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EXECUTIVE SUMMARY

OBJECTIVE

Design active sonar waveforms that are yield tolerance to the direct blast and reduce the potential
for mutual target interference.

APPROACH

Divide the transmission into a wavetrain of noncontiguous pulses with nonuniform spacings and
determine the appropriate values for that spacing.

RESULTS

The interpulse spacing is described by a code and exhaustive tables of codes are listed for wave-
trains of up to a given number of pulses.  Search methods are described for finding the codes.

CONCLUSIONS

For bistatic sonars, a region can be defined where echos from targets in the region are affected by
the direct blast.  The area of the region is proportional to the root of the temporal pulse length.  If the
pulse is split into a wavetrain of subpulses, the area can be significantly reduced.  The area becomes
proportional to the root of the subpulse length.
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1.0  WAVEFORMS FOR REDUCING DIRECT BLAST
EFFECTS AND MUTUAL INTERFERENCE

1.1  INTRODUCTION

Sonar has been widely used for actively detecting underwater targets. In active sonar, a pulse of
sound is transmitted, and the pulse is reflected off the target and back to a receiver where the echo is
processed by detecting the presence of the target. In monostatic sonar, the receiver is collocated with
the transmitter. However, in bistatic sonar the receiver and transmitter are widely separated. For
bistatic sonar, the transmitted pulse impinges directly on the receiver causing the “direct blast.” To
prevent saturation, the receiver is “blanked” during the arrival of the direct blast. For some
transmitter-target-receiver geometries, particularly where a target is between the transmitter and
receiver, the part of the target echo which arrives during the blanking is lost. Though a partial loss of
target echo is tolerable, at some level the target echo loss yields unacceptable performance. For a
given transmitter-receiver geometry, the locus of target positions that yield this loss forms an ellipse
as illustrated in Figure 1. The interior of the ellipse is called the direct blast region. The area of this
region is a measure of a systems “blindness” due to the direct blast.

Figure 1 .  Direct blast region.

Suppose there are one strong and one weak target in a bistatic scenario. The strong target echo may
interfere with the weaker target echo. For some level of echo overlap and some disparity in target
strength, the two targets cannot be adequately resolved by temporal processing alone. For a given
transmitter, strong target, and receiver geometry, the locus of weak target positions that yield this
condition forms concentric ellipses as shown in Figure 2. The region between these ellipses is
denoted the mutual interference region. The area of this region is a measure of the potential for inter-
ference between targets.

The areas of the mutual interference and direct blast regions are functions of the transmit pulse
length and can be reduced by shortening the pulse. However, shortening the pulse also reduces the
pulse energy. As a result, target echoes become weaker and more difficult to detect.

In this paper, a waveform design is introduced for significantly reducing the direct blast and mutual
interference areas by spreading the transmission out into a train of pulses. Each pulse is called a chip.
By spreading the transmission, direct blast and mutual interference areas corresponding to a single
chip length can be achieved.
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Figure 2 .  Mutual interference region.

The direct blast and mutual interference properties of the transmission sequence can be measured
by the sequence autocorrelation function. The autocorrelation function must have a narrow central
lobe two chips in width and be small in magnitude and bounded everywhere else.

If the chips are uniformly spaced, nontrivial target ranges exist such that much of the target echo
arrives during the direct blast. In other words, the autocorrelation function has large sidelobes. There-
fore uniform spacing of chips is unacceptable.

In the case of the direct blast, it is useless to consider transmission sequences where autocorrelation
sidelobes are reduced by mutual cancellation between chips, as such cancellation would fail because
of the need for blanking.1 Therefore, only unipodal sequences (sequences of 0’s and 1’s) are consid-
ered. For such codes the autocorrelation sidelobes are reduced by minimizing temporal overlap.

In [1, 2], a family of unipodal sequences is introduced that have small, bounded autocorrelation
sidelobes. Since their application is in optical communications, the sequences are called optical ortho-
gonal codes (OOC). The term optical indicates unipodal sequences as opposed to antipodal sequences
(sequences of –1’s and 1’s). The term orthogonal is qualitative rather than literal.

Let xt be a unipodal sequence. The circular autocorrelation of xn is

Zx,x(l)��
v–1

n�0

xnxn�1mod� , 0� l� �–l (1)

and has the symmetry property

Zx,x(l)� Zx,x(�� l) , l� 0 . (2)

The noncircular autocorrelation is

Wx,x(l)��
v�1

n�0

xnxn�l , � (�� 1)� l� �� 1 (3)

and has the symetry property

Wx,x(l)�Wx,x(l) . (4)

1. Mutual cancellation between chips is useful for reducing mutual interference between targets. However, mutual
interference can also be reduced using the methods presented here.



3

The OOC property of having bounded sidelobes is defined with respect to the circular autocorrela-
tion function. Mathematically,

Zx,x(l)� � , 1� l� �� 1 . (5)

However, unless identical pulse sequences are transmitted back to back, direct blast and mutual inter-
ference properties are determined by the noncircular autocorrelation function. Fortunately, for all uni-
podal codes, the noncircular autocorrelation is bounded by the circular autocorrelation. More specifi-
cally,

Wx,x(l)� Zx,x(l) , 0� l� �� 1 . (6)

Consider, for example, the four-chip OOC code, xn = [1 0 0 0 1 1 0 1 0 0 0 0 0] shown in Figure 3
which has circular and noncircular autocorrelation functions as shown in Figures 4 and 5, respec-
tively. We have taken the liberty of displaying the continuous correlation functions which accurately
represent subchip echo overlap.

Figure 3 .  Example of an OOC code.

Figure 4 .  Circular autocorrelation function for code [1 0 0 0 1 1 0 1 0 0 0 0 0].

Figure 5 .  Noncircular autocorrelation function for code [1 0 0 0 1 1 0 1 0 0 0 0 0].
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By spreading the transmission, the direct blast and mutual interference regions have been reduced
by factors of 2 and 4, respectively. Though the size of the actual direct blast region is related to the
length of a single chip, there is a wide region corresponding to 8 chip lengths (compared to 4 chip
lengths in the nonspread transmission) in which the direct blast partially overlaps the target echo.
However, the overlap is limited to at most one chip. The loss of one chip of target echo is assumed to
be tolerable. A design objective is to increase the number of chips to make the one chip loss insigifi-
cant.

Similarly, if OOC sequences are used in a mutual interference scenario, there is a wide region in
which one chip from a strong target may interfere with one chip from a weaker target. However, the
area of mutual interference region where all the chips interfere is substantially reduced.

The remainder of this report is organized as follows. First, the area of the direct blast and mutual
interference regions are derived. Then, in Section 3.0, properties of OOC’s are discussed. An exhaus-
tive search (Greedy Algorithm) is the only sure way to generate a complete set of codes. Rules are
given for accelerating the search. A faster method based on multipliers of difference sets is
introduced. This method is limited to minimal length codes. It appears to generate a complete code
set, but requires a starting code. In Section 4.0, a new family of codes called noncircular optical ort-
hogonal codes (NOOC) is developed that are defined using the noncircular autocorrelation function.
These codes have a higher duty cycle (fraction of time actually transmitting). Finally, criteria for
choosing a code as the basis for a waveform design are given in Section 5.0.

1.2  AREA OF THE DIRECT BLAST AND MUTUAL INTERFERENCE REGIONS

In this section, the area of the direct blast and mutual interference regions are derived assuming a
single contiguous chip is transmitted. Consider the transmitter-target-receiver geometry shown in Fig-
ure 6. The direct transmission travels a distance, D, from the source to the receiver while the target
return travels a distance r = g + h. The locus of target positions for a given r define an ellipse.

The area of the ellipse is

A� �ab (7)

where a and b are lengths of the major and minor axes, respectively. From geometry, we have

a� r�2 (8)

b� 1�2 r2� D2�  . (9)

But the parameter of interest is

�� r�D (10)

the difference in the travel distances. Substituting (8) through (10) into (7) yields

A(�)� �

4
(D��) 2�D� �

2� (11)

To relate the difference in travel distances to the duration of the transmission, let � = �cT where c
is the speed of sound and T is the duration of the transmission. The parameter � where 0 � ��� 1
takes into account the acceptable level of target echo loss.

For a monostatic scenario, D = 0,

Adb�
�

4
(�cT)2 . (12)
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Figure 6 .  Direct blast geometry.

For a typical bistatic scenario, assuming �0 � D yields

Aab� �(D�2)
3
2(�cT)

1
2 (13)

and the area of the direct blast region is proportional to the square root of the duration of the transmis-
sion as claimed.

Now consider the mutual interference region and ignore the direct blast. The mutual interference
region is an elliptic annulus as shown in Figure 2. If �s and �w are differences in the travel distances
(compared to the direct path) associated with the strong and weak target, respectively, and �d = |�s –
�w|, the area of the mutual interference region can be described in terms of A(�) defined in (11) as

Ami� A(�s��d)�A(�s��d) (14)

Again the difference in path lengths between the strong and weak targets can be related to the trans-
mission duration using �d = �cT where � is determined by the level of acceptable overlap and dispar-
ity in target strengths.

For the monostatic sonar,

Ami� ��s�cT . (15)

Similarly, for the bistatic sonar, if we assume �d � �s and �d + �s � D,

Ami� �(D�2)
3
2�
�1

2
s �cT . (16)

The bottom line is that to substantially reduce direct blast effects and mutual interference,
sequences of noncontiguous chips must be considered. The temporal space between chips is
described by a code.

1.3  OPTICAL ORTHOGONAL CODES (OOC’S)

An example of an OOC is shown in Figure 3. Because of the need to reduce sidelobes by avoiding
temporal correlation, OOC’s tend to have few 1’s and many 0’s. The placement of the 1’s is critical.
The orthogonality of an OOC is stated as
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Zx,x(l)� �� l� 0 . (17)

Now, consider the code representation. The {1 0 0 0 1 1 0 1 0 0 0 0 0] representation is too lengthy.
A more consise representation groups each ‘1’ with the ‘0’s that follow it and describes each group
by the number of digits. For example, the four-chip code in Figure 3 is represented by the set
{4, 1, 2, 6}. This is the difference representation.

In the literature, OOC’s are grouped into families defined by the parameters �, the code length (sum
of the digits in difference representation); K, the code weight (number of transmit chips, also the
number of digits in differential representation); and �. The code of Figure 3 has a length of 13, a
weight of 4, and � = 1. Combinatorics is used to determine the existence of codes, and if they exist,
the number of codes per family. By our definition, all code variations with the same circular autocor-
relation function are considered to be redundant.

Let {�i , i=1, ... K} be the code difference representation where �i  are integers. If �1 + �2 = �3, then
the correlation between the �3 shifted signal and the original depicted for �1 = 1 and �2 = 2 by

1101001���
1101���

is at least 2. This motivates the following definition of an OOC which is useful for testing codes.

Definition 1  A code is an (�, K, �) OOC if and only if

{ �
j�m

i�j mod �

�1|m� 1,���,K� 1; j � 1,���,K} (18)

is a collection of integers with no member repeated more than � times.

For a given weight and �, there is a lower bound, �0, on the code length.

Property 1  The minimum length of an OOC is

�0�	K(K� 1
�

� 1 . (19)

Proof.  The trivial shift yields a correlation of K. Each of the K chips aligns with every other chip for

some shift. Therefore, �
�0�1

l�0

Zx,x(l) � K2. If only nontrivial shifts are considered, �
�0�1

l�0

Zx,x(l) � K(K� 1).

Since each nontrivial shift yields a correlation of �� or less, and there arde �0 – 1 distinct nontrivial
shifts,

K(K� 1)� �(�0� 1) (20)

and Property 1 follows from the requirement that �0 be an integer.�

Furthermore, Ryser [4] makes the following Conjecture.

Conjecture 1  If K – � is a power of a prime number, a minimal length code exists.

Conjecture 1 has been verified for K – � � 1600.

There are OOC’s longer than the bound. For instance, codes (1, 2, 12, 5, 18, 4, 6), (1, 3, 2, 7, 10,
11, 14), (1, 3, 6, 20, 5, 2, 11), and (1, 4, 2, 19, 9, 3, 10) have a weight of 7 (though 7–1 = 2x3, not a
power of a prime) and length 48 (cp. minimum length of 43). No (�, 7, 1) codes exist for � < 48.
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One OOC can be generated from another. Simple methods are given here. More complex methods
are discussed in Section 3.3.

Property 2  In difference representation, any cyclic permutation of an OOC is an OOC.

Note that Zx,x(l) changes with cyclic permutation of x. This correlation has the most compact support
region if the largest �i  is last.

Definition 2  A reversal of an OOC is a code generated by reversing the integer sequence.

For example, the reversal of the code {1, 3, 10, 2, 5} is {5, 2, 10, 3, 1}.

Property 3  The reversal of an OOC is also an OOC.

Proof.  The proof follows directly from Definition 1.�

A code and its reversal, both cyclically permuted such that the last � is the same, have the same
noncircular autocorrelation function and therefore are equivalent and redundant for waveform design.
The shift and reversal properties will be used to limit the search space for a complete (exhaustive)
code search.

1.4  CODES FOR � > 1

Before using properties and definitions to search for codes, we show that the search can be short-
ened by requiring � = 1 without losing direct blast tolerance. Let C = 1 – �/K be a measure of toler-
ance to the direct blast. C is the fraction of the original signal not obscured by the direct blast. Also let
D = K/� be the duty cycle. For systems with fixed transmission length, D determines the total trans-
mission energy. The transmission energy is determined by detection range requirements. Thus, D is
considered as a given design parameter. Substituting into equation (20) yields

D� 1� c

1�C(1�C)
�

 . (21)

For 0 < 1– C � 1 and � a positive integer

1�C� D� (1�C)�C . (22)

Thus C is nearly determined by D independent of �. Hence, �� = 1 is assumed without loss of general-
ity.

1.5  EXHAUSTIVE SEARCH

There are many methods for constructing OOC’s [1, 3]. Yet, there are no fast methods that are
guaranteed to find all possible codes. In this section, rules are derived for speeding up the Greedy
algorithm (an exhaustive search). The objective is to minimize the search space using the definitions
and properties given.

The exhaustive search program is composed of nested “loops” with �’s as the loop indices. A code
test is placed inside the innermost loop. The following rules apply.

Rule 1  Assume� �1 < �i , i=2, ..., K.

Due to the shift property, all codes that violate this assumption are cyclic permutations of codes for
which it holds.



8

It is convenient to reference � to its minimum value and define

��� �� �0 . 
(23)

It is also convenient to restate (19) where 
 � is dropped for � = 1 as

n0� K(K� 1)� 1 . (24)

Rule 2  �1�����2� 1 . 

Proof.  For �1 > 1, Zx,x(l) = 0 for l = 1, ..., �1 – 1 and l = � – �i + 1, ..., � – 1. Using arguments similar
to those used in proving the length property,

	
��1

l�1

Zx,x(l)� K(K� 1)� �� 1� 2(�i� 1) . (25)

Substitution from (24) and (23) yields the desired result.�

Rule 3 �1��(�� � 1)�K � (K – 1)�2 . 

Proof.  By definition ��	
K

i�1

� i. When bounds are set on �m (loop m), �j , j = 1, ..., m – 1 are set, but �j ,

j = m + 1, ..., K are not yet determined. Therefore,

�i � ��min(	
K

i�2

�i) (26)

and

min(	
K

i�2

�i)� 	
K�1

i�1

(�1� i) (27)

� (K–1)�1�K(K–1)�2 . (28)

Substitution yields (26).�

Rules 2 and 3 are both useful. Rule 2 is tigher for �� < K – 1, while Rule 3 is tigher for �� > K – 1.

Rule 4  Assume �2�����2� (K� 2)�1�2� (K2� 3K� 6)�4 . 

This is based on the assumption �2 + 1 � �K which always holds for a code or its reversal. Then

�� �1� �2� (�2� 1)� 	
K�1

i�3

�i
(29)

and 4 follows.

Rule 5

�j � ��� 1� [K2� (2j � 3)K� j(j � 1)]�2� (K� j � 1)�1� 2�2�	
j�1

i�2

�i�j � 3, ���,K� 1 . 

Proof.  Again, the �i , i=1, ..., j–1 are set. Therefore,

�j � ��	
j�1

i�1

�i�min( 	
K

i�j�1

�i) . (30)
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At this point, the approximation

min( 	
K

i�j�1

�i)� I j �	
K�j

i�1

(�1� i) (31)

� (K� j)�1� (K� j)(K� j� 1)�2 (32)

is used to remove interdependence between min(	
K

i�j

� i) and �i , i = 1, ..., j – 1. Rule 5 follows.�

The following bound is tighter for j > K – 1 – �2 + �1.

Rule 6  �j � ��� [K2� (2j � 1)K� j(j � 1)]�2� (K� j)�1� 2�2�	
j�1

i�3

�i�j � 3, ���,K� 1 . 

Proof.  This proof is the same as for Rule 5 except that �2 + 1 is substituted for min �K–1.�

Rules 5 and 6 are not tight bounds for some j. To achieve that, a tight bound on the maximum � is
needed. Unfortunately, a provable tight bound has been elusive. Following is the tightest known
bound.

Rule 7  �max�
max

K � ��� [K(K� 1)]�2 . 

Proof.  If a code is shifted so that the largest � is shifted to the Kth position, the code has � – �max
trailing zeros and an equal number of shifts for which the noncircular autocorrelation may be non-
zero. Clearly,

�� �max�	
�

l�1

Wx,x(l) (33)

	
�

l�1

Wx,x(l)� 	
K�1

i�1

i (34)

� K(K� 1)�2 . (35)

Substituting from (23) and (24) yields the desired result.�

Though potentially dangerous, fitting a polynomial through the values of �max from Table 2 gives
the following conjecture which is tight.

Conjecture 2  �max�
(K2�K� 6)�6� . 

This conjecture is not used in the code search, but is, rather, a product of that search.

Finally, �K is determined by the previous �’s.

Rule 8  �K� �� 	
K�1

l�1

�i . 

Besides limits on the loops, conditions (if statements) can be placed between nested loops to imple-
ment some conditions of Definition 1. The easiest condition to test is
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Rule 9  �i � �j�i � j . 

These rules greatly reduce the search space. The result is a hybrid between the “Greedy” and
“Accelerated Greedy” methods in [1]. This algorithm is capable of searching for minimal and non-
minimal length codes. It is an exhaustive search in that it finds a complete code set. It has been used
to find codes with weights as large as K = 8.

The search for K = 8 took 11 hours. The algorithm was implemented in Matlab and run on an
Apollo DN3500 workstation. There were 1373 codes that passed the conditions mentioned above and
were evaluated using the full test of Definition 1.

1.6  DIFFERENCE SETS AND MULTIPLIERS

Though exhaustive search techniques are guaranteed to find all possible codes, there are faster,
possibly less complete code search methods. Before introducing them, the positional OOC represen-
tation must be defined. This representation uses a set of integers to denote the position of the pulses
in the train. For example, the positional representation of the code in Figure 3 is {0,4,5,7}. The posi-
tional representation plus the length of the code is equivalent to the differential representation.

Let the general positional representation be {pi  | i = 1, ..., K}. Then the position property can be
stated in a more general form as

Property 4  The code {p
i � Pi�jmod�|i � 1,���,K} for an arbitrary integer j as a shift of {pi}.

Property 4 is more general than Property 2 because it includes shifts that do not change the inter-
chip spacing. On the other hand, since the interchip spacing is not changed, the noncircular autocor-
relation is not changed and these codes are irrelevant.

Let the symbol � be used to denote modulo congruence. For a set Y, let |Y| denote the number of
members in the set. Also let a + X for a scalar a and set X be defined as {a + p | p � X}. Then the
autocorrelation property of an OOC can also be stated for the positional representation set X as

|(a�X)	(b�X)|� �
(36)

for a� b mod �.

We can consider that a and b shift the sequence. Equality holds in (36) if the code has minimal length.
Minimal length codes can be related to the mathematical concept of difference sets.

A difference set is defined as a set X such that any integer c � 0 can be represented as pi  – pj , with
pi , pj  � X in exactly � ways. (Again the p’s are the positional representation of the code.) To show
that all minimal length codes are based on difference sets, set c = a – b for a and b as defined in Prop-
erty 5.

There is a faster method of searching for minimal length OOC’s based on difference sets and the
theory of “multipliers” [4, 5].

Definition 3  Let (t, �) – 1 where (,) means the greatest common factor and let s be an arbitrary
integer. Then an integer t is a multiplier of the (�, K, �) difference set D = {p1, p2, ..., pK} if there
exists an integer s such that E = {tp1, tp2, ..., tpK} and � = {p1 + s, p2 + 2, ..., pK + 2} are the
same K-subset of X.

Addition and multiplication are assumed to be modulo � unless otherwise stated. If the elements of
the positional representation are multiplied by an integer, t, and t does not divide �, the result is a
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possibly shifted and/or reversed version of the original code or a new code in the sense of the noncir-
cular autocorrelation. For example, multiplying the code {0, 1, 3, 9} by 2 modulo 13 yields
{0, 2, 6, 5}. Subtracting 5 modulo 13 and rearranging elements yields {0, 1, 8, 10} which is a new
code with a different noncircular autocorrelation function.

A rigorous statement of this property is based on the following theorem.

Theorem 1  The congruence a � n mod m has a solution if and only if (a, m) | n where z|y
indicated x divides evenly into y.

The set of all a < m such that (a, m) = 1 is called the reduced residual system of m. There are �(m)
elements in the system where ����� is Euler’s function.

The following property is a corollary of Theorem 1.

Property 6  In positional representation, the product of an OOC and any element of the
reduced residual system of � is an OOC.

Proof.  Let D = {p1, p2, ..., pK} be an OOC and let t be an element of the reduced residual system of
�. Also let E = {tp1, tp2, ..., tpK}. Then E is an OOC if and only if t(pi  – pj ) = n for � different i, j pairs
and for all 1 � n � � – 1. The most restrictive case is n = 1. This case has a solution if and only if
(t(pi  – pj ), �) = 1. But (t(pi  – pj ), �) = 1 is equivalent to (pi  – pj , �) = 1 and (t, �) = 1. Since pi  – pj  is
arbitrary, the earlier condition is always satisfied. Therefore (t, �) = 1 is necessary and sufficient to
guarantee the existence of a solution. The property follows. �

Multiplication by some elements of the reduced residual system generates redundant codes.

Theorem 2  Elements t and � – t of the reduced residual system produce mutually reversed
codes.

Proof.  The numbers, � – t and –t are congruent modulu �. Therefore multiplication by � – t modulo �
is congruently equivalent to multiplication by –t. Furthermore, multiplication by –t is equivalent of
multiplying sequentially by –1 and t. The order is not important. Multiplying by –1 reverses the posi-
tional order. �

Clearly, in the search for OOC’s, only multiplying by the integers 2 through (�–1)/2 need be con-
sidered. Some of these integers are multipliers and produce shifted versions of the same code. An
interesting question is how many multipliers are in this set of integers.

The most general form of the Multiplier Theorem is the following.

Theorem 3  Let D be a (�, K, �) difference set. Let n be a divisor of K – � and suppose that
(n, �) = 1 and n > �. Let t be an integer such that for each prime divisor q of n there is an inte-
ger j such that qj � t (mod�). Then t is a multiplier of the difference set D.

If Conjecture 1 is true, q is unique (for each K – �).

Let g = g(q, �) be the smallest positive integer such that qg  1 mod �. Then g is called the order of
q( mod �)[7]. Theorem 3 allows the enumeration of OOC’s that are found by multiplication.

Theorem 4  Let �(K) be the number of weight K codes (reversals not counted) generated from
an initial code by multiplication. Assume q is the only prime divisor of K – � and suppose that
(q, �) = 1 and q > �. Then

��
�

2g
 . (37)
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Proof.  The number g is the number of multipliers for a given difference set between 1 and � – 1. If
another code is generated by multiplication by t, then multiplication by tqi, i = 0, 1, ..., g – 1 generates
shifts of the same code. Therefore, there are g elements of the reduced residual system that generate
each code.

The condition (q, �) = 1 can be further justified.

Theorem 5  Let q be a prime divisor of K – �. Then (q,�) = 1 implies (q, �) = 1.

Proof.  From the length of an OOC, we know

K� �� K2� ��
(38)

� (K� �)2� 2�(K� �)� �(�� �) . (39)

The statement q | K – �, implies q | �(�� – �). Since by hypothesis (q, �) = 1, q | (� – �) and one con-
cludes that (q, �) = 1. �

For � = 1, the condition (q, �) = 1 is always true.

The number of codes of a given weight are listed in Table 1. Caution is in order. The theory of mul-
tipliers is based on difference sets and only pertains to OOC’s of minimal length. Furthermore, a code
search that uses all elements of the reduced residual system is not guaranteed to find all minimal
length codes. So far, no minimal length codes are known for � = 1 that could not be found by multi-
plication. However, [4] gives an example for � = 6. Upon testing the two codes in his example, one
code generates two other codes, but the other only generates itself.

Table 1 .  The number of codes found by multiplication.

Generating codes by multiplication requires an initial code. That code may be found from the
Greedy algorithm. A list of one code for each weight (up to 12) is given in [4, page 132] for � = 1.
With these codes as starters, Table 2 was generated using the multipliers t = 1, ..., (� – 1)/2. Reversals
were removed for brevity.
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Table 2 .  Minimum-length orthogonal optical codes.

1.7  NONCIRCULAR OPTICAL ORTHOGONAL CODES

Here, a class of codes is introduced that may have a more compact correlation function than
OOC’s, but have equal direct blast tolerance. It is defined with respect to the noncircular correlation
function by

Wx,x(l)� � , 1� l� �� 1 . (40)

The definition of an OOC is similar, but uses the circular correlation function. Let a code in this class
be called noncircular optical orthogonal code (NOOC). A more formal definition can be based on the
�’s of the differential representation.
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Definition 4  A code is an (n, K, �) NOOC if and only if

{�
m

i�j

�i|1� j �m� K} (41)

is a collection of integers with no member repeated more than � times.

Without loss of generality, �K = 1 can be assumed since the trailing zeros do not affect the noncircular
correlation function.

The shift property does not apply for NOOC’s, but a version of the reversal property holds.

Definition 5  A reversal of an (�, K, �) NOOC is a code generated by reversing the first K – 1
integer sequence of the difference representation.

For example, the reversal of the code {3, 1, 6, 2, 1} is {2, 6, 1, 3, 1}.

Property 7  The reversal of an NOOC is an NOOC.

Proof.  The proof follows directly from Definition 4. �

For a given weight and �, a theoretical lower bound, �0, on the code length can be calculated.

Property 8  The length of a K-weight NOOC is greater than or equal to

�0��K(K� 1)
2� 	� 1 . (42)

Proof.  The trivial shift yields a correlation of K. Each of the K chips aligns with every other chip

for some shift. Therefore, �
�0�1

l��(�0�1)

Wx,x(l) � K2. If only positive nontrivial shifts are considered,

�
�0�1

l��(�0�1)

Wx,x(l) � K(K� 1)�2. Since each nontrivial shift yields a correlation of �� or less, and there are

�0 – 1 distinct nontrivial shifts,

K(K� 1)�2� �(�0� 1) (43)

and Property 8 follows from the requirement that �0 be an integer. �

Property 8 is highly restrictive.

Property 9  If � = 1, codes which meet the theoretical minimal length do not exist for K � 5.

Proof.  In order to meet the bound, the set {�l  | l = 1, ..., K – 1} must be a permutation of the set of
integers 1 through K – 1. Suppose �j = 1 and 2 � j � K – 2. Then �j –1 and� �j +1 must be chosen such
that �j –1 + 1 and �j +1 +1 are not equal and both are greater than K – 1. This is a contradiction. There-
fore either �1 = 1, or �K–1 = 1 and the former is assumed without loss of generality due to Property 7.
Then �2 = K – 1 so that �1 + �2 does not equal any of the �’s. Similarly, �3 = 2, but here the sequence
stops. If �4 = K – 2 then �1 + �2 = �3 + �4. There is no acceptable value for �4 unless K = 4 in which
case �4 = 1 and the code is finished. �

1.8  SEARCH FOR NOOC’S

Again the search begins by asking if there is an advantage in direct blast tolerance for a given duty
cycle using codes with � > 1. An answer can only be implied. A proof would require an attainable
theoretical minimum length for all �� and the weight of interest.
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The code length obeys the inequality

��
K(K� 1)

2�
� 1 . (44)

Let C and D, the direct blast tolerance and duty cycle, be defined as before. Substitution into (44)
yields

D�
2(1�C)

1� (1�C
�

(2C� 1)
� 2(1�C) . (45)

Again, there appears to be no advantage for � > 1. A comparison of (45) and (22) suggests that some
NOOC’s have a higher duty cycle than minimal length OOC’s for the same direct blast tolerance.

All OOC’s arde NOOC’s, but the converse is not true. High duty cycle NOOC’s can be generated
either by a sequence of operations on OOC’s or by the Greedy algorithm (exhaustive search). Gener-
ating NOOC’s from OOC’s does not always yield the minimal length codes, but it is much faster than
an exhaustive search. To motivate the concept, suppose the largest � of an OOC is shifted to the Kth
position and the superfluous trailing zeros dropped. For example, the nine-weight codes {1, 4, 7, 6, 3,
28, 2, 8, 14} is shifted to {2, 8, 14, 1, 4, 7, 6, 3, 28}, and truncated to the NOOC {2, 8, 14, 1, 4, 7, 6,
3, 1}. Now let this be stated in a more general form.

Property 910 A high duty cycle (��, K, �) NOOC can be generated from an (�, K + m, � �) OOC,
for an arbitrary j, by removing the m consecutive �’s, namely, �j+1, ..., �j+mmodK, setting �j  = 1

and shifting it to the Kth position. The OOC and j are chosen to maximize �
j�m

i�j

� i.

The value of �� depends on the OOC and the �’s removed.

There is no guarantee that minimal length NOOC’s may be found from OOC’s and there are no
other known procedures for finding NOOC’s except through exhaustive search. Therefore, the fol-
lowing rules are derived from the NOOC properties to minimize the search space. The structure of
the search is the same as that given for OOC’s, but the rules are different and estimating the minimum
length is part of the search. Since the shift property does not hold, �1 is not necessarily the smallest �.

Assuming � = 1 gives the theoretical minimum length of an NOOC as

�o� K(K� 1)�2� 1 . (46)

It is convenient to express � as

�� �o� �� . (47)

There is a tighter limit on �1 than on the other �’s.

Rule 10  �1 � ��/2 + K – 2can be assumed without loss of generality.

Proof.  This is based on the assumption �1 + 1 � �K–1. This holds for either a code or its reversal.
From the definition of �,

�1� ��min (�
K

i�2

�i) (48)
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and

min (�
K

i�2

�i)� �K�min �K�1� �
K�3

i�1

i (49)

� 1� (�1� 1)� (K� 3)(K� 2)	2 (50)

using �K = 1. Substituting this, (46) and (47) into (48) yields the result. �

As for OOC’s, there are two limits for the general �j .

Rule 11  �j � ��� j(2K� j� 1)	2��
j�1

i�1

�i�j � 2, ���,K� 1 . 

Proof.  Since �i , i = 1, ..., j – 1 are predetermined

�j � ���
j�1

i�1

�i�min ( �
K�1

i�j�1

�i)� 1 (51)

and

 min (�
K�1

i�j�1

�i)� �
K�j�1

i�1

i (52)

The results follows. �

For j � K – �1 – 2 the following bound is tighter.

Rule 12  �j � ��� 1� (j� 1)(2K� j� 2)	2� 2�1��
j�1

i�2

�i�j � 2, ���, K� 2 . 

Proof.  This proof is similar to that of Rule 11 except ��K–1 � � �1 + 1 is assumed. �

There is also a limit on the largest �. This limit is much tighter than the limit for OOC’s.

Rule 13  �max� ��� K� 1 . 

Proof.  This rule is an extension of Rule 11 to j = 1. �

Then ���� is predetermined.

Rule 14  �K�1� �� 1� �
K�2

i�1

�i . 

Proof.  As for OOC’s, conditions from Definition 4 in the form of “if” statements can be placed
between loops. The simplest condition to implement is the following.

Rule 15  �i � �j , �i � j , i, j 
 [ 0,K� 1] . 

In our algorithm, all the conditions of Definition 4 are implemented in such “if” statements and
there is no need to test a code inside the inner-most loop. Table 3 was generated using this algorithm.



17

It gives a complete list of codes of minimal length through K = 9. Note that minimal length NOOC’s
are significantly shorter than minimal length OOC’s.

Table 3 .  Minimum-length noncircular orthogonal optical codes.

1.9  COMPARING CODES

Within the realm of OOC’s and NOOC’s, there are several approaches to choosing codes from
Tables 2 and 3 to construct a waveform design. For the OOC’s, besides the codes listed, any cyclic
shift of a code is another code with different autocorrelation properties.

To determine the appropriate code weight, consider the following. Compared to a contiguous pulse,

the direct blast area is reduced by a factor of K�  for bistatic sonars or a factor of K2 for monostatic
sonars. The mutual interference is reduced by a factor of K.

However, as K increases, the duty cycle diminishes by roughly a factor of 1/K. Using Conjecture 2
to estimate �max gives a duty cycle of

6K
5K2� 7K� 1

which still falls off as 1/K.

The largest duty cycle of a given weight is achieved with a minimum length NOOC. The code that
maximizes the duty cycle also yields the most compact noncircular autocorrelation. The noncircular
autocorrelation for the NOOC {1, 4, 7, 13, 2, 8, 6, 3, 1} is shown in Figure 7. Since the theoretical
minimal length is not achievable, the correlation function does not have a solid pedestal. Rather the
pedestal is solid in the middle and full of holes or nulls on the outsides.

Suppose the approach is to spread the autocorrelation as uniformly as possible. This corresponds to
choosing the code where the largest � in the code is the smallest. Nulls can even be placed around the
main peak. A null can be created on the side of the central peak by putting the 1 last as in the ten-
weight OOC {2, 6, 18, 22, 7, 5, 16, 4, 10, 1}. This noncircular autocorrelation is shown in Figure 8.

The null on each side of the central peak can be increased by selecting OOC’s of greater than mini-
mum length within the bounds of Rules 3 and 2. If the �1 = n (assuming �1 is the smallest �), then
there are n – 1 zeros around the central peak. If �1 is shifted to last, there are n zeros around the cen-
tral peak. The noncircular autocorrelation of the 7-weight 49-length code {4, 5, 13, 10, 6, 8, 3} has
three zeros on each side of the central peak as shown in Figure 9.
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Figure 7 .  NOOC {1, 4, 7, 13, 2, 8, 6, 3, 1} with the most compact
noncircular autocorrelation.

Figure 8 .  The most spread noncircular autocorrelation,
Code {2, 6, 18, 22, 7, 5, 16, 4, 10, 1}.

Figure 9 .  Noncircular autocorrelation of code {4, 5, 13, 10, 6, 8, 3} with three
zeroz on each side of the central peak.
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In yet another approach, codes are chosen that have good post detection pulse compression proper-
ties. This is important because OOC’s and NOOC’s can be long enough to overresolve targets in
Doppler. Combinations of coherent and incoherent summing across chips are used to achieve a rea-
sonable Doppler resolution. The OOC {4, 8, 2, 3, 17, 1, 6, 8, 11, 29} can be divided into possibly
overlapping groups having comparable lengths (and therefore comparable Doppler resolution). For
instance, chips can be combined (coherently processed) in groups of three or four. One such grouping
is chips 1, 2, 3, 4; 4, 5, 6; 6, 7, 8; 8, 9, 10. This yields a maximum and minimum integration time
of 22 and 15 chips, respectively. In this grouping the chips are overlapped. Grouping the pulses
(especially with overlap) reduces the improvements in direct blast and mutual interference tolerance.
Another grouping into sets of two is chips 1 and 3, 2 and 4, 5 and 6, 7 and 9, 8 and 10. This gives a
maximum and minimum integration time of 21 and 11 chips, respectively.

1.10  CONCLUSIONS

This concludes our discussion of codes. Two nonstandard waveform types composed of disjoined
chips were introduced to significantly reduce mutual interference and the effects of the direct blast.
Orthogonal Optical Codes (OOC’s) were previously introduced in the literature, but Non-circular Ort-
hogonal Optical Codes (NOOC’s) are new.

Properties of both codes and methods of generating them have been discussed. Since NOOC’s are
new, their properties are not fully known. In particular, an attainable minimum code length is not
known. An exhaustive list of minimum length codes was given assuming minimal cross correlation
(� = 1).

Criteria for determining the best code for a given application have been discussed. None of these
arguments are irrefutably conclusive. Therefore, a full set of codes are given as a pallet from which to
construct future waveforms.
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