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EXECUTIVE SUMMARY

OBJECTIVE

The objective of thiswork was to examine the theoretical formulation of shell membrane
waves to determine how a computationally efficient, yet faithful, model could be realized.
RESULTS

Faithful replication of the behavior may be obtained from arelatively simple set of
expressions. These produce tremendous computational savings.
RECOMMENDATIONS

The proposed model should be implemented as soon as feasible.
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INTRODUCTION

Accurate target models capable of predicting the echo time history of submarines and
surface ships are essential tools for antisubmarine warfare and ship vulnerability studies. A
realistic model must account for the many highlights of atarget as well as the conditions of
insonification. The model must predict the proper highlight amplitude and phase as well as
temporal and spectral behavior. Thus, physical scattering mechanisms must be properly
identified and incorporated into the model.

Over the past 30 years, target models devel oped at Space and Naval Warfare (SPAWAR)
Systems Center, San Diego (SSC San Diego) have proven to be an invaluable asset for
devel oping signal-processing agorithms and engagement simulations. These models have
been exported throughout the Navy community. Previous formulations of the SSC San Diego
target models, dictated by past requirements and test scenarios, have neglected elastic wave
effects. Thisrestriction simplified the numerical implementation (as well as theoretica
development) considerably. This restriction serves well for high-frequency and even
narrowband mid-frequency applications. However, for broadband processing schemes, more
sophistication is required.

Efforts have been undertaken, e.g., interacting ribs (Lengua, 1997). This report examines
the modeling of shell membrane waves. We will begin with general background information
since many interested parties are unfamiliar with the subject. Then we will discuss the
modeling details.

BACKGROUND

MEMBRANE SHELL THEORY

We will take the approach of beginning with the simplest shell theory and then proceed
with more complicated formulations. The theory discussed in this section is known as
membrane shell theory. We will follow the development of Graff (1975, pp. 259-262). Only
forces, both normal and shear, acting in the midsurface of the shell are considered. The
transverse shear forces and the bending and twisting moments are assumed negligible. Thus,
the shell behaves as a curved membrane.

Consider a cylindrical shell of radiws, thicknessh, and densityg . We will use

cylindrical coordinates{r,é, z). The displacement components &e Vv, andu in the

radial, tangential, and longitudinal directions. Let us examine the forces (membrane stresses
N and applied load]) acting on a differential element of the shell. The equations of motion

in the longitudinal, tangential, and radial directions are, respectively,

~N,ade + N, + Nz g2 FBde - N, dz+ B, +2 &Edz— padaizn Y
O 0z 0O O ot?
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These may be reduced to
aasz +§a<la\le& :ph?atzg
iaal\ég * aglzzg = g:‘;/

The membrane stresses (NZ, Ny, Ng,, Nzg) are obtained by integrating the usual stresses
(ZZ,ZB,I&,IZQ) across the shell thickness. From Hooke’s law, we have

E
2, :ﬁ(gz +0g,)

E
2 =m(fe +0¢,)

7. =17.. =G —L
6 — tz0 T y_2(1+0_)y

where¢, andé, are the axial and tangential strains of the middle surface of the shell
elementand =), =),, is the shear strairkE is Young's modulus and is Poisson’s

ratio. For the assumption of membrane-type stresses @}Iyzg 1 ez,zzg) are constant
across the shell thickness. So then

Eh
N, =m(‘92 +0g,)

Ny = (‘99 +0€z)

1-0°
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Let us now consider the dynamics of the deformation. For the present conditions, these are
relatively simple. In the axial direction

N, =

_ou
20z



ds' —ds

Now &, = , Where ds=adé6 istheinitia arc length. The arc length after

deformation is ds' = (w+ a)dé +£d6 Therefore

1BN ov

E, =—
°Tar  e0r
The expression for the shear strain may be obtained by considering small changesin angle of
thesides dz and adé of the element dueto ? and g—: Theresultis
z
v, 1ou
0z adé6

The membrane stresses are then
_ Eh [Bu , o
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The eguations of motion may finally be written as
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where ¢, = is the thin-plate speed.
» = pli-o7) plate sp

From this last equation, we see that the normal displacement of the shell, w, is coupled to
the two “in-plane” displacements, andV. For flat plates, the normal displacement is
independent of the in-plane displacements.



DONNELL SHELL THEORY

Formulation

The analysis of a shell including bending effects on the deformation, as well as bending
moments and shear forces in the equations of motion, yields considerably more complex
expressions than those in the preceding section. The Donnell formulation (Kraus, 1967,

p. 297) includes simplified versions of these effects. The approximations are related to the
influence of transverse shear forces on tangential motion and to the expressions for curvature
and twist. The results are equations very much like the membrane equations of motion. There

2
isonly an additional term of — 2—2 O*w on the left side of the radial displacement equation

_ﬂ_ﬁ2D264w+2 9*w +i64wD_ u_ 1BG_V+1—02q:i62W
a2 7 [ o “0200° a?00'H maroz o8 En | c ot
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We wish to study the propagation of harmonic waves in the shell. These will have an
angular frequency «. and wavenumber k. Note that, since we are using a “thin-shell”
analysis, it is required th&h << 7., or equivalentlyfka <<1. For high frequencies, a thick-
plate analysis will be necessary (Junger and Feit, 1986, pp. 214-215). Rather than begin with
the general solution, it is illustrative to consider some special cases.

Case of 6-Independent Motion

One of the most important special cases arises from considering motion indeperédent of
Here the equations of motion are (alsoget0)

2
ou popw_ 1
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Note that the equation for tangential motion has uncoupled from the remaining equations.
It may be written as



where c, = \/% isthe shear speed. Thisis aone-dimensional equation describing the purely

torsional motion of the shell. The propagation speed is the same as for such waves in a solid
circular rod (Graff, 1975, p. 263).

Consider now the coupled equationsin u and w. Let u =Ue'® ) and w=we'te) A
solution requires

2
0
Ly ik -
a
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The determinant of coefficients gives the frequency equation
~h+ (kaf + g2 (ka) |@? + h- 0 + B> (ka) | (ka)t = 0

where Q = ia) isthe normalized frequency. In terms of the phase velocity ¢ = % , we have

Cp

BC%EA_EJ’W@)Z (ka)zﬂg (™7 ey =0

The long- and short-wavelength limits are easily obtained. At long wavelengths (ka — 0)

ka)ZEt—H Eb_ngl 0?=0

so one solutionis ¢ — \/E =c,, thelongitudinal bar speed (Graff, 1975, p. 264). In this
case, ‘\L/J_V‘ [J ka, so the motion is primarily longitudinal (as expected). Another solution is

C,
Cc - — . Here
ka

\l/JV‘ [1 ka, the motion is primarily radial.

At short wavelengths (ka — )

1 Qe pHel, 5o
RN A

p



so one solutionis ¢ — ¢,. Then W =0, the motion is primarily longitudinal (quasi-
compressional wave). Another solutionis ¢ - fkac, . Here

—{ U 1 , themotionis
W| ka
primarily radial (quasi-flexural wave).
Figure 1 shows the dispersion curveswhen 0 =0.3 and £ = 0.01. Figure 2 shows |U|

for the two branches (normalized such that [U |2 + [\/V|2 =1).
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Figure 1. Example of dispersion curves for 6-independent motion.
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Figure 2. Example of longitudinal displacement for 8-independent motion.

Case of z-Independent Motion

Another important special case arises from considering motion independent of z. Here
the equations of motion are (also set g =0)

[02a* (08 cf) t2
1 10%v 1 Eﬂlv 1 0%
+ =
(r* 00> [’ [PE c; ot

W 10%w lﬁa_v_iazw
2otz

a’ a’?d6* m*Me c

Note that the equation for longitudinal motion has uncoupled from the remaining equations.
It may be written as

so that again disturbances propagate at the shear speed.

i(kad-at) i(kad-at)

Consider now the coupled equationsin v and w. Let v=Ve and w=We
Now we must have our first discussion of boundary conditions. These are namely continuity
of the displacementsfor &€ and € + 27

v(6 +27)=v(6)



and similarly for w. Thus ka = n, where n isan integer (= 0). Therefore, only discrete
modes exist. Note that we must have fn <<1 for the development to be valid.

A solution requires

2 K? ixt .
02~ o
a 0
O-ik— ——-——=-pB7ak
B a ¢ a N

The determinant of coefficients gives the frequency equation
04 _l]_+n2 +,32n4JQZ +6%n° =

In terms of the phase velocity

E&g—é+n—i+ﬁ2n2%§ +4°n* =0 .

For the n =0 mode, one solutionisc - 0. Here aw =0 and W =0, soitisatrivia

C
solution. Another solutionis ¢ — o. Inthiscase, w=—> and V =0, whichisapulsating
a

cylinder.
At short wavelengths (n — o), onesolutionis ¢ - c,. Then W =0, the motion is
primarily tangential (quasi-compressional wave). Another solutionis ¢ — fnc,, . Here,

‘\\//_V‘ [ 1 the motion is primarily radial (quasi-flexura wave).
n

Figure 3 shows the dispersion curveswhen = 0.01. These are plotted as continuous
functions of n asaguide. Figure 4 shows [\/| for the two branches (normalized such that

M+ =),
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Figure 3. Example of dispersion curves for z-independent motion.
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Figure 4. Example of tangential displacement for z—-independent motion.
Forced Planar Vibrations

Let us again consider z-independent motion but now with an applied load that is
symmetricin €.




q=f(@e™ .

We may represent f (6 ) as a Fourier expansion

f(0)= Z f . cos(nd)

where
f, = % ! f (@)cos(ng)de

with &, =1 and ¢, =2 for n=>1.

We will assume the displacements are
u=0

V= ivn sin(n@)e
w= iwn cos(n@le ' .

The equations of motion, after using the trigonometric orthogonality relations

En i —_
o _LCOS(mrﬂ)COS(n p)p=3,,

17 . )
;Lﬂn(mqo)sn(nco)dco—dmn ,

are then

10



Thus,

D nf_sin(ng)e™
- ,OhCFZJ £ 0* _(J-"' n2 +,82n4)£22 +ﬁ2n6
2w 2 _ . 2 “iat
e -2 (@ - )t cos(nb)e

_phcﬁ 2.0° _(J-"' n2 +,82n4)§22 + B2n®
These are divergent at the modal frequencies because dissipation has been ignored.

Later it will be convenient to express the response in terms of the modal mechanical
impedance
_i,OCp h Q* —@_+ n +,82n4)92 +ﬂ2n6

Q a Q% -n?

;@)=

Therefore,
ov _ & nf sin(ng)e ™
o Z (@2 -n?)z:

ow _ & f,cos(ng)e™™

x &z

sothat Z; istheratio of the modal pressure on the outer shell surface to the modal radial
velocity.

Note that we have been considering the in vacuo vibrations of the shell. A shell vibrating
in afluid will radiate into the fluid. The radiation loading is significant and will be discussed
later.

General Motion
In considering general motion, let
u=Uue (nG+kz-at)

v =Ve (n@+kz-at)
w=We' (n6-+kz-at) _

Solution of the equations of motion (with g =0) requires

11



2 - [
P U
O 1+o w? 1-0 n? . n 0
0 -k — kK= I~ o0 -
0 a C, 2 a a T
|:| 2 2
g -iZk - w_z__z —(n +k’a 2) 0
& a a c: a’ a’ §

The determinant of coefficients gives the frequency equation
Q°-AQ*+AQ*-A =0

where the parameters are

A, =1+37% (kay + 5 (k.a)"

)

A = —[(k a) +(k.a) + 20+ o)kl |+

I 9- 0% ka)* +,82(ksa>8] ,

and we have defined a helical wavenumber

2

n
k?+— .

a

%]

The phase velocity isthen L= kg . Here, werequire [k a <<1 for the development to be

c, ka

valid.

For the n =0 mode, we retrieve the B-independent results. Similarly, if k =0, we
retrieve the z-independent resullts.

Let us consider the situation when k. a >> 1. The phase velocity equation may be written

c 3-0HcC f l-oHc 1-o0 , 2
EFETEFE +TB§§_7[; (ka) =0 .

The solutionsarethen ¢ - ¢, ¢ —» fk.ac,, and ¢ — c,. To examine the displacements,

as

we must know the relative contributions of ka and n. Let usfirst suppose ka >> n. For

2
v 0 n and w U n_’ the motion is primarily longitudina (quasi-compressional

cC-C,,
PPIU|]  ka Ul ka

12



1
ka

\%

wave). For ¢ - fkac,, W and the motion is primarily radial

H‘D and‘
W

n
|:| 7 N\ !
(ka)
U

(quasi-flexura wave). For ¢ - C, |— D1 and w Diz,sothe motion is primarily
V| ka \Y (ka)

tangential. Now suppose n >>ka. For ¢ - c,

2
2 D@ and V—V O (ka) ,themotionis
V n V

n
primarily tangential (quasi-compressional wave). For ¢ - fnc,, Yy 0 k—? and v [ 1
W| n W| n
I o . : V| _ ka
and the motion is again primarily radial (quasi-flexural wave). For ¢ - c, m 0— and
n

‘\l/J_V‘ 0 k—? , the motion is primarily longitudinal.
n

The frequency equation is a cubic equation in Q? and may therefore be solved using the
standard method (Gautschi, 1965, p. 17)]. Let

_1a Ll
Q=-A-A

~Llaa-3a)e Lo
R=-C(AA-BA )+ — A

If Q®+R? >0, thereisonerea root and acomplex conjugate pair. If Q* + R? =0, all
roots are rea and at least two are equal. If Q® + R* <0, al roots are real and distinct. Let

s, = é?i(Q3+ Rz)yzg%’ .

Then

Q=5+5,+ A

0i=-1(5+5)+2a+Bi(g-s)

0i=-L(s+s)ein-Ti-s)

Once the frequencies have been evaluated, the phase vel ocities can easily be determined.
The displacements may be calculated from the expressions

13



o —;(1—0')(2+0')(ka)2 —;(1—J)n2

oka 2_1 _ > 1-0 ,
Q 2(1 o)ka) + oo "

c|<

1

2

Q? - (ka) —E(l—a)n2 Lo v
oka 20 U

W
U

aong with the normalization |U|2 +[\/|2 +|W|2 =1.

Let us consider some examples. Wewill againlet 0 =0.3 and £ =0.01. It isuseful to

review the n = 0 case. Figure 5 shows the frequency roots, while figure 6 shows the
corresponding phase velocities. Note the crossover of roots 2 and 3. The displacement
amplitudes for the three roots are shown in figures 7 through 9. The tangential displacement
does not appear because it is decoupled from the others. The behavior of the n =1 caseis
shown in figures 10 through 14, while that of the n = 2 caseis shownin figures 15

through 19.
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Figure 5. Frequencies for the n = 0 case.
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16



ik

I:-I'{!n

1.5

0.8

0.5 | 1E 2 25 3 a5 4 45 E
ka
Figure 10. Frequencies for the n = 1 case.
—— ROOT1
——— ROOT 2
—— ROOT 3
R S—
Fr ol E ___"'—-____
.-"'-d--- M e
/.’H I
0.5 i i 2 25 3 as 4 45 E
k&

Figure 11. Phase velocities for the n = 1 case.
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Figure 13. Displacements for root 2 of the n = 1 case.
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Forced Vibrations When 3 =0

Let us consider forced vibrations from an applied load, which againis symmetricin 6 but
now has a harmonic variationin z
a= (e

with
f(6)= Z f cos(nd).

For simplicity, we will assume £ =0.

Let

u= iu _cos(nglee)
= ivn sin(ng)e'te«)

W= iwn cos(ngete ),

The equations of motion (after using the trigonometric orthogonality relations) are then

%) - (ka)’ - 170 i1*9 ioka - O O
2 R
D —|1Tanka (22—1_Ta(ka)2—n2 -n ng 00 o
0 -idka -n Q2 -1 B ﬁ;"hizﬁ
H E P
Therefore,
. Q2 +1—O ? _1-0 (ka)z |
u=ioka—— 20 2 f cos(ng)e!te<)
phc? &y Q° - AQ" + AQ - A,
, Qz_l—Onz_(2+0)(l—0)(ka)2
__a ¢ 2 2 ; i(kz-at)
= nf 0
el o maiianioa  ren0ok
4_3_0 2 1_0 4
g2 =9 Q +7(ksa)

e
p Nn=
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Here,

A =122 (caf
A =22 ]ka) + (a) + 20+ o))

A =220 Jia)'
It may be easily verified that, as k — 0, u — 0 and our earlier resultsfor v and w are

recovered.

Thus, the modal mechanical impedanceis
£C, h Q°-AQ*+AQ*- A

Q a é,zz _1‘20'(k3a)2 aﬂz - (k2]

z:(Q,ka) = -i

and

1_0- 2

—0
o U, cos(no)eite)

" Zgzz (k)gz—(ksaf] “

2
a)z_l g

Q2-=_

2
(ka) nf, sin(ng)e'te <)

2 é} -7 (ka) agz ~kay] %

ow _ & f_cos(ng)e'le)

E:n; n zZ:

Again, note that these are the in vacuo vibrations of the shell.

2|
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FINITE-LENGTH SHELLS
For acylindrical shell of finite length, the specification of boundary conditionsis needed. The
simplest set isthat of asimply supported shell. If the ends arelocated at z = i% L , the displacement
boundary conditions are (Junger and Feit, 1986, p. 218)

0°w ou

372 :v:a—:O for z=+=L.
z z

[ERN

W=

N

The motion of the shell may be described by
u=YyU,,cos(nd)sin(k,z)e

v= 5V, sin(nd)coslk,z)e™

w= 3 W, cos(ng)cos(k,,z)e

where k, = (2m+ 1)LL' . A solution with the cos(né ) and sin(né) factors interchanged would also

be valid.
For reference, the boundary conditions for a shell that is clamped at its ends are
u:v:w:a—W:O for Z:ilL.
0z 2

RADIATION LOADING

A submerged shell undergoing vibrations will radiate into the surrounding fluid. Asusual, we
will assume atime dependence ™. Let P(r,6,z) denote the radiated pressure field, and let g, be

the density of the fluid and c, be the wave speed in the fluid. Inthefluid, P must satisfy the
Helmholtz equation

0?P+k*P=0

where k = & . Incylindrical coordinates, thisis
CO

002 10 1 92 0°
+-—+ -~ _+—_P+k?P=0.
%rz ror r?o6? GZZED

The standard solution is to use separation of variables. Let P(r,6,z)= R(r)2(6)z(z). Then
7 = etikmz, @ — etir‘le, and
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Dd2+1d H:z 0

B o v i
Therefore, R = AJn(,/ k?-k2 r)+ BYnQ/ k? - ) where J_(x) and Y, (x) are Bessel and Weber
functions (Gautschi, 1965, p. 358).

The boundary condition relating P to the shell motionis

P
or r=a

d%w
Po gz -

This represents continuity of the normal component of the force at the boundary. Since afluid does
not support shear motion, the tangential components of the force may be discontinuous.

Theradial displacement will be written asin the previous section. Since we desire a solution in
the form of an outgoing wave, the pressure field is expressible as

P(r.0.2t)=Y AmH,El)(,/k2 — k2 r)cos(ne)cos(kmz)e““‘
where H 9(x) is the Hankel function of the first kind (Gautschi, 1965, p. 358). A, is determined

from the radial boundary condition

B i |
A =705 —K2 (’)(1)(\/Wa)

and the prime denotes differentiation with respect to the argument.

where W = -w’W,

mn?

Note that the surface pressure obtained from these equations may be written as
P@6,zt)= Y z;,W,, cos(nd)coslk,z)e™

where

- ipek HOLK -K2a)
Zm = i —kZ HIOL N ~K2a)

isthe modal radiation impedance. Thus, no energy is radiated when k <k, .

The Hankel functions may be approximated by their Debye asymptotic expansions (Gautschi,
1965, p. 366).

0 5 ., 0

1+ _Cot” ¥V L sn vy cosy )0

H51,2)(Z): 2 S_J—ri 3_ Ee— pelsiny-yeosy)-7 5
zsiny 8zsny [
8 B
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[
1+ 7COt yD +i p(siny-y cosy)-" 2
1(12)(Z)~+| |j_+3| e HZ y-ycosy, 4B
V 8zsmy 0
g

inwhich y = cos‘l[Bi[Hand 0<Re() )< 7. These expansions are generaly valid for |2 > |v| and
z

2 2

1z-V| >|v|%. Note that siny:Z—ZV. Thus,

M) D1 1
e e e

It is worth commenting that some authors ignore the cot® y term in the Debye expansions and
consequently have an invalid approximation for the ratio (Rumerman, 1996).

Now, if \/k* —kZa>>n,

Lin = pocokz——knﬁ'

The case of z-independent motion may be obtained by simply setting k,, = 0. Then,

H 9 (ka)
=1p,Cy m

and, if ka>>n,
= PoCy
the specific acoustic impedance of the fluid.

The effect of radiation loading on forced vibrations may be easily determined. From the equation
for in vacuo vibrations (generalized to axial wavenumbers k) W,,, = f../Z3 . Inafluid, f , is

replacedby f., —P,,,
discussed earller, P =2Zl W_ sothat

where the minus sign accounts for the direction of the force. Now, as

. fon — 2o W
Wmn — mn " Ymn
Zon
or
Wmn — fmn
Zon tZm
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Thus, the total (or shell-fluid system) modal impedance Z isthe sum of the shell and radiation
modal impedances, as might have been expected.

SCATTERING OF PLANE WAVES

Normal Incidence

Incident Wave. Let usconsider a plane acoustic wave, given by P (x, y,t) =P, exp[i (kx - at)] :

normally incident upon an infinite cylindrical shell in afluid. In cylindrical coordinates
P(r,6,t)=Pg/lresa)

Note that 6 =0 corresponds to the forward-scattering direction. We may represent P asa Fourier
expansion (Gautschi, 1965, p. 361).

P(r,60,t)=Pe™ isni "J, (kr)cos(nd).

n=

Notethat since J_, (z) = (-1)"J, (z), we may write

P(r.6,t)=Pe™ ii”Jn(kr)cos(nH)

n=-—co

and eliminate the &, factor. It isoften useful to use arepresentation in terms of Hankel functions

P(r.6,t)= % Pe i i" cos(nH)[H O (kr)+H rEZ)(kr)].

n=-c

Rigid Body: Blocked Pressure. In anayses of scattering from elastic shells, it is useful to first
consider scattering from arigid object of the same shape. The scattered pressure field will be

denoted P9 . Thetotal pressure, which in this case is termed the blocked pressure, is then
Pb - F)I + PSRigid.

Since the body isrigid, the resultant fluid accel eration must have a zero component along the
normal to the boundary

aZWSRigid| azwi |
+

atz ‘r=a atz r=a
2 A
p > isthe normal fluid acceleration that would be observed on the surface in the absence of the
scatterer, that is, when the pressure field isidentical to theincident pressure. Thisisgiven by
P L
ot | o,

Combining these equations gives
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oW p)
pO atz

r=a ar |r:a
The corresponding surface acceleration distribution is
ﬁwRig“’(H): pKSeiny (ka)cos(n@).
atz s 0 po n; n n

W =P, L(sni "3’ (ka).
Po
Substituting these coefficients into the expressions from the Radiation Loading section gives

igi caw .0 Jnlka
P9 (r,6,t)= -Pe "‘;snl Hr’1+(ki)H 0 (kr )cos(ng).

Thus, the blocked pressure is

R, =Pe™ rani " %n(kr)—% H© (kr )Epos(n@)
or alternatively
5 = lpgia & i@ g0~ a2 k@) L o)
, = 5P n:z_wl %—in (kr) H0(a) (ka)H” (kr)Epos(nB).

The subscript 1 corresponds to outgoing waves, and the subscript 2 corresponds to incoming waves.

Elastic Shell. While arigid scatterer distorts the pressure field by interfering with the propagation of
the incident wave, the dynamic response of an elastic scatterer further modifies the pressure field.

The pressure scattered by an elastic body will be denoted PE*. The total pressureis then
P =R+ P,

It is convenient to express P™™ asthe sum of P and an unknown component P, (Junger and
Feit, 1986, p. 343)

Elat — pRigid
P =P™ +P.

Tointerpret P, , note that the boundary condition (on radial motion) is satisfied if

| __, 0w
or |, Poor2

aﬁ __aPSRigid

or| ., o | _
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The latter condition is automatically fulfilled through the definition of P9, The former condition
indicatesthat P, is equivalent to the radiated pressure field due to the acceleration of the elastic body
responding to the blocked pressure field.

We will use the Hankel function representation of the blocked pressure to allow comparison with
the results of Rumerman (1991). We therefore seek a solution in the form

P(r.61)= i A H 9 (kr )cos(ng .

The A, are determined from the boundary condition

PW,

A 9 ka)

or equivalently

- iIOOC’OV\./n
AT 0 (a)

Now

¥ _ an
3 Z:+7Z!

where the minus sign accounts for the direction of the force, and again Z; and Z are the modal
shell and radiation impedances. Consequently,

_ i" O @) ) O
A =- ka)-—or—Hy (ka)o
2 °z5+7! H;(l)(ka)%_l" (a) H;l(ka) " (a)E

Thus, the total pressure field may be represented by the normal mode series

1o e O )= H O i ()
P.(.6.1)=>Re 3 COS(nH)EHn (kr)-H; (kr)R”(Q’ka)H_;@@E
where
 H9(k
2:(Q,ka)+ip,c, (2)(a)
i H, (k)
R, (Q ka)= O(ka)
ZS(Q ka)+|p C m
T H O )

R, isageneralization of the plane-wave reflection coefficient, to which it reduces when ka >>1 and
ka>>n.

The denominator of R isthe modal impedance of the shell-fluid system
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H{ (ka)

ZT (Q, ka.) = Zn (Q, ka)+ 10,C, H:]T(ka) .
Note that the shell modal impedance may be written as

B*n*0
2 Q2 i
O

. h 1
z:(Q,ka)= —|pcp59§r— o

Here, Q :C—Oka.

Cp

Rumerman (1991) expresses the total pressure field as a contour integral with n generalized to a
complex number v . Thisis noteworthy because the poles of the integrand are the zeroes of the

system impedance, viewed as afunction of v . Since Z, isan even function of v , the poles appear
in equal and opposite pairs. Thereisaquasi-real pole with Re(v ) = Q corresponding to a quasi-
compressional wave. Another quasi-rea pole with Re(v) = ,/Q/B correspondsto a quasi-flexural

wave. These are generalizations of our previous results, modified by the effect of radiation loading.
However, here thereis an infinity of poles v ., corresponding to creeping waves. There are also

poles corresponding to the exponentially decaying quasi-flexural near-field.

Rumerman shows that, when [V, | << ka, the flexural waveis very poorly coupled to the fluid

and makes an insignificant contribution to the scattered field. The creeping waves, though important
in forward scattering, decay so rapidly as they circumnavigate the shell that their backscattering

contributions are also small. Thus, if we restrict ourselves to the backscattering half-space |0| >7i X
these terms may be neglected. An additional simplification isthat quite often 3% <<1, and when

||/| < ka, quantitiesrelating to Z; may be accurately determined with the bending term ignored.
Therefore, we may take

. h 1
ZV (Q, ka): _Imp ggé_ﬁg

Now, in the backscattering half-space, for most or all of that space (depending on the value of ka),
the Hankel functions may be approximated by their Debye asymptotic expansions. Then,

, iPC, O PoCy
,(Q,ka)- : -
R (Q.ka)= é& € ke) 2kasm4yE sny

VS(Q,ka)_ IpO'CO4 O p-OCO
2kasin® yg siny

and

D—i PoCo + PoCo
n’H 2kasn‘y siny

77 (Q,ka)= —ipcpgﬂé— Qzl_
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(ka)’ -v? |

where siny = ”
a

The system pole v ., isfound by setting Z] =0. An approximate, though very accurate,
solution isfound by letting siny =1

~q2-Hd+ L PoBH_ T
@ %Jrka,ohgL 2ka[f]

2
|/Comp

We, of course, are interested in values of ka where v, isquasi-real and aninteger. That is, we

want v gy, = NL+i¢) with 8] <<1. Here,

Note that these conditions cannot be satisfied by n =0. The n =0 mode does not couple to the fluid
and may be ignored (Rumerman, 1993). More fundamentally, an imaginary part of the root is needed

to couple to the fluid (Rumerman, 1992). For typical values of the parameters, the condition |5| <<1

issatisfied if ka>3/2. A check shows that sinya/l—ico/cp)_2 =1, aswas earlier assumed.

Oblique Incidence

Let us now consider a plane acoustic wave obliquely incident upon an infinite cylindrical shell in
afluid

P(r.6,2t)= P, exp|i(kr cosé cosg + kzsing - at)]

where ¢ isthe angle of incidence (with respect to the normal). This problemisformally identical to
that of normal incidence through the replacement of k by K =k cos¢ (or of the sound speed in the
fluid ¢, by c,/cos¢ ). However, the resulting behavior has significant differences (Rumerman,

1992). These are that an obliquely incident wave may excite two kinds of membrane modes on the
shell, while only one is excited at normal incidence, and that each of these modes is a supersonic
wave only within arange of angles about normal (and evanescent el sewhere).

The incident pressure may be expressed as
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P(r.0,zt)= % P,g/(knz=et) i i" cos(nH)[H O(Kr)+H @ (Kr )]

n=-c

so that the blocked pressureis

1 i(Kmz— - in O H’,‘(Z) Ka -
R =oRel s | cos(ne)%ﬁ ,22)(Kr)-m1§n<—53”9(’“)g

where we have defined an axial wavenumber k, =ksing .
In a manner analogous to that used in the previous section, the total pressure may be represented
by the normal mode series
1o iza) & 0 H!®(Ka)C
P (r,0,zt)= =P ) ¥ i" cos(ng)H @ (Kr)-H O (Kr )R, (Q, ka, ¢)—"
1 (1.6.20)= 3R 51 coslnB) Hkr) - HOKOR, (@ b))

n=-—oo
where

ZS(Q k a)+| pOCO ngz)(Ka)
M cosp HIP)(Ka)
2:(@u k)i 2o A (Ka)
P cosp HIB(Ka)

R,(Q ka.¢)=

The modal system impedanceis

_ s - PG, HY(Ka)
Z; (@uka k@)= Z;(@ ko) i 0 .

The total pressure may be expressed as a contour integral (Rumerman, 1993). As before, the poles
appear in equal and opposite pairs. Heretoo, when |VF|@(| << ka, the flexural wave is very poorly

coupled to the fluid. If we again restrict ourselves to the backscattering half-space |0| >71/2, the
creeping wave contribution may be neglected.

We will again ignore the bending termsin the modal shell impedance (Rumerman, 1993) which
may be written as

4 2
ZVS(Q,kma): _ID P DEAR(kma)4+ BR(kma)2+CR
D Q aDDR(kma) + ER (kma) + FR

10 o)

By = (- o )2Q? —1_7092[92 -1]-0?[0? - (- 0?)

32



Recdl that Q = = ka.
Cp

We may use the Debye expansions to approximate the generalized reflection coefficient as

%Vs @k a)- 100Co El‘ PoCo

R (Q.ka,¢)= = 2Kasin® ycosp[] sinycosy
‘@Qkga)- . Pl g P
0°° ™7 2Kasin’ycosgr] sinycosg

with y = Cos_l[BKL[El The modal system impedanceis
a

180G, + PoCo
2Kasin* ycosgp sinycos@

Z7(Q,ka,k,a)=Z5(Q,k a)-

Here we will not be able to make the simplifying approximation sin) =1 to find the poles.

Instead, replace v with Kacos) , then replace cos® y with 1-sin? y, and solvefor sin) . This
yields six independent solutions, most of which are discarded because they violate the Debye
expansion criteria. The two valid solutions are denoted ) .., and } g, - The corresponding poles

arev = Kacos) ¢y, ad Vg, = Kacos) g, - Rumerman (1993) discusses the typical

Comp
behavior of these polesfor kacos¢ >3/2. When ¢< ¢, = sin‘l(co/cp), V comp 1S €SSENtIAIlY real
(with asmall imaginary part) representing a supersonic wave. When ¢ > ¢cq.0s Vcomp
imaginary (with asmall real part) representing an evanescent mode. Similarly, when

P< Py = sin‘l(co/cs), Ve 1S€SSENtially real representing a supersonic wave, and when

is essentialy

¢ > Qe Vaey 1S€SSENtIAlly imaginary representing an evanescent mode.

Since

k-2 a2 -v?
i JK2-k2a
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k? —k?
cos :—m’
LR

the modal radiation impedance may be expressed as

2 _2\.2
Zv’(ka,kma)zpocoka% L Y (Sl E

-k 2 ek -vT e
Thus, the zeroes of the modal system impedance may be found from

DOC“ h (k2 k2 )2 —v2 A (k@) + Ba(k,a) +Cal+

[pocoka]gkz ~k2)? -2 —Ei (k> k2 )a gDR(kma)“ +Eq(k,a) +Fa]
Notethat, if k., =0, this becomes
_'E‘l— aka)2 ]292[92 1-v ]é’) —171/ §+

[,oocoka]g(ka)2 —VZ:F/Z —Ei(ka)2 ng -v? é’zz —%vzg.

Then, Vg, = ‘/%Q = z—o ka ispurely real. The associated membrane mode has purely in-plane
-0

S

0=-

motion that does not couple to the fluid (Rumerman, 1992). It may, therefore, be disregarded. Now,

1- %%g =1, and the previousresult for v, isretrieved.
a

The equation for the zeroes of the modal system impedance must be solved numerically, and is
tedious. Figure 20 shows thefirst five compressional and shear modeswhen a =3m, h =0.05m,

£ =7800kg/m?, 0 =0.3, E =2.04x10"N/m? p, =1000 kg/m?, and ¢, =1500m/s. Here,
c, =5360m/sand ¢, =3170M/s, O ¢c,,,, =16.3° and ¢g,., =28.2°.
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Figure 20. Example of dispersion curves as functions of frequency
and incident angle.

AMPLITUDE

Rumerman (1993) has shown that, by use of a Sommerfeld—Watson type transformation, the
scattered field may be expressed in terms of a series of axial modes having coefficients that are
waveforms in the circumferential direction. The remainder of the field is taken as a “geometric”
contribution.

P(R6,¢)= P9 +P"
where (R,6,¢) are the spherical coordinates of the observation point.

We are interested in the wave component of the scattered field. In the far field, this may be
evaluated using the method of stationary phase. For simplicity, the details will be omitted. The
backscatter result is

w _p PlAa A _ w0 < -m(s)D
P*"(Rm-¢.)=F —e —1) T+ i),
R=p)=Pp B 285 ()T + 3 ()T
where the parenthetical superscripts distinguish between the compressional and shear contributions,
and M is the largest integer not exceedi(flgL Q)E/n while M is the largest integer not
exceeding(l+ wa/c,)L/m. Here, the normalized lenglh = L/a. Recall thatk, a = kacosg,, .
The parameters associated with the incident field have been explicitly called out for clarity. The

coefficients F,fj) are given by
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T ia L r .
S y " 0/ V%W'm _ |0/m Da_ elmrr+|a

Inc’

U
r0) = EFT - o -
Bls S Tav @]Z (Q amc)mmn a,.L Dé;n(vn_)dav
Le
i
i

2iK,ca(sin 3,3, cosd, )D

sind,, %

Here, a,, and £, are the two linearly independent nondimensional axial wavenumbersin the
membrane range (for brevity, the superscripts j have been omitted), a,,. = kasing,,., and
cosc,, =v/ (cha). The parameters S and T are normalized displacements and stresses. Their
detailed expressions are not needed in what is to follow.

A particular mode will contribute strongly to backscattering if two conditions are satisfied. The
first isthat Re(v m) is approximately equal to an integer and Im(v m)<< 1. Thisconditionis

independent of the angle ¢,,. and signifies the mode is close to resonance at the frequency

considered. The second conditionisthat a,,. = kasing,.. isapproximately equal to a,,. This

indicates the axial variation of the projection of the incident plane wave on the shell is close to the
axial variation of the mode shape.

Because Z! (Q,a, )=0 forv =v,, Z] (Q,0,.)= (@,. -2, )2, (Q,a,)when a,. = a
where the prime denotes differentiation with respect to a . In addition,

2" (Q,a,, Xda,, /dv)=-Z] (Q,a,,) where the dot denotes differentiation with respect to v .
Thereforewhen a,,. =a,,

m?

r(J) ~ Dr/?mVSQinCV ,Bmv AincV % e—lmﬂ+|amc|_ ﬁD (_1)m 0
) éTﬁmvSa v Sp VTg W @mﬂ ai, L Eﬁsm(Vﬂ)ZT(Q a )

Da—zicha(s'n Om =0 COSOpy ) 0

5 s, o

The quantity in the second set of bracketsis adirectivity function of that mode. If the angular
width of the mode is less than the angular distance to the adjacent modes, the peak level of aresonant
mode can be estimated ignoring other contributions. Rumerman uses the following relationships.

When a,,. = a,,, the quantity in each of the first two sets of bracketsis equal to unity. For Re(v m)
an integer n,

sin(v,,)=i(-1)" sinh[mim(y, )]=i(-2)" 7Im(v,, ).

The wavenumber pair (a,,,v,, ) isajoint solutionof 0=2] (Q,a,,.)=25(Q.,a,)-iX +R',
where X isthe reactive component of the radiation impedance and R; is the resistive component.
The shell impedance has been taken to be completely reactive. At high frequencies, where the shell
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impedance generally dominates the radiation impedance, v, may be approximated by v, +iv, ,
where v isthereal root of 0=2 (Q,am)— iX, . Theimaginary component may be found from

0=2](@.a,)=2] (Qa,)+iv 2], (Qa,)=R, +iv,2] @a,)

Therefore, v, =iR]_/Z; ,where R, = pug/(K,.asind) with cos¢ =v,/(K,.a) and ¢ =¢,,
for the mode considered.

Upon combining these results, the pressure amplitude backscattered by an isolated resonant mode
into the angle at which it is traced-matched with the incident wave may be found. It issimply
aL
P"(Rm-¢,.)=FP——.
P Rm-gc) =R
Obvioudly, this expression is not valid for arbitrarily long shells. A limiting value, independent of
length, should be reached as L — co. Thislimit can be determined from the transformed expression

by noting that it represents the scattered field as a series of axial modes. When L isvery large, the
modal density is very high, and no one mode has any significance. The solution must be obtained by

summing over all modes. As L — o, mﬂ/ L may be thought of as a continuous variable and the
summation approximated as an integral over thisvariable. Theintegral itself can be approximated by
noting that the integrand has singularities at values of the integration variable at which v, isan
integer n. The magnitude of the backscattered pressure due to the circumferential mode of order n,
andfor a,,. = Re(an), is approximately (Rumerman, 1993).

w - = EL
Proc R0 ) =P 2 e )
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MODELING ISSUES
APPROXIMATE SOLUTIONS OF THE DISPERSION EQUATION

Formulation

Recalling our results from the section “Forced Vibrations WherD,” the system impedance in
that case is

T __ PG h Q°-AQ*+AQ% - A ezr

Q a %2 -1 (ay anz - (k)]

The dispersion equatiod! =0 may be written as

0= [92 (ka)z]é) (k )2%’2 +I,och

p

U
Z:,0

-Q*+ 1_70- [Qz (ksa)2 + 2(1+ U)(kma)z - @'_ JZkaa)4]

where agairk_ a = 4/(k,a)’ +n? andk, =ksing.

When [ # 0, the dispersion equation has a very similar form (Guo, 1994)

0=l - (a1 ea )2%1 ,B(ka)“+|
o +1_TU[QZ(kSa)2 + 20+ o)k, af - - o—zkaay] |

Note that in the high-frequency limit, the roots of this equation are given by the three bracketed terms
on the first line.

E

We will follow Guo’s approach (Guo, 1994) in taking these high-frequency limits as leading order
terms, and seek corrections to extend the solutions into the mid-frequency region. Let

=kl _(ka)f +n’
Q? Q?
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The dispersion equation then takes the form

D,(¢)+ ;D.(€)=0

where ¢ isthe quantity to be determined and the functions D, and D, are given by
D-_ g 2 .
D =|f-1 -1 -1-iaz
(O)=le -5 7 -1 )

o

Dl(f):]-_ -

5 /\—1_20 ({—/\X20+3—¢L—JZX£—/\)]

with

Zmn

" pC, ka

It may be seen that the problem has been contrived in such away as to suggest solutions of the form
1
f :fo +?£1 +...

Although this takes the nominal form of an inverse power seriesin frequency, the final results will
not have such aform because the frequency parameter aso appearsin D, through both 1 and z,, .

These will be taken as fixed in applying the expansion. As Guo points out, a strict inverse power
seriesin frequency is not a suitable solution for cases of fluid loading because the roots are generally
complex with real parts many orders of magnitude larger than the imaginary parts. An inverse power
series expansion would require alarge number of termsin order to obtain the first non-zero
imaginary part.

In finding the roots corresponding to shear and compressional waves, u and z,,, are assumed to

be unaffected by the expansion. The reason for keeping i constant is purely for convenience. Itis
always much smaller than unity, under the congtraint of thin-shell theory, and consequently, makes a
negligible contribution to the roots. The reason for keeping z,,, constant is subtler. It is because

z,,, istheterm accounting for fluid (radiation) loading, and hence, the only term that gives the roots
imaginary parts. Keeping z,, in D, will allow usto find the complex roots with only one
correction term. This does not contradict the use of the expansion above, because z,,, is of order
1/Q, as may be seen from its definition and our previous analysis. Therefore, if an expansionis
begun at the order ]/ Q?, z,. should beincluded in the leading-order expression.
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For flexural waves, these arguments do not hold. Here, the dominant effect of fluid loading is
added mass with little radiation. z,,, contributes predominantly to the real part of the roots. In fact,

in the frequency range of interest, the roots for flexural waves are purely real. Consequently,
expansion of z_,, intermsof frequency isrequired. Since flexural waves make anegligible

contribution to the scattering problem, we will not pursue their study.

To continue the analysis, we substitute the expansion into the recast dispersion equation, and
group terms of like powers (after expanding D, inaTaylor series). To order :I/ Q?  thisleadsto
solutions of the form

1 D,()
Q° Dy(&,)

where the prime denotes differentiation with respect to the argument and ¢, are the high-frequency
limits. 1t may be seen that

EZEO_

D3(6)= 2utiles 1] 5576 1 [t ~1-ia, | 250 6 -1

:L_TJ[IJEO2 —1-i O’Zmn:[fo _1]

and

Note that this differs from Guo’s expression.

Compressional Waves

The leading-order solution for compressional waves is

é, =1
Here,
Dy(6,)= -2 [u-1-iaz,]
D,(¢)= =" o +a-o N
so that
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2
5:1+—Ql2 at(l_—.a)/\] :
u-1-iaz,,

In terms of the axial wavenumber, this may be rewritten as

O 0 n2 [f O
O 1 W*(l‘J)EDE
(naf =023+ -0~
o Q° Q u-1l-iaz,
[l [l
U U

with

é O
Q2" H -1 n’
Sk

1 1.
zZ., = -=i
2
o
0

é f
QUH"H -10

Figure 21 shows a comparison with the results of Rumerman’s formulation. The parameters are
the same as before. As can be seen, the differences are minor and are so for most practical problems.
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EXACT
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o 5 10 15
kA

20

Figure 21. Comparison of approximate and “exact” solution for

compressional modes.
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Shear Waves

The leading-order solution for shear wavesis

-_2
o 1-0
Here,
D;(5)=2 o =4 -0) ~il-0Yaz,, -
SR (RS s 4>y
2 1
Dl(fo):_(l_J )A%_E(l_a)/\a
so that
10 v _1 _ 0
21 ,-oPnd--ahng
1-0 Q°? _} _ 2_}- PR
U 4(1 o) 4|(1 o)faz
This may be rewritten as
0 1 n? O
2 *(1‘0')47
(R B TR L P S A R |
75 2 T8 T o firice, I

with

0
QZ p s —1D+ 2
1 _1 g&é%é H "
Cp s 2 4 p s Iﬁ
DN TR E

Note that k., =0 when

Thisisthe cutoff frequency for shear waves. In fact, it isthe exact cutoff condition that can be
derived directly from the dispersion equation.

Figure 22 shows a comparison with the results of Rumerman’s formulation. The differences are
insignificant.
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Figure 22. Comparison of approximate and “exact” solution for shear
modes.

MODAL WIDTHS
Previously, we had noted the axial modal directivity function

it
\

2

a(r)= 1o =

X | ‘
where

x =mm-kasing, L
As defined, B isan even functionin y and B(0)=1. Notethat B =~/2/2 when Ay = 2.004.

The axial modal half-width istherefore A(kasing, )= Ax/L . Wewill later see that taking
Ax =1.00 gives better agreement with observations.

The circumferential modal directivities may be characterized in terms of parameters

{.=Q, 1 oF —kasing,.

2+ 2
{.=Q, /1—” QZJ -kasng,. .
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The circumferential modal half-widths are then A(kasing, )= A¢ . Here, we do not have an

explicit directivity function. For convenience, we will take the directivity to be unity over the modal
width and zero otherwise. We will later see that taking A{ = 0.25 produces behavior in reasonable

agreement with observations.

AMPLITUDE

Our previous results for the backscattered pressure amplitude, when traced-matched with the
incident wave, may be summarized as

2 D

w al
‘P (Rﬂ (pch— . mlnm_ |Im(a ]E

This obviously ignores the transitional behavior. Im(an) cannot be expressed in asimple manner.
However, in the regime of interest, Im(a,, ) O n (Rumerman, 1992 and 1993). The kadependence s
less apparent. From our earlier results, we would expect

Im(a, )~ /(kacos@)? + (0,a/ ph)? / kacosg. For typical problems, agood fit is

X \/ (kacosg) + E%E‘g

Im(a, )=0.366-2"
P, a kacosg

n .

It isimportant to note that, in practice, these peak levels are not observed. There are a number of
reasons for this. The primary one has to do with the shell termination. Caps modify the coupling of
the incident wave with the shell modes. Stiffenerswill aswell. Typically, the modal structureis not
significantly altered, but the backscattered levels are reduced by some coupling efficiency factor.
Thisfactor isusually in the range of 0.6 to 0.8.

EXAMPLE

Let us consider the example used by Rumerman (1993) where a/h =100, C, / C, =3.5,

£/p, =7.8,and 0 =0.3. The model we have presented produces the results shown in figure 23.

The color scale represents the target strength in decibels. This may be compared with Rumerman’s
figure 3 (data) and figure 7 (predictions). The qualitative agreement is very good. Given the
uncertainties involved, the quantitative agreement is good. Rumerman explains the reasons for many
of the discrepancies. Figure 24 shows the response over a wider bandwidth.
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Figure 23. Predicted response for the example given by Rumerman (1993).
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Figure 24. Predicted response over a wider bandwidth.
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SUMMARY

We examined the modeling of shell membrane waves and provided detailed theoretical
background, both to serve as a primer for those unfamiliar with the subject and to set the context of
the model presented. We discussed the nature of the various assumptions and made comparisons of
the predicted behavior with “exact” numerical solutions, as well as with experimental data. The
qualitative agreement was excellent. Quantitative agreement was good, given the uncertainties
involved, as well as sensitivity to boundary conditions.
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