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EXECUTIVE SUMMARY

The processing of acoustic energy produced in an oceanic waveguide by a moving source in
a near-field scenario is a challenging task statistically due to the nonstationarity of the data
induced by the source motion. Many techniques of time series analysis require the estimation of
at least second-order moments of the data received at a sensor or an array of sensors. The
inherent assumption is made that statistically consistent estimates can be determined from suffi-
ciently long segments of data. However, data of adequate length may not be available in the
near-field scenario and so reliable estimates are difficult to obtain.

In the first part of this report, we introduce a statistical characterization of the moving source
via a time-varying linear-systems interpretation that inherently accounts for source motion. This
approach demonstrates how spectral coherence, which is indicative of temporally nonstationary
data, is dependent on various environmental and source parameters. In the second part, we pres-
ent a technique that uses this interpretation to simulate the acoustic time series received at a sen-
sor or an array of sensors of arbitrary geometry due to an acoustic source moving through an
oceanic waveguide. This simulation can be used to test how source motion affects the perfor-
mance of signal and array processing algorithms. We further demonstrate the utility of this algo-
rithm by comparing simulation results with experimental data.
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1 INTRODUCTION

Adaptive array processing techniques presently in use rely upon estimating at least second-
order moments of time series received at an array of sensors or phones. Usually for frequency-
domain algorithms, classical spectrum estimation methods are employed [1, 2] to estimate the
auto- and cross-spectra of data received at the array of sensors. An inherent assumption made in
these techniques is that the sensor data are wide-sense stationary and ergodic. In practice, one
assumes “piecewise stationarity,” i.e., that these statistics can be estimated from sufficiently long
segments of data. Unfortunately for some practical applications, data segments of adequate
length may not be available. For instance, this may be the case for a moving source whose trajec-
tory is quickly changing with respect to an array of sensors or the propagation environment, such
as in a near-field or shallow-water environment. Array processing performance in these situa-
tions is difficult to predict analytically since the statistical reliability of the moment or spectrum
estimates is called into question.

Therefore we identified the need for an algorithm that simulates the time series received at a
stationary array of arbitrary geometry resulting from a source which is moving through an
oceanic waveguide. Because of the near-field scenario, in which the instantaneous source posi-
tion may vary considerably over time with respect to an array, we believed it important to
include Doppler effects. With this simulation, we can study and compare the performance of
assorted array geometries and the associated signal processing algorithms under these nonsta-
tionary conditions. This capability is valuable because it will allow the Navy to access system
performance in a realistic ocean environment without resorting to costly array deployment.

We accomplish this task by using a time-variant linear-systems interpretation of the analyti-
cal results reported by Hawker [3] for a sinusoidal source. With this interpretation, we extend the
solution to a source of arbitrary energy or power spectrum shape. The problem then easily is dis-
cretized both temporally and spectrally using Fourier and linear-systems theory. A similar
approach is described in [4].

1.1 PHYSICAL ASSUMPTIONS

We assume in this document that the acoustic propagation environment is range independent
and cylindrically symmetric and that it can be modeled adequately as a sum of discrete normal
modes. If a continuous spectrum exists, it will be ignored.

1.2 DOCUMENT OUTLINE

In Section 2, we briefly review Hawker’s results for the acoustic field of a sinusoidal moving
source. In Section 3, we present time-varying linear-systems theory and interpret the results of
Section 2 in this light. We then describe in Section 4 the discrete time and frequency simulation,
and present some simulation results in Section 5. The conclusions and recommended future work
are presented in Sections 6 and 7.
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2 ACOUSTIC FIELD OF A SINUSOIDAL MOVING SOURCE

Several authors recently have demonstrated the utility of the analytical results presented by
Hawker [3], particularly in the area of parameter estimation of sinusoidal sources [5, 6, 7]. In
this section, we review Hawker’s fundamental results and apply them to a broadband source. The
equations we present here are conjugated versions of Hawker’s, since the sinusoidal source we
will use is of the form ei�ot to agree with the traditional engineering definition of the forward
Fourier transform.

2.1 STATEMENT OF PROBLEM

The moving-source problem involves finding the solution to the wave equation

��2� 1
c2

�2

�t2
	��� �[r � rs�(t)]ei�o t (1) s

where � is the pressure due to a point source emanating from frequency �o. The location vector
r s�(t) of the source term on the right side of equation 1 now is dependent on time.

The simplifying assumption is made that the source has zero acceleration, moves with speed
�, and remains at a constant depth. The schematic of the source–sensor geometry is shown in fig-
ure 1. Here R(t) is the range of the source from the receiver and �(t) represents the angle of the
source with respect to the receiver as the source progresses along its track. �(t) is zero at its clos-
est point of arrival (CPA) and positive when the source moves beyond CPA.

	�����	


��	��
��	��� �	��� ���

�(t)

R(t)

Figure 1. Source–receiver track scenario.

2.2 SOLUTION OF FIELD

Using the assumption that the acoustic propagation environment is range independent and
cylindrically symmetric, Hawker [3] shows that the solution of equation 1 is approximately

�(t) �� 1
8�
 ei�ote�i��4�

n

Zn(zs)Zn(z)

knR(t)
  exp �� iknR(t)�1� �
�g

n
 sin �(t)	� (2)
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where

Zn = nth modal depth eigenfunction
kn = nth modal eigenvalue
	g

n = nth modal group velocity
�n = nth modal attenuation term
	 = source speed
zs = source depth
R(t) = time-dependent range
�(t) = time-dependent angle.

The modal values are all evaluated at the source frequency 
o. Equation 2 is valid under the
additional condition that 	�	g

n� 1. As in [6], we have included an attenuation term in equa-
tion 2. Also note that equation 2 reduces to the well-known solution for the field of a stationary
source by setting 	� 0.

Now if we are interested in the field of the source around some arbitrary time to, we can
expand R(t) and sin �(t) about to and apply the expansions to equation 2. Equation 2 can then be
simplified by assuming that the source is moving sufficiently slowly so that the linear terms of
the expansions are valid approximations of R(t) and sin �(t) within a region of time �t:

R(t) � R(to)� (t� to)R(to)
(3)and

sin �(t) � sin �(to)� (t� to)�(to)cos �(to)

Referring to figure 1, we get R�(to) = 	 sin �(to) and ��(to) = 	/R(to) cos �(to). Then, ignoring the
time dependence of R(t) in the radical of equation 2, we can approximate �(t) by

�(t) � –1
8�� ei
ote–i��4�

n

Zn(zs)Zn(z)

knRo� exp �–iknRo
1– 	
	g

n
 sin �o�	

(4)

 exp �� iAn(t� to)	e��nRo , to�MD�
�t
2
� t� to�MD�

�t
2

where

Ro = R(to)
�� = �(to)

An = kn	�sin �o – kn	
2�	g

n

MD is the delay associated with the first modal arrival time associated with range Ro.

The approximation of equation 4 allows us to compute its Fourier transform analytically. The
Fourier transform of length �t about to + MD of equation 4 is

�(
o,u) � �t
8�� e�i(u�
o)toe�i��4�

n

Zn(zs)Zn(z)

knRo�  exp �� iknRo
1� 	
	g

n
 sin �o�	

(5)

 sinc (�n�t�2)e��nRoe�i(An�
o)MD
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where

�n� u – �o�An

Equation 5 becomes invalid when the source is near CPA (small |�o|), since in this region the lin-
ear terms used in the approximations of R(t) and sin �(t) are not adequate. However, this is not a
serious restriction, since in this region we can approximate the field of the moving source with
that of a stationary one. Also, the condition that ���g

n� 1 is carried over to equation 5. The
exponential term involving MD in equation 5 ensures that the transformed data are due to a
source located about Ro.

Equations 4 and 5 demonstrate that we can interpret An as the modal Doppler shift. The
majority of the energy density spectrum of �(t) due to the nth mode is concentrated about 
u = �o – An. It is intuitively pleasing to see that for � = 0, An = 0, and there is no Doppler shift.
Moreover, referring to figure 1, for �o > 0, there is a negative shift in frequency for sufficiently
large �o, and for �o < 0, there is a positive shift in frequency.
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3 TIME-VARYING LINEAR SYSTEMS

The analysis of linear, time-varying continuous systems via the frequency domain was done
some time ago by Zadeh [8]. More recently frequency-domain techniques have been applied to
shift-variant discrete-time systems [9] and to time-varying filtering [10]. In this section, we
review basic time-varying, linear-systems theory and use it to interpret the results of section 2.

3.1 BIFREQUENCY ANALYSIS

The output of a stable linear system is given by

y(t)��x(�)h(t,�)d� (6)

where h(t,�) is the system impulse response. Applying a complex sinusoidal input x(t) = ei�t and
defining the system function [8] as

H(�; t)� e–i�t�h(t,�)ei��d� (7)

we get

y(t)� H(�; t)ei�t (8)

H(�;t) acts as a modulating signal of ei�t. Equation 8 is identical in form to the time-invariant
case except for the time dependence of H(�;t).

The bifrequency system function �(�,u) [8] is defined as the Fourier transform of the system
response to ei�t. Using equation 8 with the frequency variable u, we get

�(�,u)��H(�; t)ei(��u)tdt (9)

Using equations 7 and 9, we can derive the inverse relations

H(�; t)� e�i�t

2�
��(�,u)eiutdu (10)

h(t,�)� 1
2�
�H(�; t)e�i�(��t)d� (11)

and

h(t,�)� 1
4�2
��� (�,u)eiute–i��dud� (12)
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Using equation 12, we can see that h(t, -�) and �(�,u) form a two-dimensional Fourier transform
pair:

h(t,� �)          �(�,u) (13)�

�
Using equations 6 and 12, we get the Fourier transform of the output in terms of the bifre-

quency system function as

Y(u)� 1
2�
��(�,u)X(�)d� (14)

where X(�) is the Fourier transform of the input x(t).

The following time-shifting relation, which is derived using equation 7, will be useful later.
Defining g(t,�) = h(t + �, � - �), we get

G(�; t)� H(�; t� �)ei�(��	) (15)

3.2 STOCHASTIC SOURCE

We now derive a basic relationship between the bifrequency system function and the spectral
coherence function of the outputs of real, stable systems driven by a wide-sense stationary
(WSS) stochastic source. The spectral coherence function displays the spectral correlation struc-
ture of a stochastic process [11] and is useful in the analysis of nonstationary processes.

Let y1(t) and y2(t) be the outputs of two real, stable linear systems driven by the same real,
WSS process x(t):

y1(t)��x(�)h1(t,�)d�

(16)

y2(t)��x(�)h2(t,�)d�

The cross-correlation function between y1(t) and y2(t) is then

R12(t,s)���Rx(�� �)h1(t,�)h2(s,�)d�d� (17)

Letting Sx(�) be the power spectral density of the process x(t), and after exchanging the
order of integration, we get

R12(t,s)�
1

2�
���Sx(�)ei�(���)h1(t,�)h2(s,�)d�d�d� (18)

Successive uses of equation 7 gives us

R12(t,s)�
1

2�
�Sx(�)H1(�; t)H*

2(�; s)ei�(t�s)d� (19)
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Defining the spectral coherence function of y1(t) and y2(t) as [11]

S12(�,�)���R12(t,s)e
�i(�t��s)dtds (20)

and using equation 9, we finally get

S12(�,�)� 1
2�
�Sx(�)�1(�,�)�*

2(�,�)d� (21)

If the two linear systems were time invariant, we would get

�1(�,�)� 2�H1(�)�(�� �)
(22)

�*
2(�,�)� 2�H*

2(�)�(���)

where �(�) is the Dirac delta function. Then, evaluating the convolution of delta functions [12],
equation 21 reduces to

S12(�,�)� 2�Sx(�)H1(�)H*
2(�)�(�� �) (23)

Since in this case y1(t) and y2(t) are jointly WSS, we expect no correlation between different
frequencies. This is demonstrated by equation 23, where the support of S12(�, �) is only on the 
� = � portion of the bifrequency plane.

3.3 MOVING-SOURCE INTERPRETATION

We now present an interesting interpretation of the sinusoidal moving-source results of sec-
tion 2 in terms of time-varying linear-systems theory. First, we recognize that the field generated
by a sinusoidal source of equation 4 is simply the system function of equation 7 multiplied by
ei�t. Likewise the Fourier transform of the field of equation 5 can be viewed as the bifrequency
system function of equation 9. Consequently, the inverse 2D Fourier transform of �(�,u) gener-
ates the time-varying channel impulse response h(t, �) (or equivalently the two-dimensional
Greens function) for a particular geometry and source trajectory. Moreover, we can see from
equations 5 and 21 how spectral coherence is dependent on the environmental and source param-
eters. We define the t variable as temporal response and � as spatial time. These terms are
derived from the fact that the instantaneous location of the source is indexed by �, while the gen-
erated field time series received at a sensor is indexed by t.

3.3.1 Time-Varying Channel Impulse Response

A physically realistic channel is causal. It also exhibits finite temporal response since we will
assume some loss in the propagation environment. As a result, we can expect the time-varying
channel impulse response to have support on the (t,�) plane, as shown in figure 2. We can see
that due to causality the support lies to the right of the � = t line, i.e., for some spatial time �o we
expect temporal response for t > �o. Here the impulse response has been multiplied by a window
of temporal width �t centered about to with infinite spatial time length. We have eliminated the
travel time MD of the lead pulse in the figure.
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Figure 2.  Support of temporally windowed channel impulse response.

3.3.2 Modal Group Velocity

In the appendix, we derive the time-varying modal group velocity using equation 11 and a
stationary phase argument. The modal group velocity is shown to be

�g
n,��

�Ro� �(�–to) sin �o	�1– �
�g

n
 sin �o�
 ��g

n
�2En	

Ro

�g
n

�1– �
�g

n
 sin �o En	� (�–to)���g

n
 sin �o–
 ��g

n
�2En	

(24)

for ��t
2
� to� �� �t

2
� to, where

En�
1� kn
��g

n
��� (25)

We can see that �g
n,� differs from the stationary modal group velocity �g

n. However, with 
� = to (no expansion error in R(t) and sin ��t)) and assuming that ( �

�2
n
)2 � 1 and En� 1, we can

see that �g
n,�� �g

n.
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3.3.3 Modal Time Delay

Also in the appendix, we derive the modal arrival time as a function of spatial time. The
modal delay is shown to be

MD,n�

Ro

�g
n


1– �
�g

n
 sin �oEn�� (�–to)���g

n
 sin �o–
 ��g

n
�2En	

�1– �
�g

n
 sin �o�
 ��g

n
�2En	

(26)

for ��t
2
� to� �� �t

2
� to.

Assuming that 
��g

n
�� � 0, En� 1, and 
 �

�g
n
�2

� 0, we can approximate MD,n as

MD,n�
Ro
�g

n
� (�� to)�

�


�
�g

n
 sin �o

1� �
�g

n
 sin �o

�
�
�

(27)

for ��t
2
� to� �� �t

2
� to.

We can see that the modal time delay is a linear function of �. In the approximation of equa-
tion 27 at � = to, we get the traditional modal time delay Ro��g

n [13]. We can also see that for a
trajectory in which the source approaches the receiver (�o < 0), we get the physically intuitive
result that MD,n is less than Ro��g

n for � > to and greater than Ro��g
n for � < to. The situation is

reversed when �o > 0.
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4 MOVING-SOURCE SIMULATION

The results presented in sections 2 and 3 represent the building blocks of an algorithm that
simulates the time series received at a sensor from the acoustic energy emitted by a source mov-
ing through an oceanic waveguide. The technique essentially involves discretizing the integral in
equation 14. We compute the bifrequency system functions for various spatial time and temporal
response segments over the source track, use a discrete version of equation 14 to compute the
frequency-domain representation of the sensor data for each segment, inverse transform, and
then fit the pieces together appropriately. We describe the basic technique in this section.

4.1 COMPUTING THE BIFREQUENCY SYSTEM FUNCTION

Determining the spectral sampling resolution (�u and ��) of the bifrequency system func-
tion of equations 5 and 14 is the most critical aspect of the simulation. The approach taken here
utilizes the fundamental concepts of the 2D sampling theorem to obtain the appropriate resolu-
tion.

We will assume that the source process is strictly band limited so that we can spectrally win-
dow �(�, u). Next, from the sampling theorem, we observe that �t = 2�/�u and �� = 2�/��.
The spectral resolution will therefore determine the size of the 2D time window. In the imple-
mentation of the algorithm, we fix the ratio ����t to 2 so that �u/��� = 2. The support of the
resulting time-varying impulse response is shown in figure 3 with the initial bulk delay MD
removed and with to = �t/2.

Figure 3. Support of impulse response for ��/�t = 2.
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Now, we determine the adequate spectral resolutions simply by sampling �(�,u) so that we
minimize the distortion in the resulting sampled channel impulse response h(n,m). While we
never explicitly need to evaluate h(n,m) in the algorithm, it is essential to sample �(�,u) ade-
quately since the technique has a time-domain interpretation which is a discrete version of equa-
tion 6:

y(n)��
m

x(m)h(n,m) (28)

So we must minimize the distortion in h(n,m) to maintain the fidelity of the sensor time
series. We desire an h(n,m) which has support similar to that of figure 3. Undersampling will
result in the aliasing of h(n,m) similar to that shown in figure 4, where we show only the first
period. Moreover, if the maximum temporal response of the channel is greater than the �t deter-
mined by the spectral resolutions, h(n,m) will also be aliased. As a result, we can see that the
choice of ��/�t = 2 is the most conservative choice since the restriction on the impulse response
is that the maximum temporal response (less the initial delay MD) be less than or equal to �t.
Other values of ��/�t will require the temporal response to be much shorter, i.e., 1

2
�t, 1

3
�t, etc.

Figure 4. Support of aliased impulse response.

We previously removed the first modal arrival time MD from the channel impulse response
h(n,m) to reduce the spectral sampling resolution and thereby considerably reduce the computa-
tional burden. This task is easily accomplished in the frequency domain by using the time-
shifting property of the system function of equation 15. We simply multiply H(�;t), or equiva-
lently �(�,u), by ei�MD,min. We estimate MD , min by using equation 26 or 27 and eigenvalue and
modal group velocity values at the center of the band. To account for the fact that the minimum
arrival time MD , min is a linear function of � with a slope that is a function of the source trajec-



12

tory, we apply the results of section 3.3.3 and use � = 0 if �o > 0 and � = �t if �o < 0. to = �t/2 for
both cases.

We must also account for the fact that the bifrequency system function of equation 5 derived
in [3] is not a valid approximation near CPA. In the algorithm, we set � = 0 in equation 5 when
–5 degrees < �o < 5 degrees and proceed as above where now MD,min� Ro��g

n.

4.2 GENERATING TIME SERIES

We generate the time series received at a sensor via the frequency domain by discretizing the
integral in equation 14. Letting T be the sample interval, we get �t = NT and �� = MT, where N
and M are the number of temporal response and spatial time samples in each segment. Then

Y(k)� 1
MT
�

l

�(l��,k�u)X(l) (29)

where X(l) is the discrete Fourier transform (DFT) of a section of time series emitted by the
source of length M samples, and Y(k) is the DFT of the sensor time series of length N samples.
An inverse DFT of Y(k) then produces the sensor time series y(n) N

n � 1. The source has arbitrary
spectral as well as statistical characteristics. This technique is applicable to wide-sense stationary
as well as nonstationary or transient sources.

Next we must combine the time series generated in each segment so that we create a seam-
less transition between spatial–temporal segments. We accomplish this by appropriately overlap-
ping the input time series x(n) from one segment to the next. If the source were stationary, we
would use source data x(n) the first half of which consists of old data emitted by the source in the
previous segment, and the second half consists of new data. This is evident from equation 28 and
an analysis of figure 5, where we display two contiguous segments evaluated at different source
positions. We then join consecutively the sensor time series y(n) from each segment. However,
for a moving source, it is important that we account for the fact that the time-varying minimum
modal arrival times MD,min induce an expansion or contraction in the output time series, depend-
ing on the source trajectory (sign on �o). For instance, assume the source is moving away from
the sensor (�o > 0). When we left-shift the channel impulse response by MD,min evaluated at � =
0, we must allow for the fact that we will shift the immediately following segment by a greater
amount due to the source trajectory and greater range for that segment. Conversely, if the source
is approaching the sensor (�o < 0), we left-shift the following segment by a smaller amount.
When the source is moving away from the sensor, we define D as the difference in samples
between the left shift of the present segment and the previous segment. Then we use an addi-
tional D old samples in the source time series data x(n) in our calculation of y(n). And when the
source is approaching the sensor, we define D as the difference in samples between the left shift
of the previous segment and the present segment. Then we calculate y(n), using x(n) as in the sta-
tionary source case, except that we throw away the first D samples of y(n).
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Figure 5. The combination of two channel impulse response segments.

Finally, we note that the bifrequency system function �(�,u) of equation 5 has significant
value only for regions of u around � – An due to the sinc function in the summation. To reduce
the computational burden of calculating �(�,u) over the entire frequency range of u, we can cal-
culate �(�,u) only for regions of u where the sinc function has significant value, e.g., the first
and second lobes. We set the remaining regions of �(�,u) to zero. We call this modification par-
tial bifrequency calculation. Caution must be used here since we introduce errors across the
spectral band. We can then expect temporal distortions at the seams of the segments.
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5 SIMULATION RESULTS

In this section, we demonstrate the capabilities of the algorithm by presenting some simula-
tion results. As a measure of performance, we will compare simulated time series with data col-
lected during the SwellEx2 experiment held September 1993 in the Catalina basin. A schematic
of the environment of interest is shown in figure 6, which includes the depth-dependent sound
speeds and the density and attenuation factors in the sediment layer and bottom half space.

We have incorporated the KRAKEN normal mode program [14] into the software to generate
the eigenvalues and eigenfunctions.
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Figure 6. Schematic of the SwellEx2–Catalina Basin environment.

5.1 EXPERIMENT DESCRIPTION

The sensor and source track geometry used in this comparison are shown in figure 7. We will
only use two sensors from the deployed array. An “X” marks the horizontal position of each bot-
tom–mounted sensor. The data are sampled at 434.03 samples/s. A tug boat tows a source that is
at a depth of 49 meters and is emitting 45- and 95-hertz tonals. The tug is at a nominal depth of
6 meters. We present results from 1 hour of experimental data in which the tug, moving at
approximately 4 knots, passes between the two sensors at the 30-minute point, and the displayed
trajectory, and compare these results with simulated data generated by using this environmental
and source–sensor scenario.
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Figure 7. Sensor geometry and source track.

5.2 DATA ANALYSIS

Figure 8 is a spectrogram of sensor 1 centered about the 45-Hz tone of the experimental data
set. Figure 9 is the spectrogram of the corresponding simulated data. The algorithm models a
narrowband source as a second-order autoregressive process. This may account for the fuzzy
nature of the line in figure 9. In both figures, the characteristic knee in the line at approximately
the 35-minute mark indicates Doppler shift associated with a CPA event. Figures 10 and 11 are
the corresponding spectrograms of sensor 2. As expected from the source trajectory plot of fig-
ure 7, the knee in the source line occurs earlier in the data, at approximately the 20-minute mark.

More dramatic Doppler effects are evident in figures 12 to 15, which are the spectrograms of
sensors 1 and 2 centered at 95 Hz. Again the Doppler effects observed in the experimental data
agree with those in the simulated data.

To demonstrate the effect of a moving broadband source, we model the tug as a broadband
WSS Gaussian process. The spectrogram of sensor 1 of the experimental data in the 40- to
120-Hz band is shown in figure 16 and that of the simulated data in figure 17. We have retained
the narrowband components in the simulated data. We notice in figure 17 the “bath tubbing”
characteristic of a moving broadband source. CPA is clearly visible at approximately 35 minutes.
The difference in the spectrograms of figures 16 and 17 is probably due to inaccurate environ-
mental modeling, specifically in the sediment layer.

We believe these simulation results demonstrate the utility of this technique and that it will
be useful in analyzing the effects of source movement on data analysis and signal processing
algorithms.
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Figure 8. Experiment 45-Hz tonal on sensor 1.

Figure 9. Simulation: 45-Hz tonal on sensor 1.
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Figure 10. Experiment: 45-Hz tonal on sensor 2.

Figure 11. Simulation: 45-Hz tonal on sensor 2.
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Figure 12. Experiment: 95-Hz tonal on sensor 1.

Figure 13. Simulation: 95-Hz tonal on sensor 1.
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Figure 14. Experiment: 95-Hz tonal on sensor 2.

Figure 15. Simulation: 95-Hz tonal on sensor 2.
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Figure 16. Experiment: 40- to 120-Hz band on sensor 1.

Figure 17. Simulation: 40- to 120-Hz band on sensor 1.
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6 CONCLUSIONS

In this report, we demonstrate that the moving-source problem can be interpreted in terms of
time-varying linear-systems theory. We then illustrate how we can use this interpretation to sim-
ulate the time series received at a sensor due to a moving source with arbitrary spectral charac-
teristics. We show that simulated time series generated via this technique closely approximates
experimental data. It is evident from this comparison that Doppler effects are correctly simu-
lated.

The computational burden of this algorithm is directly related to the frequency sampling res-
olution and source bandwidth. The greater the dispersive nature of the channel, the finer the fre-
quency resolution must be. So for complicated propagation environments, this algorithm can be
quite computationally intensive due to the calculation of the bifrequency system function. More-
over, very broadband signals can also be computationally expensive to simulate.
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7 RECOMMENDATIONS

The algorithm presented in this report is highly parallel in nature. The problem easily can be
divided into independent spatial segments. Also, the calculation of the bifrequency system func-
tion can be implemented in terms of independent vector operations, which themselves can be
efficiently executed on parallel or vector processors. So we believe the simulation could be
effectively implemented on a highly parallel machine.

To simulate more realistic propagation environments, it may be necessary to extend the tech-
nique to account for three-dimensional propagation. While this would require initial analytical
extensions to Hawker’s results, the fundamental algorithm would not change.

We also recommend explicitly determining the spectral coherence function in terms of the
acoustic parameters. This may lead to advanced array processing algorithms that use source
motion as a target discriminant to enhance detection performance.
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Appendix

TIME-VARYING MODAL GROUP VELOCITY
AND MODAL ARRIVAL TIME

In this appendix, we derive the modal group velocity and modal arrival time associated with
the moving-source scenario described in sections 2 and 3.

We begin with the relationship between the time-varying channel impulse response and the
system function described by equation 11:

h(t,�) � 1
2�
�H(�; t)e�i�(��t)d� (A-1)

We know from section 2 (equation 4) that the system function for the source–receiver
scenario depicted in figure 1 can be approximated by

H(�; t) �� 1
8�� e�i��4

n

Zn(zs)Zn(z)
knRo�  exp �� iknRo
1� �

�g
n
 sin �o�	

(A-2)

 exp �� iAn(t� to)	e��nRo

for to� �D�
�t
2
� t � to� �D�

�t
2

where

An� kn� sin �o� kn�
2��g

n (A-3)

Now, without loss of generality, we will assume that to = 0. to trivially can be included at the end
of the derivation. Next, let us define the phase of the integrand in equation A-1 to be

q� knRo
1� �
�g

n
 sin �o��An(t)��(�� t) (A-4)

The modal group velocity occurs when we use the stationary phase technique to approximate
the solution of equation A-1. Taking the derivative of q with respect to � and setting the result
equal to zero, we get

�q
��� Ro

�g
n

1� �

�g
n
 sin �o�� knRo

�
(�g

n)
2

��g
n

��  sin �o

(A-5)
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where we have used the fact that �g
n�	�kn

��

�1

.

Next we solve the above equation for t and label the solution tn to correspond to the nth

mode. Now, intuitively we define the travel time or time delay of a mode as the difference
between tn and the spatial time �, i.e., MD ,n = tn - �. Using equation A-5, we get

MD,n�

Ro

�g
n

	1� �
�g

n
 sin �oEn
� ����g

n
 sin �o�	 ��g

n

2En�

�1� �
�g

n
 sin �o�	 ��g

n

2En�

(A-6)

for ��t
2
� �� �t

2
, where

En�	1� kn
��g

n
��
 (A-7)

Now, we define the time-varying modal group velocity as �g
n,��

R�

(tn� �)
. Using the

approximation of the  time-varying range R� of section 2, i.e.,  R�� Ro� �� sin �o, we get

�g
n,��

	Ro� �� sin �o
�1� �
�g

n
 sin �o�	 ��g

n

2En�

Ro

�g
n

	1� �
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� �� ��g

n
 sin �o�	 ��g
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2En�

(A-8)

for ��t
2
� �� �t

2
.

Finally, a useful approximation of the modal travel time can be developed using the

approximations  
��g

n
�� � 0, En� 1, and 	 �

�g
n

2

� 0. Then equation A-6 becomes

MD,n�
Ro
�g

n
� ��
�
�

�
�g

n
 sin �o

1– �
�g

n
 sin �o

�

� (A-9)

for ��t
2
� �� �t

2
.

To include nonzero to in this analysis, we simply replace � with � - to in the above equations.
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