43)
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Here (24.) denotes the recurrence of the number group 24.

We next use (41) to give the value of A6, at t = t; = 43,200s
A8, = 13.528075°C at t = 43, 200s. (44)

This value is adequately close to 13.5281259C, which applies to complete thermal
relaxation. We use this value together with

AQ =02W, t1 <t<ty (45)

for the next step of the integration. With

Ay = (ELT 4+ AQ)/(K° + o) (46)
AG = Afre A1) L Ay[1 — e~ AE—0)]
= 16.028125 — 2.500050¢!~0-000(24) (¢—t2)] (47)
and
input enthalpy = 0.970053 + 0.017500e[~0-000(24.)(t—t1)] (48)

Equation (47) can be used in turn to derive
Afy = 16.028049°C at (to — 1) = 42,900s, (49)
which is used as the initial value for the final step in the integration. We obtain
Af = Abye 72 4 A1 — e M)

= 13.528125 + 2.499924¢l~0:000(24.)(¢=t2)] (50)

and
input enthalpy = 0.987553 — 0.017499¢l~0-000(24.)(t—t2)] (51)

The “raw data” calculated using Eqs. (42), (43), (47), (48), (50), and (51) are
given in the ICARUS (k’,%)1; spreadsheet, spreadsheet 1. These data are ana-
lyzed in Section 5 using the methodologies outlined in Section 3. It will be seen
that simulations of this kind are adequate for demonstrating the advantages
and shortcomings of the various possible methods. It will also be clear that
such simulations are deficient in several important respects. In the first place
the residual time dependence of the heat transfer coefficient has not been taken
into account. However, it was confirmed in 1992 that a data set generated with
approximate solutions which include this effect does indeed generate the key
features observed when using “real experimental data,” see Section 6. We note
here that data sets have never yet been generated using the full analytic solution
described above. Secondly, the effects of “noise” having defined characteristics
(i.e., defined power spectral densities as well as the effects of quantization of the
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measurements) on the methods of data evaluation has never yet been investi-
gated. Instead, we have relied on a comparison of the analysis of simulated data,
Section 5, with those for “blank” experiments, Section 6. If the question of the
effects of “noise” ever becomes an important issue, then we would suggest that
the “noise” characteristics of E,(t) and Af(t) be first determined and that data
be then generated using the full analytic solution with addition of the correct
“noise” characteristics.
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SECTION 4: SPECIFICATION OF THE ICARUS-1 EXPERIMEN-
TAL PROTOCOLS AND DATA EVALUATION PROCEDURES.

Before dealing with the analysis of the simulated data, Section 5, and the analysis
of data for a “blank” experiment, Section 6, we will outline the experimental pro-
tocols and data evaluation strategies specified for experiments with the ICARUS
systems. The key elements were as follows:

(i) the measurement cycles should be lengthened to 48 hours. Following the
replenishment of the DoO (or HoO) in the cells to make up for losses due to
electrolysis, the relaxation of the systems was to be followed for 12 hours followed
by the application of a Joule heating pulse for a further 12 hours (when this
calibration was required) in turn followed by a final relaxation for a further
24-hour period.

(ii) the protocols were to be:

a) two measurement cycles without calibration pulses;
b) ten measurement cycles with calibration pulses;

¢) two measurement cycles without calibration pulses;
d) ten measurement cycles with calibration pulses.

(
(
(
(

It will be seen that a total experiment duration of 48 days was specified;

(iii) several “blank experiments” were to be carried out (at least one for each
cell in use; the use of Pt cathodes in 0.1M LiOD/D,O was recommended). The
protocol (ii) was to be followed.

(iv) the execution of the “blank experiments” was to be followed by experiments
using cathodes made of Johnson Matthey Material Type A. The protocol (ii)
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was again to be followed;

(v) the first step in the data evaluation was to be the plotting of A3- or A4-
sized graphs of the raw data. The heat transfer coefficients (k%) and (kj)2
were to be derived for each measurement cycle.

(vi) the next step was to be the construction of (kj;)11-type spreadsheets cou-

pled to the determination and interpretation of (kz)11, (k)11 and (k%z)11. The
further evaluation of these spreadsheets was not specified in 1993; this was a
matter which was to be decided by a collaborative program between NHE and
IMRA Europe.

(vii) after the execution of (vi), the (kz)21-type spreadsheets were to be pre-
pared and values of (k;’%o)Qﬁl and (k%0)361 and the associated values of CpM
were to be determined. These values of Cp M were to be used both to correct
the evaluations in (vi) and to determine the “true” heat transfer coefficients
(k)32 at times close to the end of the calibration period, t = #;

(viii) it was envisaged that, following the completion of this initial stage of
the investigation, the ICARUS program would move on to the examination of
materials variables as well as the production of ICARUS-2. This second part was
intended to deal with the effects of increasing the current density, the analysis of
data close to the boiling point (including the boiling episodes), and “Heat after
Death.”

After the receipt of the data for the first set of experiments carried out in the
NHE Laboratories, it became apparent that there were timing errors in the
ICARUS-1 system installed in Sapporo [1]. The most self-evident error was in
the timing of the application and cessation of the calibration pulses (¢; and 2),
which degraded somewhat the estimation of (k)31 and caused a serious degra-
dation of the evaluation of (k3)s2. The estimations of (k)21 and (kj)2e were
not affected by these errors (as had been the case for the experiments carried
out prior to the construction of the ICARUS-1 system). It was therefore recom-
mended [16] that (vii) be modified and that the “true heat transfer coefficient”
be estimated using (k’;)22 evaluated at times close to t; and by (k;’%o)262 (rather
than by (k)32 estimated at times close to ¢ as recommended in the Handbook
for the ICARUS-1 system [1]).

This set of objectives and instructions will be reconsidered in Section 7 in the
light of the evaluation of the simulated data, Section 5, and of a “blank” exper-
iment, Section 6.
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SECTION 5: EVALUATION OF THE “RAW DATA” GENERATED
USING THE SIMULATION DESCRIBED IN SECTION 4.

(a) We start by plotting the “raw data” generated by the simulation Eqs.
(42), (43), (47), (48), (50), and (51) described in Section 3; see the ICARUS
(k.)11-spreadsheet, spreadsheet 1. The plots of the temperature—time and input
enthalpy—time series are shown in Fig. 2 (the data are the same as in Fig. 1).
We evaluate (k.); and (k.)2 using the graphical method and obtain

(kL)1 = 0.07294W K ! (52)
(k)2 = 0.07280W K 1. (53)

It should be noted that the scale of the y-axis in Fig. 2 is markedly reduced
compared to that used in the evaluation of experimental data, e.g., Fig. 38.
The reasons for this are the rather low value of Af; used in the simulation (Eq.
(39)) which increases the excursion of the temperature—time series coupled to
use of landscape rather than portrait format so as to allow the presentation
of the whole of the measurement cycle. In view of this compressed scale, the
accuracies of (k.,); and (k)2 are somewhat reduced compared to those normally
achieved. This effect is to some extent counteracted by the absence of “noise”
in the simulated data.

At this stage, we have also always prepared a diagram on a much larger scale of
the regions straddling the times ¢; and ¢2 such as that shown in Fig. 3. There
are several reasons for preparing such diagrams. First of all, when dealing with
experimental data collected with the ICARUS systems (and their precursors),
it is important to determine the exact times of application and cessation of the
calibration pulses. It was the preparation of such diagrams which showed that
there were timing errors in the ICARUS-1 system which could be easily allowed
for by deriving the exact values of t; and #3. As has already been stated on
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other occasions there was no point in changing the hardware to correct for these
effects as the times of data acquisition were known with sufficient accuracy.

Of course, when dealing with the simulated data, t; and ¢5 are known exactly and
these times should also be known accurately for experimental data collected with
the ICARUS-2 system. However, we believe that this assumption/prediction will
turn out to be incorrect!

The second reason for investigating the temperature—time series in these time
regions is to define the time series required for the integrations of the input
enthalpy to be used in the (kz)21-spreadsheets. This definition is in turn de-
pendent on the methods to be used for the numerical integrations. Here, we will
assume here that we have decided to use the trapezium or sum rules for the in-
tegrations (these methods are related because the values given by the trapezium
rule are those derived by the sum rule less one half the terms at the extremes
of the range multiplied by the integration interval). For these rules, we need to
insert an additional point into the experimental data at #; and ¢ if these times
correspond to the data acquisition intervals. If #; and ¢2 do not correspond to
these intervals, we need to insert two additional points at each of #; and ¢s.

We note here that the trapezium and sum rules can be used in a straightforward
way to integrate around the discontinuities at ¢; and ¢3. The mid-point and
Simpson’s rule cannot be used in this way: in particular, it is necessary to
use much more complicated procedures if we wish to use the mathematically
exact central difference methods. For this reason, we have always relied on
the trapezium or sum rules except if the integrations are confined to regions
0<t<t,ti<t<tyort,<t<T.!0

(b) The next step is to carry out a detailed examination of the (k)11— spread-
sheet, spreadsheet 1 and this examination itself falls into several parts. We first
of all plot the lower bound heat transfer coefficient, (k.)11, against time (here
given by the measurement interval) where we use the assumed value of Cp M,
Fig. 4. Of course, for the case of the interpretation of the simulated data, we
know the value of Cp M used in the simulation. The deviation of (k)11 from
the value 0.073000 WK~—! used in the simulation is therefore an indication of

10We believe that these integrations have been carried out incorrectly by the ITCARUS-2
software. It would be important to check this particular point if we can reimplement the
software. The reason is not only that incorrect integrations will lead to incorrect values of
the “true heat transfer coefficient,” a matter which will be illustrated below, but also that we
will calculate an incorrect value of the excess enthalpy for each measurement cycle even if we
should have a correct value for the heat transfer coefficient! If we cannot reimplement the
software, then we will be able to make some sort of overall check of the ICARUS-2 software
by carrying out correct and detailed checks of the measurement cycles for which NHE have
given values of the “true heat transfer coefficient” evaluated by their methodology. This should
automatically reveal the method(s) they actually used to arrive at their conclusions.
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the errors in dA#/dt produced by using the second order central difference when
using a 300 s measurement interval. We can see that we can obtain reasonable
values of (k)11 provided we exclude, say, the first six hours following any change
in the operating conditions of the cells.

Of course, in the case of the evaluation of spreadsheets derived for experimental
measurements, our first evaluation will be based on a “guesstimate” of CpM.
It will therefore be necessary to amend the spreadsheet once an accurate value
of Cp,M has been derived.!! It is important that under such conditions the

further average (k.)1; cannot be derived and (k.)1; is quite meaningless. It
is therefore impossible to carry out these important averaging methods which
reduce the effects of random errors. These difficulties could have been avoided if
the experiments had been carried out using the stipulated 48-hour measurement
cycles.

We note that the error of 0.04% in the “lower bound heat transfer coefficient” is
above that which was specified for the ICARUS-1 system (0.01%). An alternative
approach to removing the errors due to incorrect estimates of Cp, M is to use the
evaluations of (k2°)151, (k2°)161, k%) 171, and (k2%)1s1, Figs. 5 through 8. These
extrapolations automatically give us values of C, M and the relevant values of
the “lower bound heat transfer coeflicients” are shown on Fig. 4.

This particular approach was de-emphasized in setting up the ICARUS-1 system
because the extrapolations in Figs. 5 trough 8 are to a point where dA8/dt = 0.
While this condition is satisfied for the simulations, it will not be observed for
experiments carried out with a 24-hour measurement cycle. If a 48-hour cycle is
used, then there will be two times at which this condition will hold (one within
the period 0 < t < t1, and one within #; < ¢ < #2; see Section 6). However, it
has never been established that the plots in Figs. 5, 6 and 8 extrapolate to these
points. This is a matter which should be investigated using data generated by
more elaborate simulations.

(c) The next step is to investigate the “true heat transfer coefficient”, (k)12.
In the region ¢; < t < to, we can apply Eq. (9) at any chosen point. This is
straightforward for the data derived by simulation because the thermal balance
in the absence of the calibration pulse is known exactly. For experimental data,
the relevant values can be obtained from the plots of the temperature—time and
cell potential-time series such as those shown in Fig. 38, Section 6. Figure 9
gives the relevant values using the data on the (k.);1-spreadsheet, spreadsheet 1.

1 The little which we have seen of the NHE evaluations leads us to think that this further
step was never carried out. If this is correct, then the values of C, M used would have been in
error by between 10 and 20%. This error would in turn have produced an error of — 0.04% in
the “lower bound heat transfer coefficients” under the most favorable conditions of estimating
this coefficient at the end of the relevant 6-hour periods.
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The deviations from the known value ((k%)12 = 0.073000 WK ~1!) shown in Fig. 9
as well as the component parts of this heat transfer coefficient (the ordinates and
abscissae shown in spreadsheet 1) show that the effects of errors in the estimates
of (dAf#/dt) are now more serious than is the case for the calculation of (k)11.
This is to be expected mainly in view of the relative magnitudes of f;(#) and
f2(8), Egs. (9) and (10). However, we can see from spreadsheet 2 that we would
be able to derive values of (k)12 accurate to 0.01% if measurement cycles lasting
48 hours were used. It is possible to apply averaging procedures leading to (k)12
and (k_,’;)m for the last 6 hours of calibration periods lasting 12 hours, thereby,
markedly reducing the effects of “noise” in the experimental temperature— and
cell potential-time series. The benefits of this type of averaging are, indeed,
foreshadowed by the accurate determination of (k.)2, Fig. 2.

The restrictions which should be placed on the determination of the “differen-
tial true heat transfer coeflicients” are also illustrated by the determination of
(k2%)162, Fig. 10. It can be seen from this figure and/or spreadsheet 2 that the
range of the extrapolation required to remove (nominally) the effects of Cp, M
on the derived heat transfer coefficient is much longer than for the equivalent
determination of (k2%)1¢1. The abscissae are still ca 10% of the ordinates even
at the end of the region which can sensibly be used for the determination of
(k%)162 (say, 3 hours after the application of the calibration pulse). It follows
that a 20% error in Cp M will lead to at least a 2% error in (k%%)162. Of course,
such effects are not apparent when using data produced by simulations free of
“noise” but we would predict that procedures based on making thermal balances
close to t = t; will not give accurate “true heat transfer coefficients” and that
we should instead rely on evaluating (k.)12 (and of related coefficients) at times
close to t = t5. This point, which will be further illustrated in Section 6, was of
key importance to the specification of the ICARUS procedures [1].

The value of (k/°)162 obtained from Fig. 10 is also shown on Fig. 9. Although
this value agrees with those described by methods judged to be satisfactory, it
should be noted that this agreement is largely due to the use of data free from all
ambiguities (absence of “noise,” time dependence of the heat transfer coefficients,
timing errors). The use of experimental data leads to a marked degradation of
the evaluation, see Section 6. A major reason for this degradation is that the
data points having the highest statistical weight are also the ones which have
the lowest accuracy, Fig. 10 and spreadsheet 1. It is possible, however, that
the use of statistical weighting procedures would allow satisfactory estimates of
(k%) 162 to be made.

Figure 9 also shows the values of (k7°)152 and (k%%)172 derived from spreadsheet
1 by using Eq. (12). The form of this equation shows that the derivation of these
versions of the heat transfer coefficient is, in fact, dependent on the interpretation
of cooling (or heating) curves, i.e., the driving force is now the enthalpy content
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of the calorimeters rather than the heater calibration pulse, AQ (these methods
were developed largely as part of a program of work on the interpretation of
phenomena linked to “Heat after Death”). As would be expected, the accuracy
of these estimates of the heat transfer coefficient is limited even when using data
free from all ambiguities. The accuracy of estimates of (k°)152 and (k%°)162
can never be greater than that of Cp M when using real experimental data. This
accuracy is further degraded by the fact that the estimates are dependent on the
derivation of (dA8/dt) in regions where the accuracy of this gradient is limited
by the length of the data acquisition interval.

Although Fig. 9 shows three data points for each of these estimates of the
“true heat transfer coefficient,” we would expect that only one such data point

could be derived when using experimental data in view of the need to estimate
(dA8/dt).

d) In this sub-section, we are also including a second set of evaluations which
exactly follow the set described above, Figs. 4 through 10, except that dA8/dt
has been estimated using the first order backward difference. Comparison of
Figs. 11 and 4 shows that the errors in (k});; are now markedly increased in
regions where (dAf/dt) is large: as expected, the errors in (dA8/dt) based on
the first order differences are much larger than those based on the second order
differences. Nevertheless, satisfactory values of (k.)11 can be obtained provided
measurement cycles of 48-hour durations are used.

Figure 11 also includes values of (k7%)151, k%161, k%)171 and (k5°)151 deter-

mined by using the relevant extrapolations, Fig. 12 through 15. It can be seen
that these values of the heat transfer coefficient can again be estimated satis-
factorily. However, the slopes of the regression lines are markedly reduced (due
to the incorrect estimation of (dA8/dt)) so that the values of C, M are now
also too low. Of course, application of this methodology to “real experimental
data” would then lead to erroneous estimates of (k.)11. Figure 16 gives the plot
of (k.)12 versus time again based on the first order backward differences while
Fig. 17 illustrates the estimation of (k.%)142. Comparison of Figs. 16 and 9
shows that (k.)12 is now markedly in error in the time region adjacent to #;:
it is necessary to extend measurements to at least 7 hours in order to ensure
that the errors due to the incorrect estimation of (dA#/dt) fall below 0.1% (the
target specification for ICARUS-1). Of course, this situation if aggravated when
using “real experimental data” in view of errors in estimation of C,, M. Figure 17
shows that satisfactory values of (k%°)162 can still be obtained when using such
incorrect estimates of (dAf/dt). This would be expected because the extrapo-
lation procedure removes the effects of C;, M. Needless to say, the value of C,, M
derived is markedly in error. Comparison of Fig. 17 with spreadsheet 2 leads to
a further important conclusion. We can see that satisfactory extrapolations can
be obtained even though the “point-by-point” values are totally in error at short

29



times. As has already been noted, such long extrapolations are to be avoided
when evaluating experimental data.

Figure 16 also includes some values of (k%°)152 and (k7°)172 derived from spread-
sheet 2. It can be seen that these values are markedly in error even when using
the correct value of C, M. However, we note that values close to 0.073000 WK~!
(the value in the simulation) would be obtained if the incorrect estimate of the
water equivalent (318.1 JK—!) derived in Fig. 17 were used to calculate the
“point-by-point” values of (k°)152 and (k'%c)172. It follows that the estimates
of C,M and of (k°)1s52, (k%°)162 and (k°)172 are internally consistent even
through the component parts deviate from the true values. The procedures used
to calculate these values of the “true heat transfer coefficients” must therefore
be used with due care — in fact it is best to avoid such methodologies.

(e) We will consider next the derivation of the various versions of the integral
heat transfer coefficients. The (k;°)o; spreadsheet, spreadsheet 3, gives the
integrals required for the evaluation of (k)21 and (k.)s1 and Fig. 13 gives the
plots of these two heat transfer coefficients against the time. It can be seen that
except for small deviations of (k.)3; from the value 0.073000 WK ! used in the
calculation of the “raw data,” the two estimates of the heat transfer coeflicient
agree with this value. The reason for the small deviations of (k)21 at short
times are immediately evident. The term

t
%MW—%th@M

is negligibly small for the estimation of (k})21 because (8 — ) is itself small for
the backward integration. On the other hand, the term

t
%MW—%th@M

is initially more than 10% of ()31 for the forward integration procedure. The
deficiencies of using the trapezium rule coupled to the use of an inadequately
long data acquisition interval are therefore immediately apparent. It should be
noted that the plots of (k.)21 and (k.)s; versus time do not show any effect
due to the discontinuities at ¢ = ¢; and t = t9, provided the integral of the
enthalpy input has been correctly estimated at these points. The reason for this
suppression of the effects of the discontinuities is simply that the magnitudes
of the integrals are now sufficiently large so that errors due to the use of the
trapezium rule coupled to the use of an inadequate long measurement interval
are no longer detectable.

These effects (and noneffects!) due to errors in the estimation of the integrals
were of key importance to the evolution of the ICARUS-1 data processing strat-
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egy in particular the preference for the methods leading to (k.%) ;2 rather than
for (klc’o)37j72'

Figure 19 and spreadsheet 4 give comparisons of (k})2; and (k.)22. It can be seen
that the evaluation of the “true heat transfer coefficient, (k.)22, is satisfactory
under all conditions. This is also brought out very clearly by considering the
extrapolation procedures, Figs. 20 and 21. In particular, in the estimation of
(ké’0)262, the term

t
CPM(Q - 00)/ f2 (Q)dT

2}

never exceeds 10% of the term

/ ‘At [ f@)r
2]

[2]

The situation is radically different for the evaluation of (k%°)s¢2, spreadsheet
5. While the extrapolation procedure for obtaining (k°)s¢1, Fig 22, is still
reasonably satisfactory, provided the points immediately adjacent to £, are ex-
cluded (the abscissae never exceed 15% of the ordinates, spreadsheet 5), that
for (k%)s62, Fig. 23, is unsatisfactory because the range of the extrapolation
required is very long (note the magnitudes of the ordinates and abscissae in
spreadsheet 5 and the fact that the abscissae are almost equal to the ordinates
at short times). Such evaluations will also be markedly degraded by the “noise”
of real experimental data. Furthermore, even the borderline fits obtained must
be to some extent fortuitous because the replacement of integrations using the
trapezium rule by the mathematically sound mid-point rule, Figs. 24 and es-
pecially Fig. 25, gives less satisfactory results than those obtained in Fig. 23.
(Note especially the erroneous values of Cp M)

The conflicting effects of changes in the integration methods and data acquisition
interval have never yet been resolved. In view of this situation, it was recom-
mended in the Handbook for the ICARUS-1 system [1] that (k.)s2 be evaluated
at times close to t2 where the effects of the term

t
CPM(Q - 00)/ f2 (Q)dT

2]

on the overall value of(k})s» are reduced. However, following the receipt of
the first set of data from the NHE Laboratory [11], it became clear that the
Group would never achieve satisfactory evaluations of this version of the “true
heat transfer coefficient.” As (k%)s62 could be evaluated satisfactorily under all
conditions, it was recommended that future evaluations should be based on this
version of the “true heat transfer coefficient.”
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This recommendation was also influenced by a consideration of the effects of
timing errors. As has already been explained, the times of application and
cessation of the heater calibration pulses did not coincide exactly with the data
acquisition points in the pre-ICARUS phase of the investigation. Furthermore,
there were evident timing errors in the ICARUS-1 systems. These timing errors
did not affect the determination of (k°)262 as the times of the data acquisition
points were known exactly. Nevertheless we investigated the effects of gross
errors in the estimation of [ AHdr on the evaluation of (k%261 and (k29)a62.
See Figs. 26 through 29 and spreadsheet 4. It can be seen that such gross errors
lead to a maximum error of 0.5% in (k%%)s62.

Such evaluations are therefore reasonably satisfactory. On the other hand, eval-
uations of (k%)361 and (k"c)se fail almost completely. Thus, Figs. 30 and 31
(spreadsheets 5) show that erroneous values of both the “lower bound heat trans-
fer coeflicients” and of the water equivalent are obtained if there are errors in
J AHdr. Nevertheless, the values of (k.)s1 at long times are still within the ac-
ceptable range as specified in the ICARUS-1 Handbook [1]. The extrapolations
required for (k%)s62 fail completely (and the estimates of Cp, M vary widely) as
shown by Figs. 32 through 37. Examination of the sets Figs. 32 through 34 and
Figs. 35 through 37 shows that the values of (k%°)s¢2 and Cp M deduced depend
on the range of the regression lines fitted. This is just the sort of behavior which
was detected in the limited information available about the experiments carried
out by NHE. We believe therefore that the malfunctions which they have re-
ported are in large measure due to the combination of estimating the “true heat
transfer coefficients” by using (k;’:io)362 without any correction of the effects due
to timing errors.
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SECTION 6: EVALUATION OF A MEASUREMENT CYCLE FOR
A “BLANK EXPERIMENT?” (Pt cathode polarized in 0.1M LiOD/D,0)
USING AN ICARUS-2 SYSTEM.

It has been explained elsewhere the reasons why we have very few data sets
collected with the ICARUS-1 and -2 systems. However, some of the “raw data”
for parts of a “blank experiment” carried out during the summer of 1995 using
an ICARUS-2 system installed at IMRA Europe are available. This experiment
used a Pt cathode polarized in 0.1 M LiOD /D40 in an ICARUS-2 cell (having an
extended length of silvering in the upper portion of the cell). This measurement
cycle belongs to one set of calibrations of the ICARUS-2 systems carried out at
that time. Unfortunately, these calibrations were terminated in 1995 and most
of the data collected at that time are no longer available.

This data set can be regarded as being satisfactory except in one regard. At that
time, the cells had been wired to the “switching boxes” using thin wire. This
was to be replaced by thick wire, but, unfortunately, the wiring of the calibration
heaters was not changed. The power delivered to these heaters therefore has to
be corrected for voltage losses external to the cell. This correction is ca 2% of
the nominal power delivered to the cell and can be made to better than 0.1% of
the 2% level. The possible error in the calibration power is therefore well below
the target value for obtaining the “true heat transfer coefficients” with errors
below 0.1%. The power delivered to the calibration heater was 0.23025W and
the cell current was 0.20306A.

(a) We again start by plotting the “raw data,” this time of the cell temperature
and cell potential versus time, Fig. 38, and by constructing the relevant (k)11
spreadsheet, spreadsheet 6. Here, we have used the third measurement cycle so
as to be consistent with later evaluations (to follow). It can be seen that such
measurements for “blank systems” do not show any anomalies. In particular,

33



the initial temperature perturbation due to the refilling of the cell (to make
up for the losses of DO due to electrolysis) relaxes within, say, 7 hours; in
view of the much larger amplitude of the temperature perturbation due to the
application and cessation of the heater calibration pulse, we need to allow at
least 8.5 hours to “eye-ball” the relaxations in the regions ¢; < ¢t < {2 and
ta <t < T. One reason for the specification of the 48-hour long measurement
cycles will be apparent immediately; such measurement cycles allow us to make
the durations of #; — g and ¢ — #; equal to 12 hours.

It will also be evident that the temperature following the cessation of the cali-
bration pulse relaxes to the sloping base line. Furthermore, it will be clear that
the system normally shows “negative feedback” in that increases of the cell tem-
perature lead to a lowering of the enthalpy input (and vice versa). Tests of this
“negative feedback” will be discussed in later sections.!?

If we accept data sets such as those in Fig. 38 as being “reasonably normal,” we
can evaluate the “lower bound” and “true heat transfer coefficients” at a time
close to to by using the graphical methods. We obtain

(k)11 = 0.61844 x 10 °W K ~* with Ey, j = 1.54V (54)
(kR)11 = 0.62006 x 10°WK ~* with Eqpp, = 1.527V (55)
(k)2 = 0.62027 x 10 WK™, (56)

The close agreement of Eqgs. (54) and (56) is almost certainly fortuitous because
we expect the errors in (kfg)2 to be ca & 0.002 x 107° WK, If we accept the
values given by Eqs. (55) and (56), then we deduce a rate of excess enthalpy
generation of 0.00034W, a value which is comparable to those which we had
observed previously for “blank experiments” [5, 6, 8]. As was noted previously,
such low values are below those expected for the reduction of electrogenerated
oxygen present in the solution. This can be explained by the degassing of the
solution adjacent to the cathode by the electrogenerated deuterium.

In this preliminary assessment, we also prepare plots on an expanded scale of the
temperature—time data in the regions adjacent to ¢; and te, Fig. 39 (compare
Fig. 3). We can see that the times of application and cessation of the calibration

12 As we have always explained, it is essential to produce such graphs of the raw data in order
to check on the normality (or otherwise) of the experiments. The data shown in Fig. 38 are
“reasonably normal,” i.e., we can judge them as being suitable for further evaluation although
it was apparent that the “noise levels” had increased compared to the data sets which had
been collected in Salt Lake City and, subsequently, in the “old part” of the IMRA, Europe
Building in Sophia Antipolis. This increase in the “noise levels” caused some degradation in
the evaluations compared to those which we could achieve previously up to the end of 1992.
This was already apparent in 1994 at which time we tried to find the causes for the increases
in “noise.” Unfortunately, the attempts to do so were stopped.
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pulse are adequately synchronized with the data acquisition points (although
such extrapolations for “real” experimental data are inevitably less certain than
those for simulation, Fig. 3). It follows that it is sufficient to insert single
additional points at ¢; and ¢ in the preparation of the (kj)21-spreadsheet.

The evaluation of (k)11 (at a point close to ¢ = ¢2) and of (kiz)2 is important
for the evolution of the research program as well as for the assessment of the
validity of other methods of data evaluation. We note in the first place that these
“lower bound” and “true heat transfer coefficients” are, respectively, the least
precise and least accurate values which can be obtained from the experimental
data. Any conclusion that the precisions and accuracies of other methods of
data evaluation are lower than this (as determined by repeated calibrations for
“blank experiments”) show that either the experiments have been carried out
incorrectly or that the methods of data evaluation are invalid. We note, secondly,
that the Second Law of Thermodynamics requires that (k)2 > (k)11 (at the
same point in time). Any conclusion that (k)11 > (kj)2 can only be explained
by either errors in the execution of the experiments or the presence of variable
sources of excess enthalpy. If the latter statement is true, it is then impossible to
calibrate any conceivable calorimetric system and, in that eventuality, we need
to rely on separate calibrations of the calorimeters.

(b) We next carry out a detailed examination of the (k’z)11 spreadsheet, spread-
sheet 6. We first of all prepare a plot of (k%;)11 versus time, Fig. 40 (compare

Fig. 4) on which we also show the derived values of (k%;)11. The error bars show

+o of (kg)11- The “lower bound heat transfer coefficient” shows the expected
linear decrease with time and the relevant regression line is drawn on the plot.

We also examine the extrapolations required to obtain (k) 1s1, (k3 )161, (K3 )171,
and (k%o)lsl, Figs. 41 - 44 (compare Figs. 5 - 8, Section 6). Of these plots, Figs.
41 and 42 are probably soundly based in that the origin of the abscissae (where
dA6/dt = 0) can be defined on Fig. 38. The origin for Fig. 43 cannot be defined
and this puts the mathematical validity of Fig. 44 in doubt as this requires a
combination of the data used in Figs. 42 and 43. Here, we have said “prob-
ably soundly based” because the question of the origins for plots of this kind
needs further investigation using appropriate simulations. Notwithstanding our
reservations about the validity of Fig. 44, we regard this plot as the best way of
estimating the “lower bound heat transfer coefficients” and the water equivalent
of the cells in the vicinity of t3. The water equivalent can also be estimated
from a, similar plot for (k;’%o)281, see Fig. 55 below, and the compromise value of
330 JK~! has been used to derive the (k})11 spreadsheet, spreadsheet 8. This
spreadsheet is actually the first iteration in the calculation scheme.!

13 A5 has already been noted in Section 6, we do not believe that this iteration has been
carried out in the evaluations of the NHE data sets.

35



In view of the scatter of the points in Fig. 40, the values of (k}o)lm, (k}o)wl,
(k) 171 and (K} )11 have not been added to this plot (contrast the plot of (k%)11
versus time, Fig. 4) but are given on a separate plot, Fig. 45, with respect to
the regression line in Fig. 40. Figure 45 also includes the value of (kz)11 derived
by the graphical method, Fig. 38.

(c) In the next step, we evaluate (k)12 and (k)12 and plot these “true heat
transfer coefficients” versus time in Fig. 46. In carrying out this evaluation,
we estimate the values of E, and 6 at any given time within ¢; < ¢t < t3 by
fitting regression lines through the data shown in Fig. 38 but excluding the
region t; < t < to and those plots where the temperature and cell potential
relax following perturbations. It will be evident that the scatter of the values

of (k)12 in Fig. 46 is much larger than that for (k)11 shown in Fig. 40 (the
regression line for (kj;)11 is also shown in Fig. 46).

Figure 47 gives the evaluation for (k;’%o)162 and Fig. 48 shows values of (k%0)152,

(k) 162, (kp)i7o and (ky)2 again with respect to the regression line for the
variation of (k)11 with time, Fig. 40. The increased scatter compared to
the data in Fig. 45 will again be apparent. We conclude therefore that the
evaluation of the “differential true heat transfer coefficients” will not be useful
for calculating the rates of excess enthalpy generation. However, this does not
mean that we cannot evaluate the differential rates — if we should wish to do so.
The way in which we can circumvent the errors introduced by the determination
of the “differential true heat transfer coeflicients” is discussed in subsection of
Section 6 (f) below.

(d) We will not describe/discuss the use of the first order backward difference in
the evaluation of (dAf/dt) when considering the analysis of experimental data.

(e) We will consider next the derivation of the various versions of the integral
heat transfer coefficients. The (kz)21-spreadsheet, spreadsheet 7, gives the in-
tegrals required for the evaluation of (kj;)21 and (k)31 and Fig. 49 gives the
plots of these coefficients versus time. Figure 50 gives a comparison of (k)21
with (k)11 and it can be seen that the use of the integral procedure leads to a
marked reduction of the errors due to the differentiation of “noisy” experimen-
tal data (which is required for the evaluation of (k%;)11 and the derived (kj)11).
Inevitably, the values of (kiz)21 and (k%;)11 converge at long times where the
definitions of the integral and differential heat transfer coefficients are equiva-
lent. Equally the value of (k}3)s1 at short times (as given by the regression line

through the points at long times) converges onto the value of (k%;)11 at short
times as these values are again equivalent, Fig. 49.

36



It can be seen from Figs. 49 and 50 that the values of (k)21 at long times
deviate somewhat from the regression line. The reason for these deviations is
that it is necessary to carry out ce 100 integration steps in order to suppress
the random errors in f;(#) and the enthalpy input. Of course, the integration
procedure still leaves us with the random errors in [0(t) — 6p]. However, it can
be seen from Figs. 49 and 50 that the further averaging to give (kj)21 has a
negligible effect on the errors of this heat transfer coefficient.

It can also be seen from Fig. 49 that the deviations of (k)31 at short times
from the relevant regression line are much larger than those of (k)21 at long
times. The major reason for this effect is that the use of the trapezium rule
(coupled to a rather long measurement interval) introduces appreciable errors
into the integration of fi(#) and the enthalpy input in regions where these two
variables are changing rapidly with time. By contrast, the integrations required
for (kj)21 take place in an initial region where f;(8) and the enthalpy input
are nearly constant with time. The curvatures of these variables with time at
short times then have negligible effects on the integrals and the trapezium rule is
perfectly adequate for the numerical integrations. This was the major reason for
our preference for the use of (kj)21 as compared to (kj;)s1. There are, however,
secondary reasons for this preference. These include the fact that [6(¢) — 6]
is appreciable for the initial region of the estimation of (k%z)s1 whereas it is
negligibly small for the evaluation of (k%;)21. Furthermore, the term

CoM(® - 00) [ 1i(0)ds

remains appreciable throughout the range of the evaluation (so that the values
of (kiz)s1 are subject to errors in Cp M) whereas one can find regions where

CoM(® - 00) [ 1i(0)ds

is zero (so that the values of (kjz)21 at these times are independent of CpM).

It can be seen from Figs. 49 and 50 that the slope of the regression line for the
variation of (klz)11 with time is roughly twice that for the variations of (k)21
or (ki)s1 with time. This is to be expected. The time dependence of the heat
transfer coefficients, Eq. (21), does not need to be taken into account when
evaluating the differential version; it is then the variation of (kjz)11 with time
which reveals this time dependence. This is just the term ~¢ in Eq. (21) and
we see that we can obtain a “good” value of v from the slope of the regression
line, Fig. 40. In the evaluations of (kj)e1 and (kf)s1 using Eqs. (13) and
(14) we have usually defined f;(#) using Eq. (4) whereas our experience with
the evaluations of (k};)11 teaches us that we should use the definition Eq. (21).
Integration of this equation gives

kL[ £1@)ar =t [ 1@+ [ [ fi@rar. (57)
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If we now regard fi(f) as being constant throughout the measurement cycle
(which is a rough approximation for the case of the “lower bound heat transfer
coefficients”), then the integral becomes

(£ O)01 - T (55)

It follows that the heat transfer coefficients given by Eqgs. (13) and (14) are
given by

(K = (K1 + TE =Y (59)
and ;
(Kp)ar = (ki)an[1 = T (60)

within the limits of this approximation. (k}; )21 and (k}; )31 are respectively the
values of (kz)21 at t =T and of (k)31 at ¢t = 0. It follows that the slopes of the
plots of (k)21 and (k)s1 versus time are one half of the plot of (k)11 versus
time.

Equation (57) also shows the way in which we can test whether the characteristics
of the Dewar cells can be described by a single, time-independent heat transfer
coefficient. Thus, evaluation of (k)21 according to Eq. (13) gives us the heat
transfer coefficient

(i = () 1= [ t / i @drar| / [ @ (6

so that the “time-independent” heat transfer coeflicient (k}o)m is readily deter-
mined. Figure 51 shows this derived coefficient versus the measurement interval.
We can see that if we exclude the region adjacent to T' (where the methodology
is unreliable) the values of (k;’%o)gl are within +£0.01% of the mean of (k}o)gl
(the relative standard deviation is 0.0063%). This is the basis of our statement
that the “integral lower bound heat transfer coefficient” can be determined with
a precision given by a relative error of less than 0.01%. We note that the errors
in (k}%o)m shown in Fig. 51 are somewhat larger than those which we observed
in the earlier work.

The success in deriving an unique value of (k}’%o)gl brings in its train two further
aspects. First of all, we need to assess the likely errors of the “point-by-point”
values of (kj)21 and (kj)s1. Examination of spreadsheet 10 shows that the
“minor term”

t
C,M(8 — 8)/ /T h(6)dr

is maximally ca £1.4% of the derived values of (k%z)21 (at the points ¢ = 0 and
t = t2). On the other hand, this “minor term” rises to ca 25% of (kz)s1 within
the calibration period ¢; < ¢t < t2 and is ca 7% of (kz)s1 at ¢ = 0. Evidently,
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the heat transfer coefficients based on the backward integration procedure are
to be preferred to those based on forward integration. Secondly, we see that
the preferred procedure would be to use extrapolation procedures to remove the
effects of the water equivalent, which is the parameter subject to the greatest
uncertainties.

Figures 52 through 55 show such extrapolation procedures for deriving (k;%o)%l,
(kp)a61, (k)ar1, and (k%)es1, as well as the corresponding values of C,M.
The extrapolation in Fig. 52 will be to a point in the range 0 < ¢t < ¢; where
the temperature is equal to that at the end of the measurement cycle (roughly
at 6900s). As can be seen the values of (kiz)21 and (k}o)%l show that this is
indeed so. The extrapolations in Figs. 53 through 55 should all be to the end of
the measurement cycle at ¢ = 7. However, the values of (kj)ag1, (K )2r1 and
(k;’%o)281 are somewhat larger than that of (kz)21 at that point (given the value
read off from the regression line). In 1992/93, we concluded that this was due
to the range of the extrapolation required being too long. In order to avoid this
difficulty, we restricted the integrations to ¢; < t < to and set the origin of the
abscissa at a time close to ¢ = t3. The extrapolation, Fig. 62, will now be to the
value of (kz)11 at this point and this is again the case (see also spreadsheet 8).

Figure 60 gives the “point-by-point” values of (k)21 for the time range
t; < t < ty and these are somewhat below the variation predicted based on
the assumption in Eq. (59). We note that it has never been resolved whether
the small discrepancies observed are due to using this assumption rather than
Eq. (61) (however, they are at least due in part to the use of Eq. (59) rather
than (61)). Instead, we have recommended the use of the extrapolation proce-
dure shown in Fig. 62. In attempting to interpret the variation of (kj) with
time shown in Fig. 60, it should also be born in mind that the values of this
heat transfer coefficient are unreliable for about the first 110 integration intervals
adjacent to ¢t = ts.

Figure 60 also gives the corresponding data for (k)32 while Fig. 63 shows that
the extrapolation procedure required for deriving (k%0)361 is unreliable, even if
the first 11 data points are excluded from the extrapolation. The main reason
for this lack of reliability lies in the large values of the abscissae, which reach
ca 30% of the value of (kj)s1. (However, note that the extrapolations based on
the integrals spanning the whole of the measurement cycle 0 < ¢t < T, Figs. 56
through 59, are somewhat more satisfactory; the procedure for deriving (k%0)361,
Fig. 57, is reasonably sound). It was for this reason that this procedure was
excluded in the Handbook for the ICARUS-1 systems [1]. We also see that the
estimate of (kz)31 at times close to ¢, is somewhat lower than that predicted
from Eq. (60). However, reference to spreadsheet 8 shows that the abscissae are
still ca 2.3% of the ordinates for the evaluation of (k%z)s1 at this point (for the
24-hour measurement cycles used in the NHE investigations this ratio rises to
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ca 4.4%). A 3% error in C, M would therefore account for such discrepancies!

Figure 61 gives the values of the “true heat transfer coefficients” (k)22 and
(kR)s2 over the restricted range t; < ¢t < ts while Figs. 64 and 65 give the
evaluations of (k%0)262 and (k%0)362. It can be seen that (k;’%o)262 is close to the
value of (klz)11 at t = to as given by the relevant regression line. On the other
hand, (k;’%o)362 deviates markedly from the value of (kz)11 at ¢ = 0, even if we
once again exclude the first 11 points from the extrapolation. Spreadsheet 9
shows that the nominally “minor term” now reaches ca 100% of the value of the
“major term” while the "minor term” is ca 2900% of (kj)s2. It goes without
saying that it is not possible to evaluate (k)32 with this particular methodology.
It was for this reason that the ICARUS-1 Handbook recommended that (k;)s2
should be evaluated “point-by-point” at times close to t = to. Spreadsheet 9
shows that the “minor term” in the evaluation of (k%;)s2 is still ca 12% of the
major term while for a 24-hour measurement cycle it would reach ca 25% of
the major term. The accurate determination of (kz)s2 is therefore fraught with
difficulties. These conclusions should be compared with those presented in the
poster given at ICCF 7 [4].

Finally, Fig. 66 illustrates the determination of (k%0)252, i.e., of the “true heat
transfer coefficient” without making use of the calibration pulse. Whereas the de-
termination of the differential coefficient (k;’%o)152 fails (because of the inevitably
large errors introduced by the differentiation of “noisy” experimental data), the
determination of (k;’%o)252 is reasonably successful. The evaluation of this version
of the “true heat transfer coefficient” can therefore serve as a useful check on
some of the more extreme statements which have been made about the validity
of the ICARUS-1 evaluation procedures.

(f) We come now to the principal conclusions which we can draw from the
detailed examination of “blank” experiments, taken in conjunction with the
analysis of data generated by simulations, Section 5. The optimal methodology
for the evaluation of the “lower bound heat transfer coefficient” is that based on
the backward integration leading to (kz)21, although that based on the forward
integration leading to (kjz)s1 can also be used. Furthermore, the differential
form, (k'z)11, is also useful.

However, the only accurate method for the evaluation of the “true heat transfer
coefficient” is that based on the backward integrals and, especially, the extrap-
olation procedure giving (k;%o)%g, which was the methodology specified for the
ICARUS-1 systems [1]. It is therefore sensible to combine such values of (k;’%o)262
with the corresponding values of (k;’%o)Qﬁl. For the data set discussed here, we
obtain from Figs. 60 and 61 (or Figs. 53 and 64, spreadsheets 8 and 9):

A(kl) = (k)62 — (K3 )261 = 0.00043 x 107 "WK ™. (62)
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This value is to be preferred to
A(kR) = (KR)2 — (k)11 = 0.00021 x 107 WK, (63)

given by the graphical methods (Eu. (55)).

It should be noted that both of these methods give values of the heat transfer
coefficients close to the mid-point of the measurement cycles (which was one
reason for the specification of the time ¢ = t3). Furthermore, the difference in
Eq. (62) is actually equal to

A(kR) = (kp)12 — (kr)u (64)

at this point. This is of no particular consequence as far as the evaluation
of the total excess enthalpy for the measurement cycle is concerned because
the difference in Eq.(62) applies to any part of the cycle at the first level of
approximation. It follows that

0
Total excess enthalpy = A(ky) / f;(6)dr. (65)
T

For the particular example used in the present illustration, we obtain
Total excess enthalpy = 102J, (66)

corresponding to a mean excess rate of 0.0006 W.

However, we note that the group at NHE have attempted to calculate the vari-
ation of the rate of excess enthalpy generation throughout the measurement
cycles. At first sight, it would appear that we need to use the correct time-
dependent values of (kj)12, i.e., [k (£)]12. At the time of writing of the Hand-
book for the ICARUS-1 systems [1], it was not clear how this variation was to
be established. It became clear subsequently that if the difference between the
“true” and “lower bound heat transfer coeflicients” could be established at any
one time (say A(kg): ), then [k%;(¢)]12 at any other time would be given by

[kr ()12 = [KR)(®)]11 + A(kR)e, [1(8)s,/ F1(8):- (67)

The ratio f1(8)s, /f1(8): is of order unity, which implies that the correction term
is always close to that at the calibration point.

Any attempt to calculate the variation of rates of excess enthalpy generation
within the measurement cycles must also pay due regard to the fact that it is
not possible to calibrate the systems if the rate of excess enthalpy generation
varies with time. If that is the case, then we must derive A(k;) from separate
experiments.
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Equation (67) also points to a further important conclusion. Again at the time
of writing of the Handbook for the ICARUS-1 systems [1], we believed that the
precision of (k};)12 (and of other versions of the “true heat transfer coefficient”)
would always be given by the accuracy of that coefficient which is certainly lower
than the precision of (kj;)1:. Equation (67) shows that this is incorrect. The
precision of (k}3)12 is nearly identical to the precision of (kf)11. It follows that
changes in the rates of excess enthalpy generation can be established at the same
level of precision as that of (k%g)11, i.e., with relative errors ca 0.01%.
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SECTION 7: ASSESSMENT OF THE SPECIFICATION OF THE
ICARUS-1 EXPERIMENTAL PROTOCOLS AND DATA EVALU-
ATION PROCEDURES.

The specification of the ICARUS-1 experimental protocols and data evaluation
procedures has been outlined in Section 4. It is now important to assess the
usefulness and validity of this specification in the light of its application to data
generated by simulations (see Section 5) and by “blank” experiments (see Section
6). Of course, this procedure is “back-to-front”: the specification, Section 4, was
evolved from a consideration of the type of results outlined in Sections 5 and 6.

It is also important to consider the “raison-d’étre” of this part of the research
program and some comments on this are given at the end of this section. Fur-
thermore, it is important to consider the causes of failures to achieve evaluations
especially in the light of the well publicized publication from the group at NHE
[5]. Finally, it is necessary to consider “short-cuts” to achieving satisfactory
data evaluations.

In our view, the major results derived from Section 6 (backed up by the in-
vestigation in Section 5) are the comparisons of (k)21 and (kg)1: in Fig. 50
and the reduction of (k)21 to a single, time-independent, lower bound heat
transfer coefficient, Fig. 51. The comparison, Fig. 50, illustrates immediately
the need to avoid the differentiation of “noisy” experimental data (required for
the evaluation of (k)11 and the benefits of using instead the integration pro-
cedures in deriving (kj)e1); however, see further below. This was the basis for
the specification of the construction of the (k%z)21 spreadsheets following on the
construction of the (k%;)11 spreadsheets (see (vi) and (vii) of Section 4).

Results such as those illustrated in Fig. 50 show that it is possible to interpret
the systematic variations with time of ca 0.4% of the “integral lower bound heat
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transfer coefficient” while Fig. 51 shows that it is possible to reduce such data to
a single, time-independent, heat transfer coefficient, (k}o)zl with relative errors
below 0.01%. This result is hardly surprising. The “physics” of the calorimeters
are quite simple (they are “ideal well stirred tanks”) and the errors are mainly
due to those set by the temperature measurements. It is also relatively straight-
forward to specify the changes which would need to be made to reduce the errors
— say, to 0.001% — if that should ever prove to be necessary or desirable.

The comparison of (k)21 with (k)s1 in Fig. 50 as well as in spreadsheet 7
shows that the errors in (kz)s1 are inevitably larger than those of (k3)21. This
is mainly due to the larger contribution of the term

¢
CpoM (6 — 00)//0 f)(@)dr

to (kly)s1 rather than the corresponding contribution of

t
C,M(8 — 8)/ /T h(6)dr

to (k)21 We can see immediately, that given the option of using forward
or backward integration we should use the latter in order to achieve accurate
evaluations. This restriction becomes much more important, however, when we
consider the derivation of the “true heat transfer coefficients,” (kj )22 and (kg )s2,
as well as of the likely effects of timing errors on the evaluations. Such evaluations
must necessarily be mainly restricted to the duration of the calibration pulse,
t1 < t < to. Figures 60 and 61 and the associated spreadsheets 8 and 9 show
that whereas an initial assessment might well be based on the use of (kj)s1, the
evaluation and use of the “true heat transfer coefficient,” (kj)s2, must follow
strictly the instructions laid down in the ICARUS-1 Handbook [1] (see (vii) of
Section 4) — and, even then, the errors are much larger than those of (kj)22.

The optimum methodology for deriving the difference between the “true” and
“lower bound heat transfer coefficients,” i.e., A(k%), Eq. (62), is to estimate
(k;’%o)262 from plots such as that in Fig. 64 and (k;’%o)Qﬁl from the correspond-
ing plot in Fig. 62. Such evaluations automatically eliminate the contributions
of the water equivalent on the estimates, a parameter which is subject to the
greatest degree of uncertainty. The evaluation of the difference A(k%) allows
us also to circumvent the errors in the evaluation of the “true differential heat
transfer coefficient,” (kiz)12, Fig. 46, because A(kz) applies equally to (kig)12
and (kg)11, Eq. (64), as to (ky)2s2 and (k5)261, Eq. (62). It follows. therefore
that we can evaluate rates of excess enthalpy generation at the level of accuracy
determined by A(k}) and precision of (k%z)11. However, we cannot see why we
should ever wish to do so, given that we have had to evaluate the backward
integrals to determine A(k}) so that the values of the total excess enthalpy in
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a measurement cycle (or any given part of a measurement cycle) follow imme-
diately as by the application of Eq. (65). If we evaluate instead the rates of
excess enthalpy generation, then we must sum these rates (multiplied by the
measurement interval) to obtain the total excess enthalpy [4] (more exactly, we
need to apply an appropriate integration rule).

Sections 5 and 6 also illustrate the evaluations of the ”time-independent” heat
transfer coefficients (k;’%o)lm, (kléo)lﬁl, (k;’%o)ln, (k;’%o)lsl, (k%0)152,

(Ki)1e2, (Kiirz, (KE)ast, (kg )2ers (KE)em, (kg )est, (K)es2, (KR)2e2,
(k)ar2, (k)ss1,  (B)ser, (Ki)sm, (Kp)sst, (k3 )ssa, (Kyy)se2 and
(k;’%o)372. Of these, the evaluations of (k;’%o)%l and (kg)262, Figs. 62 and 64,
were the methodologies specified for the ICARUS-1 system. The reduced preci-
sions and accuracies of the series (k%;)1,;; compared to those of (kj;)z,;,; will be
apparent as will be the reduced precisions and accuracies of the series (ki)s.;.1
compared to those of (k;’%o)Q’j’l. The evaluation of (k;’%o)362, Fig. 65, is especially
prone to error.'*

The failure to achieve satisfactory calibrations of the cells using the procedures
leading to (kz)se2 in the studies by the group at NHE coupled to the evident
timing errors in the ICARUS-1 system installed in Sapporo, also prompted an
investigation of the likely effects of such errors if these were not properly taken
into account. Figs. 26-37 show the expected results. Whereas the “target
evaluations” of (k;’%o)Qﬁl and (k%0)262 are relatively insensitive to the effects of
such errors (Figs. 26-29), the evaluations of (ky)se1 and (k}3)se2 are markedly
degraded (Figs. 30-37). Moreover, the values of (k%0)361 and (k%0)362 (the inter-
cepts of the plots) now depend on the time range of the regression fit (the dis-
cussion of these effects is beyond the scope of the present report). It is evidently
critically important to avoid the effects of such timing errors because there are
other reasons which preclude the achievement of satisfactory calibrations most
notably the effects of changes in the rates of excess enthalpy generation espe-
cially those due to “positive feedback,” e.g., see [4,12]. It is essential therefore
that tests of the performance of the instrumentation be carried out using “blank
experiments” (see Section 4 (iii)) in order to avoid the complications introduced
by the study of the Pd-D,O system.!'®

Sections 5 and 6 will also have illustrated the reasons for the need to use 48-
hour measurement cycles [see Section 4 (i)] as well as the benefits of examining
and evaluating plots of the raw data such as that in Fig. 38 [see Section 4 (v)].

M Unfortunately, such evaluations appear to have been a major part of the investigations
carried out by NHE.

15We have never been able to obtain data for the study of any such “blank systems” which
may have been carried out by NHE.
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Finally, it is important to assess the usefulness of the calibration procedures
described in this section as well as the preceding sections. It appears that this is
a topic which has been misunderstood. It would hardly be possible to investigate
all measurement cycles of all experiments at the level of detail set out in Section
6. The real purpose of developing precise and accurate methods of calibration
is to gain an adequate understanding of the “instrument function” and then to
use the calibration(s) to measure the rates of excess enthalpy generation. A
secondary objective (related to the assessment of the calibrations) is to point
the way towards necessary (or useful) improvements of the instrumentation. We
note here that the original cells, which were not silvered in the top section, gave
a flat temperature-time base line because changes in the heat transfer coefficient
with time were compensated by changed in the enthalpy input. However, the
heat transfer coefficients varied markedly with time and this complicated the
methods of data analysis. The silvering in the top sections of the ICARUS-
1 and -2 calorimeters has markedly reduced this time dependence of the heat
transfer coefficients, but the effects (e.g., see Fig. 50) do still have to be taken
into account.'® In 1990/91, it appeared important that we should investigate
a further modification of the calorimeter design designated as the ICARUS-4
version in 1993 (the ICARUS-3 designs were never constructed) but redesignated
since that time as ICARUS-14, vol. I, Fig. 27. We believe that this design would
give a flat base line for the heat transfer coeflicient-time plot and that this would
also make the heat transfer coeflicient insensitive to the operating conditions.

An alternative approach would be to investigate the maintenance of constant
electrolyte levels as has been done in the investigations carried out by the group
at Grenobles [15]. It would be important to try to secure the release of data for
“blank experiments” carried out by that group.

A secondary reason for carrying out repeated calibrations is to monitor the
system behavior [4, 5] especially the effects of the onset of positive feedback.
However, such investigations do not need to be carried out at the high levels of
precision and accuracy required for the calibration of the calorimeters.

16We note that this has not been taken into account in the work carried out by the group
at NHE.
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Fig. 27. ICARUS-2 simulation. Evaluation of (k'gr®)»g- With +30J error in input enthalpy.
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Fig. 28. ICARUS-2 simulation. Evaluation of (k’'r%)»g¢ With +30J error in input enthalpy.
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Fig. 29. ICARUS-2 simulation. Evaluation of (k'gr®)»g2 With -30J error in input enthalpy.
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Fig. 30. ICARUS-2 simulation. Evaluation of (k’;°)36¢ +30J error in input enthalpy.
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Fig. 31. ICARUS-2 simulation. Evaluation of (k’c°)3go With error +30J in input enthalpy and using intervals 145-177.
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Fig. 32. ICARUS-2 simulation. Evaluation of (k’;%)3g5 With error +30J in input enthalpy and using intervals 156-177.
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Fig. 33. ICARUS-2 simulation. Evaluation of (k’;%)3go> With error +30J in input enthalpy and using intervals 167-177.
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Fig. 34. ICARUS-2 simulation. Evaluation of (k’c%)sg¢ With error +30J in input enthalpy.
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Fig. 35. ICARUS-2 simulation. Evaluation of (k’s%)3go With error -30J in input enthalpy and using intervals 145-177.
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Fig. 36. ICARUS-2 simulation. Evaluation of (k’;°)3go with error +30J in input enthalpy and using intervals 156-177.
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Fig. 37. ICARUS-2 simulation. Evaluation of (k’s°)3go wWith error +30J in input enthalpy and using intervals 167-177.
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Fig. 38. The "raw data" for a blank experiment (Pt in 0.1M LiOD/D,0)
in an ICARUS-2 calorimeter. Third measurement cycle. Evaluation of
(k’4)11 and (k’r)» using the graphical method.
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Fig. 39. The Temperature—Time variations in Fig. 38 in the vicinity of t and t on an expanded scale.



109(k'g)11/WK-4

0.6235

0.623

0.6225

0.622 ¢

0.6215

0.621 1

0.6205 +

0.62 ¢

0.6195 +

0.619 ¢

0.6185 ¢

0.618

100 200 300 400 500
INTERVAL/300s
Fig. 40. (k'g)11 for the experiment illustrated in Fig. 38 plotted versus time.
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Fig. 41. ICARUS-2. Evaluation of (k'g°)451.
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Fig. 42. ICARUS-2. Evaluation of (k'g°)g1-
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Fig. 43. ICARUS-2. Evaluation of (k'g°)171.
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Fig. 44. ICARUS-2. Evaluation of (k'g°)1g1-
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Fig. 45. (K'R)11, (KR®)151, (K'R®)161, (K'R®)171, @and (K'g®)4g4 for the experiment illustrated in Fig. 38.
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Fig. 46. (k'g)» for the experiment illustrated in Fig. 38 versus time.
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Fig. 47. ICARUS-2. Evaluation of (k'g°)1e2 for the experiment illustrated in Fig. 38.
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Fig. 48. ICARUS-2. (K'r%152 , (K'R®)162 » (K'R®)172, @and (k'g)» for the experiment illustrated in Fig. 38.
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Fig. 49. (k'r)21 and (k'R)31 versus time.
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Fig. 50. (k'g)2¢ and (k’R)11 versus time.
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Fig. 51. (k'r)2q Versus time.
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Fig. 52. Evaluation of (k'g%)o51.



10-9 WK-4

0.62

0.6195 ¢+

0.619 +

0.6185 +

0.618 +

0.6175 ¢

0.617 +

0.6165 +

0.616

0.6155 ¢+

0.615+

INTERCEPT = 0.62019 WK-4
SLOPE = 342.1 JK-1
r=0.99943

0.6145

0.001 -0.002 0.003 0.004
10-9 WK-4

Fig. 53. Evaluation of (k'g%)2g1-
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Fig. 54. Evaluation of (k'g%)271.
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Fig. 55. Evaluation of (k'r%)ogj.
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Fig. 56. Evaluation of (k'r%)351.
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Fig. 57. Evaluation of (k'r%)3g1-
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Fig. 58. Evaluation of (k'g°)371.
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Fig. 59. Evaluation of (k'g°)3g1.
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Fig. 60 ICARUS-2. Blank experiment (k'R)»1, (k'R,)261, and (k'R)34 over the range, t<t<t,.
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Fig. 61. (kK'R)22 and (k’g)3» Over the range, t<t<t,.
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Fig. 62. ICARUS-2. Evaluation of (k'g®)og¢ using the ICARUS-1 Method.
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Fig. 63. ICARUS-2. Evaluation of (k'g°)3g4 using the ICARUS-1 Method.
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Fig. 64. Evaluation of (k'g%)»g> using the ICARUS-1 Method.
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Fig. 65. Evaluation of (k’'g9)sg2 using the ICARUS-1 Method.
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Fig. 66. Evaluation of (k'g%).s, using the ICARUS-1 Method.
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Evaluation of (kc' )21 and (kc' )31
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Part of lhe(kc‘ )21 sPreadsheel ior the time region t1 > > 2 of a simulation of ameasuremenl cycle - | H ! H H
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Effects nlerrors of mm {:mumns 2-9) and -30J (columns10-17) on me eva\uallun of (ke' }21 (ke )22, (kc 0)261 and[kcoJZEZ ; s i i i
| i ! | | ) i i . | i
" L 2 . 3 j a 5 ; 6 . 1 | &8 ,' 9 ! ST S A S P I B L - R
| ‘ 1 ' | ' : |
interval absclssa i ordlna!e | (ke')21 (kco)26| i abscwssa ordinate [ (ke )22 ! | | ke 01262| abscwssa ordinate i (ke' )21 (kc'0)261 | abs-:lssa_. ordinate i (ke' )22
300is ! | TWKA | WK1 1 | TwKe | wKe-1 | ! TWKA | WA ) | 1w
i i | | | i
slope | | | slope | | slope | ! i | slope
i KA1 } | | 1IKA ! KA1 | LKA
1 ] i
i : r 1 o] [ ! [
1 | 1 4| | 1 | |
i - | 1 | i | 1 b 1
1 u : e s 1 | :
- | 1 | i
143 -0.00122 40074285 ! } | | 00122 40 074198 | | '
144 0.00123 {0.074272 i | | | 1000123 |0.074183 1 | i
145 1-0.00115 10.074193 |0.073045 |0.073056{%-0.00738 |0.081292 |0.073314 |0.073359~000115 |0.074103 |0.072855 |0.0729444 0.080668 007269 |0.072639
146 |-0.00107 [0.074119 3263 ||-000742 0080738 | 13276 -0.00107 |0.074028 3339 0080114 | lasze
147 -0.00101 _|0.074051 099999 ||-0.00691 |00BO227 10993991 '-uocnm 007396 0999988 | 0079602 | 10999992
148 1-0.00084 0.073987 o 000644 0079754 ' 1000094 |0073895 1 0079127 | L
149 |-0.00088 |0.073027 0006 [0079315 I '.0.00088 0073834 | 0078688 { i
150 1-0.00082 |0.073871 -0.00559 |0078911 ; 1000082 |0.073778 | 0078282 | !
151 :'-a 00077 |0.073818 | | -oo0522 0078533 | 000077 |0.073725 0.077902 ! |
152 000072 [0073769 | 000487 |0078185 | 000072 |0.073675 ! 0077551 . |
153 1-0.00068 0073724 | -0.00454 |0.077861 | 000068 |0.073628 | i 0077225 !
154 |0.00063 |0.073681 | 000424 007756 | -0.00063 0073585 | | 0 076922 f |
155 1000059 10.073641 i -D.00396 |0.077281 | -0.00059 |0.073545 | ! 007664 | |
156 1-0.00056 10073604 |0.073049 0073059100037 0077021 0073322 [0 0733784000056 [0.073507 0072952 10072942 0076377 0072678 10072621
157 |-0.00052 [0.073569 13233 | -0.00346 0.07678 [3244 000052 loo73472 | ‘3367 0076133 | :3356
158 -0.00049 [0.073536 __|0993976|-000323 |0 076555 | |0.999387 1000049 0073438 | {0.699958 |- 0075805 | 10993987
159 0.00046 (0073506 | -0.00302 0076346 | | |.0.00046 |0.073407 J i 0075693 | |
160 0.073478 B -0.00282 [0.076152 | : -0.00043 10.073378 | ! 10075494 | |
161 0.073451 000264 0075972 00004 |0.073351 | loo7san | !
162 0.073426 ) 000247 0075802 | | 1-0.00038 |0.073325 | 0075137 | i
163 0073403 1000231 [0.075645 | : -0.00035 [0.073301 | i 0.074976 | |
164 0073381 {fo,oo_me 10.075499 T | 0.073278 | loo7as2s | |
185 0.073361 ) -0.00202 0075362 | L Joo73zs7 | 1 “|o.074684 | !
166 0.073342 l.0.00189 [0.075235 ' [ |0 0073238 | | ] 0.074553 | !
167 0073324 |0.073052 |0.0730634,-0.00177 10075117 |0073343 ,0.073398.4-0.00027 0073215 |0.072947 10.07234 1.0, 007443 |0.072656 |0.0726
168 oor3zos | 13165 ||-0.00166 0075007 | 3195 [|-000026 |0.073202 | 13394 007431571 |3408
169 0073292 0999968 ||-0.00156 |0.074904 | 10.999992 |-0.00024 |0073185 | 099934 0074207 | |0.999989
170 0073278 | {-0.00146 10074808 | ) 1-0.00022 [0.07317 | i 5 lo.074106 '
171 0073264 | 1-0.00137 007471&1 : -0.00021 |0.073156 | 1 “lo.o74011 ]
172 0073252 i |-0.00128 |0074635 | N -0.0002 {0073142 | i 0.073922 |
173 007324 1 00012 10074558 | i -0.00019 [0.073129 ! i . 0.073839
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Part of the (kc )21 spreadsheat for the llma fengﬂ 11 <1 <12 of a simulation of a measurement cycle

Effects of errurs of 4301 {cniumns 2-9) and -30J (columns 10-17) on the evatuallcn of (ke' )31 (ke )32, (kcu}Sﬁl and (kc'0)362

interval
300/s

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

abscissa

10014168
0013587
|0.013039
l0.012523
[0.012038
10011576

|0.010341

10.009623
|0.009201

2 3

ordinale

0.094518
0.090242
0.088454
0.087333
0.086477
0.011576_|0.085767
0.019141 il
0.01073 |0.08462

0.084128
0.083679
0.083263

0.009972

0.008977
0.008678
0.008394
0.008123°
0007866
0.007621
0.007387
0.007165
0.006952
0.00675

0.006556
0006371
0006194
0.006025
0.005863
0.005708
0.00556

0005418
0.005281
0.00515

0.082514

Jlocaies?
0081556
0081271
0.081004
0.080749

0.080278
0.08006

0079853
0.079655
0.079466
0.079286
0.079111
0.07895

0.078642
0.078498
0.07836

-@

0.085162

0.082876 |

0.082176 |

0.080508

4

| (k)31
| 1WA

|0.08035

10.073297

0.078793 |

0.005025 |0 078228 |

0.072755

|0.999994

5

‘ : (kc'0)361

slope
1K1

0070712
453.9
0.970213

0.0727550%
357.9
0.999529

1 WKA-1 ‘

0.0728954
3501

I e

7
i

i i
| abscissa |
|

|
|

220046
1.080755
0.71045
0526162
0.415889
0.342546
029028
0251174
0220832
0.196622
0176858
0.160454
,u 146608
10.134779
'u 124561
i0.115652
lo 10782
10100886
10.094706
|0 089167
10084167
10079658
10.075552
i0.071808
0068374
10065222
10062317
|0.059633
l0.057147
10.054838
10.05269 10127851
!0.050684 0 125748
-0 048811 0123783

10675207

0538577
0450768
0389867
0344988
0310645
028354

0261622
0243545
0228388
0215511
0204434
0194816
0.186369
0.178955
0172345
0166434
0161104
10156321
iD 151966
10147998
|0.144371
[0.141042
10137952
10135152
|0.132535
10.130108

ordinate

B

(ke' )32 j (kc'0)362 © abscissa

L TWKA

(121437

0083091

0071_;414

|
Lo 10

e
slope

HK"1

:0.0130851
14842
10995012

{0.014168
0.013587
0013039
0012523
0012036
0011578
0011141
| 001073

! 0010341
! 0009972
0.009623
0009291

10071239 91
0008977

|3532
|o 939979
| 0.008394
0007866
0.007621
i 0007367
i 0007165
0.006952
10.00675
.u 072328),0 006556
l3ar7 'o 006371
;0.999993 ‘0006194
10.006025
0005863
0005708
0.00556
10005418
'0.005281
'000515
— 0005025

0008678

0008123

11

1
|
\
|

|
¥0.079829
0.082943
0083626
0083725
0 083606
'0.083386
0083131
0 082851
0082563
0082275
0.081992
0081715
0.081447
0.081188
0080938
0.080697

0.080245
0080032
0079828

(0079632 |

10.079445
m 079266
10.079093
l0.078928
0.07877

40 078615

lo.o78a72
To 078332
10.078198
‘n 078069
10077945
loo77e26
|

ordinale |

0080465 |

12

(ke )31
1 WK1

0065661,

0072424

0.07271

o1 14
i
i i (ke 0)361 abscissa
P
| slpe !
1K
. ]
‘ ’ :
I |
10.0752641 I'z 20046
j206.4 |{1.080755
[o 876513 I“ 71045
i i° 526162
E 10.415889
| '0.342548
| 0.29028
1 0.251174
0220832
{j0 198622
0176868
0.07324540 160454
3023 |10.146608
0.999903 [10.134779
i 10.089167
i iu 084167
0079658
0073102410 075552
3103 |[lo.071806
110 998996 |[0.068374
b 0065222
0062317
0.059633
| 0057147
0.054838
; 1005269
' 0.050684
] 0048811

15

113346

0.863944
0651979
0.523611
0.439484
0.380319
0.336952
0303578
0277209
025587

0.238263
0.223502
0210952
0.200185
0.190793
0.182585
0.175318
0168903
0163148
0157974
0153285
0 149062
0145201

0.135456
0.13268
l0 130164
10.127805
0125613
1012357

0121663 |
l0.119879

ordinate |

|0 069649 |0.0736734]
0141672 |
0138435 |

16 17
(ke )32 (kc'0)362
TWKAT | WA

slope
1K1
T
1067 0132932}
:‘76
|
10.963945
|
|
i
i
0063048 | 00?4?5
13071
10.999973

13125
10 999999
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~Ppreadshests T T LT ] i -
L | | !
Part of the (kR )11 sgrﬂela‘ds_.heigl»lqr the region 0<1<T of a measurement cycle for a "blank" experiment (Pt cyamgqg polarised in 0 1M LioD / D10

I DR S RS P | | . . | S

Evalualion o§ {KR")11, (kR")11, (kR )12, (kR")12, (kR'0)151), (kR'0}161, (kR'0)171, (kR'0)181 and (kR'0)162. _

12 3 4 5 6 7 8 9 10 1" 12 13 14
interval |0 cell 1°C| E call 1V | ‘abscissa | ordinale | 109(kR'0) |10%9 (kR'0)|0*8 (kR') |10°9 (kR') abscissa | ordinale |10°9(kR'0)| 10°9{kR")| 10°9(kR)
_1300s - TST/WIC-4[ 181/WIK-4] 11IWK 4| 11/WK -4 . 162(WK?-4) 12/WK"-4] 12/WK"-4

slope slope 1096 [10"90 S slope  |10"9¢  [10%8a
— . . FIRN LIIKE WKWK IR KN4 WKD-4
| r ‘ o (kR )11/ (KR )11 r /(KR )12 o 1 (kRI)12
- 1% 1% i 1% 1%
BEC LI R I AR 10°9(kR'0) ) .
1 161 7 JKA-1
_ A N - $IDPG
1 1JKA

- - - L - - -

2 T , . SRR I

S S B . _ -

285 10"9(kR'0)

B 1711 WK
1 slope )

o 1 JKA-1

r : ‘

286 4 -

o , . . -

1 0.62291 ) ) 067634 |-0.08636 i .
2 3331 064272 |-0.0807

3 0975 i |-059316 |-0.09376

4 -0.64853 |-0.07564

5 0.72568 |-0.06443

6 003275 [0.652 o -0.78472 |-0.06832 064177
7 0.02736  |0.6508 -0.80264 |-0.07181 009391

8 0.02641 1064974 0.71637 |-0.08254 1463

9 002765 |064545 075204 1010371

10 001881 |0.64571 |0.62391 062214 -0.85804 |-0.04402 !
1 5 001662 |064263 [3025 0.00268 -0.53757 |-002786 N
12 31.901 |5.5303 001832 |0.64186 [0.91543 043 064122 {-0.05955

13 31918 |55384 002003 |064213 -0.74268 [-0.11202 ;

14 31.947 |5.5326  |0.01997 [0.63947 | l 1082265 |-008634 | H

15 31964 155215 (001648 [063676 | -0.72607 |-0.01482 i



55307

55314

155283

55313

|5.5107

55255
5521

54,517
552865
55236
5516
55216
55167

5.5244

5.5246
55233
5.5183
5.5173
5518

Js5198

55174

55178
55191
55204
55106
5.5207
55121
55122

5.5052
55197
5518

55178
55178
5519
55154
55151

55152

55107

55121

55179 |

TooTaaz.
~ 1000951

001296

"jooia2a
Jootea

0.00947

_joooss
1001203

_|ooor7z.

0.00643

~0.00686

0.00726
0.00684

“|o.ooa7

0.00384
0 -

0.63703
063652
0.63534
19
0.63421
063352

j083175.

063219
0.63044
062948
062733

'10.62942
los2778

[0.62704
[062825
062762

|

062604
1718
0.74327

062271
0.00184
0205 _

RES

062303
00023

Joass

|

062239
0.00296 _

Joars’

1

0’61148
000152
0405

0262
000136
o218

[054658 1008763

|
-

t
i

-0.48007
06929
-0.83491
-0.74065
065035
-0.63042
-0.94558

0.69712

1-0.09835
10.07876
1011504
-0.14372
1-0.05588
10.14754

-0.58193 |-0.01915

-0.7073

1012134

-0.75316 |-0.12258

084165 [0 05006
|-0.58062 10.0145
054125 [-024274

i

- .
| :
|
|

013312

10.10876

lo6109

011081
18.14

!

0.63821
015578
2441

|083029




70 32200 5519 I v I i I ;
7 32206 55161 | oA : | |
72 32199 155102 { . i : |
73 Je2202 " iss08 | ‘ _ ; ! i |
74 32205 55137 i . ! i
75 32202 [5.5143 I ! | |
7 55104 1 062131 . i 1
77 55121 ; 000155 | i l |
78 |55146 i 0249 | I ! |
79 Ja2202 55085 ! | ! : l
80 “|32202 55164 ‘ l ‘ | i i
81 J32204 lss032 | l062155 | i I i
82 32202 [55132 10.000278 | oo B
83 32195 55189 | 00448 | ! i |
84 32202 |5.5081 B ! : i I
85 [32201  i55015 . i [ |

86 2 55168 _ e ; i |

87 ss 1 T __ |o62166 :

88 __|oo0263 | - ) .
89 Clo4za | e
% i U TSNS T R (VRN DR R S N
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92 | B - |

53 |5.40¢ ) ) ~ ‘ i ~
94 lss171 . .

95 5.5066

9% _[54974 .

a7 Tssti | T i B )

98 55084 | B 062165

99 55071 | 000245

100 55136 | ) 0394

101 “|s.4048 | -

102 55154 l B

103 55128

104 55126

105 55056

106 5.5027 !

107 155127 i i

108 5.5162 i ! H -

109 55109  los2108 i 1 |

110 5.4977 0.00236 ‘ |

IeR 5.5091 0379 i i !

112 55063 i ) | [

13 55018 N J' I ! i

14 5517 ) i S

15 _jsso73 | i !

16 54958 | Lo :

17 5.5043 ; f X !

118 55017 i | : i

119 5.4961 i : o .

120 55117 1062204 !

121 55029 000268

122 5.5021 10431

123 _I55152 _ |




124

125
126

127
128
129
130
131

132
133
134

135
136
137

138

139

140
141

142
143
144
145
146
147

148

149
150
151
152

T3zt

[3218 154981

_|o-18055 078291

01548 |0.77009

013892 [0.75627

0.11491 |0.74442
0.11001 10.73483
01033 072565

“loogses |o71745

0.08903 |0.70967
007991 070296

0.07477 1069602 _

0.07158 069187
0.06477 |0.68672

. {o.05068 06805
" loos7  los7se
lo.04796 06727

0.04375 |0.66858
004177 |0.66554
00391 |0.66252
00357 065916

|o0.03488 0.65575

003475 065379

0.02932 ~ [0.65045

002642 |0.6486
002354 |0.6474

1002243 |0.64516

0.02273|0.64363

001853 |0.64165

001985 |0.64047
001772 1063962
001353 0.63787
001386 063627
001487 |0.63616
001691 1063459

062226
3276
0.99813

3291
099214

062133
338.5
0.92642

062199,
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Evaluation
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Evaluation of (kR" )21, (kR" )21, (kR" )31, (kR")31, (kR'0)261 and (kR'0)361
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rement cyc[é__lor a "blank” expeuménl (Pt cathode polarised in 0.1M Li0D / D,0)
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