
��������
����� �����
��� �
�������� ����

������ 	���������
�����������

	���� 	�����
������ ������

��������� � ������ �� �����
�������

iii

EXECUTIVE SUMMARY

OBJECTIVE

This report describes the Scalable Programming Environment (SPE), a software tool that supports
the development of scalable high-performance data-flow applications.

APPROACH

The SPE was developed on the Intel Paragon to support the Hybrid Digital Optical Processor
(HyDOP) and the Bottom Limited Active Classification (BLAC) projects, both sponsored by the Of-
fice of Naval Research (ONR-321), for undersea surveillance acoustic signal processing. All the scal-
able and reconfigurable needs of these projects have been incorporated in a library of general pro-
gramming calls. The development and testing of the SPE evolved as the these projects dictated. The
Intel Paragon was made available by the DoD High Performance Computer (HPC) Modernization
Program.

The SPE was designed with generality in mind, so that in addition to meeting the needs of acoustic
signal processing, it could be used in other similar types of applications. The SPE has now been used
for several synthetic aperture radar (SAR) processing applications, and this work has also influenced
SPE development.

RESULTS

The SPE, which has been designed primarily to support data-flow processing applications, allows
programs to be scaled to execute on any number of processing nodes while requiring no changes to
the compiled binary code. The user is provided with a set of high-level message-passing routines that
can be used to connect multi-instanced heterogeneous programs in a system. The SPE library routines
hide the intricacies of how the parallel programs communicate. The details of the connections are spe-
cified in text files. The SPE allows individual programs to be coded without knowledge of other parts
of the system and thus allows systems to be quickly built, modified, or scaled without program re-
compilation.

The SPE has been implemented and tested on an Intel Paragon XP/S 25. The SPE continues to
evolve as it is used with additional applications. Although the current implementation interfaces to
the operating system using Intel-specific NX calls, it should be portable to the emerging Message
Passing Interface standard or to other vendor-specific parallel operating system interfaces based on
message passing.

The SPE has been successfully used by several acoustic and SAR processing projects. Use of the
SPE has provided more rapid program development and system integration, and has resulted in ap-
plications that are scalable and reconfigurable.

v

CONTENTS

EXECUTIVE SUMMARY iii.

1. INTRODUCTION 1.
1.1 THE NEED FOR APPLICATION SCALABILITY 1.
1.2 CURRENT PRACTICE 2.
1.3 SPE FEATURES 2.
1.4 SPE STATUS 3.
1.5 ORGANIZATION OF THIS REPORT 4.
1.6 ACKNOWLEDGEMENTS 4.

1.6.1 Sponsors 4.
1.6.2 Software Tools 4.

2. COMMUNICATION IN THE SPE 7.
2.1 DATA-FLOW PORTS 7.

2.1.1 Striping Data 7.
2.1.2 Overlapping Striped Data 9.

2.2 CONTROL PORTS 9.
2.3 FIFO BUFFERS 10.
2.4 MESSAGE FLOW CONTROL 11.
2.5 MESSAGE ORDER 12.

3. USER INTERFACE 13.
3.1 SYSTEM DEFINITION FILE 13.
3.2 PROGRAM DEFINITION FILE 17.
3.3 DATABASE STARTUP FILE 19.

4. PROGRAMMING INTERFACE 23.
4.1 MESSAGE INTERFACE 23.

4.1.1 spe_init(), spe_send(), spe_recv(), spe_port_id(), spe_port_info() 23. .
4.1.2 Message Interface Example 23.
4.1.3 spe_msg_wait(), spe_msg_wait_list(), spe_probe(), spe_probe_list() 25
4.1.4 spe_port_exists(), spe_port_is_connected() 26.
4.1.5 spe_eos() 26.
4.1.6 spe_enter_seq(), spe_leave_seq() 27.

4.2 TERMINATING SPE PROGRAMS 27.
4.2.1 spe_idle() 28.
4.2.2 spe_terminate(), spe_terminate_define() 28.

4.3 DATABASE INTERFACE 28.
4.3.1 spe_db_register(), spe_db_set(), spe_db_wait() 28.

4.4 REPORT INTERFACE 30.
4.4.1 spe_report() 30.

vi

4.4.2 spe_report_enabled() 31.
4.4.3 Predefined Report Variables 32.

4.5 MEMORY ALLOCATION INTERFACE 32.
4.5.1 spe_malloc(), spe_free() 32.

4.6 PERFORMANCE MONITORING INTERFACE 32.
4.6.1 spe_monitor_on(), spe_monitor_off() 32.

4.7 SYNCHRONIZING OPERATIONS 33.
4.7.1 spe_program_sync() 33.
4.7.2 spe_global() 33.

4.8 VERIFICATION OF SPE ROUTINE CALLING ORDER 33.

5. USING THE SPE 35.
5.1 COMPILING AND LINKING AN SPE PROGRAM 35.
5.2 RUNNING AN SPE APPLICATION 35.
5.3 SPE PROGRAM ARGUMENTS 35.
5.4 INTERACTIVE USER INTERFACE 37.

Appendices

A: PREDEFINED REPORTS A-1.

B: RESERVED WORDS B-1.

C: PROGRAMMING CALLS C-1.

D: FORMAT OF DESCRIPTION FILES D-1.

E: STRIPE AND OVERLAP ALGORITHMS E-1.

INDEX I-1.

Figures

1. Message passing between heterogeneous programs 2.

2. Striped 6-row by 4-column array 7.

3. Internal message paths for communicating a 6-row by 4-column array 8.

4. Sequence port to round-robin port connection 10.

5. Input port two-dimensional FIFO 10.

6. Memory addresses in two-dimensional FIFO 11.

7. Control signals 12.

8. Example showing an implementation of an acoustic receiver system 14.

9. System Definition file corresponding to the system shown in figure 8 14.

10. Possible Program Definition files for the receiver system of figure 8 19.

11. Example of a Database Startup file 20.

12. Example FFT program illustrating the use of the basic SPE routines 24.

vii

13. Reuse of an SPE program 25.

14. Usage of spe_msg_wait() 25.

15. EOS is daisy-chained through programs A, B, and C 27.

16. Using a global database variable 29.

17. Program reuse controlled by the global database 30.

18. Specifying spe_report() output using FRAMES mode 31.

E-1. Row allocation for basic striping with no overlap E-1.

E-2. Row allocation for STRIPED_OVLP=2 E-2.

E-3. Row allocation for STRIPED_OVLP=3:1 E-3.

E-4. Row allocation for STRIPED_OVLP=2:ALL E-3.

E-5. Row allocation for STRIPED_OVLP=3:1:ALL E-4.

1

1. INTRODUCTION

The Scalable Programming Environment (SPE) is a programming environment and system inter-
face that was developed by the Hybrid Digital Optical Processor (HyDOP) and the Bottom Limited
Active Classification (BLAC) projects, both sponsored by the Office of Naval Research (ONR-321),
to help build large scalable real-time systems in a research and testbed environment. It provides the
user with the ability to build and modify scalable systems quickly using both function- and data-
domain decomposition methods.

The SPE allows a programmer to easily write scalable applications. It loads and runs heteroge-
neous programs on multiple sets of nodes and provides the scalable data-path connections needed for
unrelated parallel programs to communicate.

Each program in a system, or an application, executes on a set of nodes and performs a different
function. Each node for a given program executes the same code, called an instance of the program.
Each instance of a program is expected to work on a different piece of the data for the given program.
The SPE provides the complex high-level message-passing routines that are needed to interconnect
different programs and instances of programs into a system.

1.1 THE NEED FOR APPLICATION SCALABILITY

In a research and development environment, where change is a fact of life, application scalability is
fundamentally important to successful project implementation. Scalability allows the application to
be placed on the hardware in such a way that optimum use is made of each of the hardware resources:
compute cycles, memory, and communications bandwidth. Even when running in real time is not an
issue, it is still desirable to balance the resource usage for each program configuration so that overall
run time is minimized.

Determining resource usage during the initial analysis and design phases of a project is a very diffi-
cult problem, and the variability inherent in a testbed environment assures that all but the most gener-
al analysis will instantly be out of date. There are two sources of this variability: the project itself and
the underlying computer system.

Project changes have a number of sources. Most fundamentally, the project requirements change
and evolve: customers change their minds, funding levels are reevaluated, and new technologies are
discovered. Researchers may wish to experiment with new algorithms, each of which has different
resource requirements. In a signal processing environment, developers may add new functions to the
signal processing path or remove others, and those resources must be taken from, or made available
to, other parts of the system. Some investigations may focus on particular algorithms, so the analyst
may devote a high proportion of the resources to a given algorithm at the expense of others, for
instance, to improve the processing fidelity for a specific data set. For many reasons, including
some just mentioned, the system will be assembled in various configurations such as real-time,
non-real-time, and development configurations, and each configuration requires a unique allocation
of resources.

The supporting computing system may also change in ways that require the application resources
to be allocated differently. A new release of the operating system may use more memory, leaving less
for application programs and requiring more nodes to be used for the same processing. Compiler
modifications may improve (or degrade) the computing efficiency of a node for a particular algo-
rithm. System software changes may improve the communications bandwidth. And, of course, the

2

underlying hardware may be upgraded to increase memory size, communications bandwidth, or pro-
cessing power.

Given the cost of large parallel computers, it is likely that project development will be done on a
computer that is being shared with other users. Under these circumstances, machine resources may
have to be allocated on a run-by-run basis depending on the availability and usage of the system.

For all of these reasons, constant fixed resource allocations are impractical in this environment. A
system must be provided to allow users to transparently reallocate resources to the various functions
composing their applications.

1.2 CURRENT PRACTICE

Currently the parallel computing industry does not provide a standard set of high-level message-
passing routines to systematically interconnect multi-instanced heterogeneous programs in a system.
These systems must be built with the details of the message passing visible to the application
programmer. A user developing a multi-instanced program must know the intricacies of the other
interconnected programs, how the data are shaped on the other end of the communications paths, how
the program will control the flow of the data it receives, how it will buffer and transform the data
once received, and how it will present the data synchronously to multiple instances of itself.

Figure 1a shows the level of message-passing detail that a traditionally developed multi-instanced
program must contend with in a heterogeneous system. Each instance of program B must contain
explicit code to correctly handle the various communication messages. The code in each instance is
dependent on how the data are shaped at the other end of each communications path. Each instance
will contain code to explicitly control the flow of data it receives (request messages). If program B
receives messages from two or more programs (not shown), then the program must guarantee that
each instance receives all messages in the same order as all other instances (controlled by the syn-
chronizing messages).

��� ����������� ��!�

���
��� ����
��� �

��� �

��� ��	 ��!�

���
��� �
���
��� �

���

���

�	��	��

����

Figure 1 . Message passing between heterogeneous programs.

This level of message-passing detail is beyond the level that an application programmer should
have to worry about. Furthermore, it is time consuming and prohibits prototyping large systems or
modifying existing ones. Involving the user at this level of detail has hindered the emergence of sys-
tem designs beyond the multi-instanced single-program standard predominantly used today.

1.3 SPE FEATURES

The SPE has been developed to hide this level of message-passing detail. Figure 1b shows the
view that an SPE program sees when communicating data. Communication between programs is via
ports connected by nets. Therefore, within each program, there is no requirement for information

3

about which programs are connected, the number of program instances for this program, the number
of program instances at the other end of each communication path, how the data are buffered, how the
flow of data is controlled, or how the data are synchronized.

Furthermore, because this level of detail is hidden from the program, new systems can be quickly
built and old ones quickly modified. Programs of a system can be scaled to run on any number of
processing nodes while requiring no changes to source code. Programs can be disconnected and
reconnected in different ways to modify the function of a system.

The SPE message-passing routines have been built to utilize resources efficiently. They have been
designed to overlap processing with communication, minimize buffer space, avoid extra copying of
data, and minimize the number of messages.

The SPE includes other features useful in a parallel programming environment, such as run-time
control of diagnostic flags and execution parameters, data capture, performance monitoring, logging,
and error reporting.

The SPE provides:

� A loader, which allows the user to define, load and run parallel programs on scalable sets of
nodes without the need to recompile. New systems can be built or modified by changing a Sys-
tem Definition file. Systems can be easily run on varying numbers of nodes to change system
performance or to meet constraints of the hardware system.

� High-level message-passing routines to transfer data between programs running on differing
numbers of nodes. Multiple programs are interconnected with data-flow-type connections,
which hide the parallelism of the system within the connections. The message-passing routines
provide the scatter-gather operations needed to pass data between programs running on differ-
ing numbers of nodes, provide internal synchronization controls to make messages received by
programs synchronous to every instance of a program, and provide first in, first out (FIFO)
data buffers so that programs sending and receiving messages between each other can work on
different-size data blocks.

� A debugging environment for data capture, performance monitoring, logging, and error report-
ing. Debugging a parallel application requires a user interface that deals with multiple
programs and multiple instances of programs. The SPE provides spe_report(), a printf()-like
call, which conditionally writes to standard output based on a run-time parameter which can be
unique to each spe_report() call. Other routines allow the user to record performance statistics
and to view a summary at the end of the run. The data being transferred between any two pro-
grams may be written to an external file in several formats; the SPE handles gathering together
the distributed data.

� A global database for the storage of symbolic names with their associated values. Parameter
values within a system can be set at run time so that application code need not be recompiled
when values are changed. When new names are added, programs that don’t use them do not
need to be recompiled.

1.4 SPE STATUS

Development of the SPE is continuing since, when it is used with new applications, new require-
ments are often identified. The current implementation runs on an Intel Paragon XP/25. Although
the current implementation interfaces to the operating system using Intel-specific NX calls, it should

4

be portable to the emerging Message Passing Interface (MPI) standard or to other vendor-specific
parallel operating system interfaces based on message passing.

1.5 ORGANIZATION OF THIS REPORT

This report is organized as follows:

Section 2 describes how parallel programs communicate through ports. Different types of ports are
described that define how data are scattered and gathered when communicated between parallel
programs. Also discussed is how data are buffered and synchronized between programs.

Section 3 describes the user interface. This section also describes the input text files through which
the user describes an SPE application. These files define each SPE program, describe how they are
connected to form a system, and initialize database variables that can be used by the programs.
Examples are shown for each of the files, and rules are provided describing the semantics.

Section 4 describes the programming interface. The various SPE routines are described and
examples are provided showing how they are used in a typical application.

Section 5 shows how to compile and run an SPE application. The calling arguments and options of
the SPE program itself are described, and details are given on the interactive runtime interface.

Appendix A summarizes predefined database variables that can be used by the user to obtain
diagnostic information from the SPE. Appendix B lists the reserved words recognized by the SPE
when interpreting the input text files. Appendix C defines each of the SPE programming calls.
Appendix D describes the format and grammar used for the various description files. Appendix E
shows the decomposition algorithms used by the SPE when gathering or scattering data for a port
across multiple instances of a program.

1.6 ACKNOWLEDGEMENTS

1.6.1 Sponsors

The original development of the SPE was supported by the HyDOP and the BLAC projects, spon-
sored by the ONR-321.

Incentives to implement some features of the SPE were provided by the use of the SPE to imple-
ment synthetic aperture radar (SAR) and interferometric SAR (IFSAR) image formation and automat-
ic target recognition (ATR) applications. This work was supported by the Advanced Research Proj-
ects Agency (ARPA) Computing Systems Technology Office (CSTO) and Advanced Systems
Technology Office (ASTO).

The SPE was developed using a Paragon machine provided by the Department of Defense High
Performance Computing (HPC) Modernization Program Office.

1.6.2 Software Tools

The work reported here was helped appreciably by the following freely available software tools:

� The Revision Control System (RCS) written by Walter Tichy and distributed under the GNU
license. An imbedded version of the RCS indent command is used for SPE version consisten-
cy checking and application program version logging.

5

� cpp from gcc, the GNU C compiler. An embedded version of cpp is used to preprocess all SPE
description files.

� DDB, a package of dynamic memory database routines written and made available by Chris-
topher G. Phillips.

6

7

2. COMMUNICATION IN THE SPE

The SPE distinguishes between communication of data-flow and control information and treats the
two in different ways. A data-flow represents a continuous stream of information from one set of
nodes to another set in which the format and rate of the data remain constant during execution of the
system. Data-flow information also has inherent parallelism which the SPE exploits by distributing
parts of the data to different instances of a program. Control information, on the other hand, does not
flow at a constant rate, may not always be produced, and the size or structure of the information may
vary during the course of execution.

All communication from one program to another within an SPE application is done through ports.
This allows a program to be written in such a way that it is independent of its interconnections, there-
by allowing the user to rearrange program configurations at the time the program is loaded. The SPE
allows ports to be specified as striped, replicated, or control ports.

2.1 DATA-FLOW PORTS

Specifying that a port is a striped or replicated port tells the SPE how it should decompose a data-
flow connection as the data are transferred between ports of programs of multiple instances. When
the SPE transfers data to an input port that is replicated, then all instances of the receiving program
will be given the same data. When the SPE transfers data from an output port that is replicated, then
each instance of the sending program must provide the same data. When the SPE transfers data to an
input port that is striped, then each instance will be given a different (possibly overlapping) portion of
the data. When the SPE transfers data from an output port that is striped, then each instance of the
sending program will provide a different portion of the data (cannot be overlapping). The SPE can
transfer data between ports of similar or dissimilar types.

2.1.1 Striping Data

The size of the data communicated over a striped or replicated port must be defined by the user in
two dimensions, rows and columns. The data do not actually have to be two-dimensional, but to the
SPE it must be described as such (i.e., [1][1], [1][5], and [5][1] are valid). When the SPE transfers
data to a striped port of a program of multiple instances, it divides the data along its row dimension.
The data are not decomposed across the column dimension. The algorithm divides the data as equally
as possible into row-contiguous portions (see Appendix E). Figure 2 shows how a 6�4 array of data
would be striped across programs of 3 and 2 instances.

������� �

� � � �

�

	

�

�

�

Figure 2 . Striped 6-row by 4-column array.

������� �

������� �

������� �

� � � �
�

	

�

�

�

������� �

��� � ���������� ��� � ����������

When communicating data between programs, the SPE needs information on how the data are
decomposed at the sending and receiving ends of a connection. For a simple two-port connection, the

8

SPE must be able to handle eight basic types of connections: striped-striped, striped-replicated, repli-
cated-striped, replicated-replicated, striped-transposed-striped, striped-transposed-replicated, repli-
cated-transposed-striped, and replicated-transposed-replicated. Figure 3 shows what the communica-
tion paths might be for each type of connection. The examples show the sending program running on
3 nodes and the receiving program running on 2 nodes. The data that are communicated are in a
6-row by 4-column array. The extent of the data communicated on each path is shown as
[rows][columns].

Note that for the cases in figure 3 where the sender is replicated, there are many possible imple-
mentations, only one of which is shown. Also note that two pairs of diagrams (b and f, d and h)
appear identical but are differentiated by the fact that the received data are transposed before being
copied into the receiving buffer.

One can see that even for these simple cases, the level of detail is quite complex. Information must
be provided to the SPE about where each program instance is sending or getting its data and how it
will scatter or gather its data. Each instance within a program will operate differently to communicate
its portion of the data. Also, if the sending or receiving programs are scaled to run on a different
number of nodes, or if additional ports are added to the net, then the paths will change.

(a) Striped-striped. (b) Striped-replicated. (c) Replicated-striped.

(d) Replicated-replicated. (e) Striped-transposed-striped. (f) Striped-transposed-
replicated.

(g) Replicated-transposed-
striped.

(h) Replicated-transposed-
replicated.

[2–3][2–3]

[2–3][0–1]

[0–1][2–3]

[0–1][0–1]

[4–5][2–3]

[4–5][0–1]

[2–3][0–3]

[2–3][0–3]

[0–1][0–3]

[0–1][0–3]

[4–5][0–3]

[4–5][0–3]

[2–3][0–3]

[2–3][0–3]

[0–1][0–3]

[0–1][0–3]

[4–5][0–3]

[4–5][0–3]

[0–5][0–1]

[0–5][2–3]

[0–2][0–3]

[3–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–1][0–3]

[4–5][0–3]

[2][0–3]

[3][0–3]

Figure 3 . Internal message paths for communicating a 6-row by 4-column array.

An application programmer should not have to deal with this level of detail, and indeed this is
something that is provided for and kept hidden by the SPE. The programmer should not be con-
cerned with where the program is getting or sending its data or how the data are decomposed at the
other end of a communication path. Nor should the code be dependent on executing as a particular

9

instance of the program. The only thing the programmer should need to know is what portion of the
data the program works on and must produce.

2.1.2 Overlapping Striped Data

In order to take advantage of striping data to multiple program instances, the application code must
be able to process each data row independently of other rows. This allows processing to proceed
with no further communication between program instances. Some algorithms, however, require the
availability of the data in a number of adjacent rows. The SPE addresses this requirement by allow-
ing the user to specify an overlap for striped ports. This overlap is given by the number of rows of
overlap needed, and can be symmetrical or asymmetrical. That is, considering the block of rows allo-
cated to a particular program instance, the number of rows of overlap at the beginning of a block can
be the same (symmetrical) or different (asymmetrical) than the rows of overlap at the end of the
block. In addition, the SPE allows the overlap on the first and last instances of a program to be
treated differently than on the other instances, a feature required by some algorithms.

2.2 CONTROL PORTS

Ports can be specified to the SPE as being of control type. Control ports are provided to allow pro-
grams to communicate data that are not a part of the normal data-flow of the system. Data sent over a
control port do not have specifications for array size or element size, and the stripe and block overlap
options do not apply. When the composition of data sent between programs is irregular (cannot be
specified as a two-dimensional matrix), unknown, or varies during the run, then the data must be sent
via control ports. Control ports can only be connected to other control ports.

Normal control ports are connected like the replicated-replicated connection shown in figure 3d
(ignoring the dimensions of the data). That is, the same data must be sent by each instance of the
sending program and each instance of the receiving program gets the same data. However, sequential
control ports have different communication patterns. A sequential output control port creates a virtual
data flow consisting of an ordered sequence of control messages. Each program instance writes mes-
sages whenever appropriate for the data subset being worked on by that instance regardless of wheth-
er other instances write messages at the same time. Note that this is considerably different than data-
flow and non-sequential control ports where every instance must make matching send and receive
port calls. The order in which messages are transmitted through a control sequence port is the order
in which the instances make their request to send data. The SPE guarantees that all receiving pro-
grams get the messages in the same sequence.

When data from a sequential output port are sent to an input port, each message is normally deliv-
ered to every instance of the program. However, a round-robin input control port routes each subse-
quent message to a different instance of the program. When the time to process each incoming mes-
sage is the same, this provides a transparent method of parallelizing the processing of a sequence of
messages.

Figure 4 below shows an output control sequence port connected to an input round-robin port. The
three instances of the output port write messages whenever they wish. In the example shown in fig-
ure 4a, instance a writes two messages, then instance c writes one message, while instance b sends no
messages at all. These messages appear to the user as the virtual sequence of messages shown in fig-
ure 4b. Finally, figure 4c shows the message stream being distributed to the two instances of the des-
tination program in round-robin order. This model of a virtual message sequence simplifies the user’s
view of the interconnections; in fact, however, the SPE implementation delivers each message direct-
ly from source instance to destination instance as efficiently as possible.

10

Figure 4 . Sequence port to round-robin port connection.

a

b

c

c

a

a

c a a
c

a

a

(b) Virtual sequence
of messages.

(c) Round-robin
message delivery.

(a) Sequential message
creation.

2.3 FIFO BUFFERS

Another feature the SPE provides for data-flow input ports is that two interconnected programs can
work on different-sized data blocks. This supports the concept that a data-flow connection is a stream
of data columns flowing from one program to the next. The SPE requires that the row dimension of
each input port on a net agree with the output port to which it connects, but allows the column dimen-
sion of each to be different. The SPE can allow this by providing a FIFO buffer on each input port
which stores the data when the data are received. The FIFO buffer is a two-dimensional buffer that
performs the FIFO operation along the columns dimension of the buffer. Since the communicated
data is two-dimensional, the FIFO buffer must also be two dimensional. Figure 5 shows the opera-
tion performed by the FIFO buffer.

NEXT BLOCK REMOVED FROM FIFO

NEXT BLOCK PUT ON FIFO

COLUMNS

ROWS

Figure 5 . Input port two-dimensional FIFO.

The implementation of two-dimensional FIFO buffers is complicated by the fact that the physical
memory of a computer is accessible in only one dimension (every memory location is accessed by
one address). To understand this point, consider figure 6.

11

���� ���� �������

Figure 6 . Memory addresses in two-dimensional FIFO.

���� ���� �����

� � � �

� � � 	

 � �� ��

� � �

�� �� �� ��

�� �	 �
 ��

�� �� �� ��

� � �

 � ��

� �� ��

	 �� �	

�� �� ��

The 3 by 4 element boxes at the top of figure 6 represent the data being put into the FIFO buffer.
The 3 by 3 element boxes at the bottom of the figure represent the data being removed from the FIFO
buffer. (Looking back at figure 3a, we see this represents the data sent along the top two paths.) The
number in each box represents the address where each element is stored. One can see that if the ele-
ments of the input FIFO blocks are stored contiguously in memory, then the elements of the output
FIFO blocks will have to be read from noncontiguous memory locations. For instance, the first block
removed is read from addresses 0, 1, 2, 4, 5, 6, 8, 9, and 10. Once again, this level of detail is beyond
what an application program should be concerned with and is a feature provided by the SPE.

The SPE also supports block overlap, which allows the blocks of data taken from a FIFO buffer
with one receive call to overlap the data received with the next. The amount of overlap (in data col-
umns) is specified for each input port in the Program Definition files.

Another important benefit that a FIFO buffer provides is that it allows a program to overlap com-
munication with computation. For example, when a program is working on a block of input data, it
can also be receiving in its input FIFO buffer future blocks of data. Thus, when it finishes working
on the current block of data, it is ready to start to work on the next. The SPE provides the internal
control signals sent between the receiving and sending programs to keep the FIFO buffers full.

2.4 MESSAGE FLOW CONTROL

When a sending program sends data to an output port, the program blocks until the SPE has sent
the data to all the input ports the output port is connected to. The SPE will send the data to each
input port as space is made available in the port’s input FIFO buffer. When all the input ports have
received the data in their FIFO buffer, the SPE returns control to the sending program.

When a receiving program receives data from an input port, the program blocks until the data be-
come available in the port’s input FIFO buffer. When enough data have been collected in the FIFO
buffer to satisfy the input request, the SPE will transfer the data to the user’s buffer and return control
to the receiving program.

Internally the SPE controls the flow of data by having the receiving program tell the sending pro-
gram when it can send more data. Just before the SPE returns control to the receiving program, it
makes a decision of whether or not to let the sending program send more data. If the receiving
program has room in its FIFO buffer for more data from the sending program, it tells the sending pro-
gram how much more data to send. While the data are being sent, the SPE returns control to the
receiving program, allowing it to process the current buffer of data. The cycle repeats itself each time
the receiving program receives data.

12

Although control ports have no FIFO buffers, these ports otherwise work as described above.

This method of flow control provides the programmer with a simple decentralized method for syn-
chronizing programs. No program has to contain information about the requirements of the programs
it is connected to nor does any have to generate control signals to control the flow of data it consumes
or produces. Instead, these control signals are handled internally by the SPE. Each program simply
receives and produces data as fast as possible.

2.5 MESSAGE ORDER

There are other issues concerning data communication besides how the data are connected or buff-
ered. In parallel processing, where multiple instances of a program work on a problem, the data flow
seen by each instance of the program must be coherent; that is, messages received by each instance of
a program must be received in the same order. This is an obvious requirement for the correct opera-
tion of a program that receives data from multiple programs which operate asynchronous to each
other.

The SPE satisfies this requirement by providing several guarantees. First, the SPE guarantees that
messages from a given node are received in the order they were sent. Then the SPE makes sure that
messages received first are always delivered first. Finally, the SPE guarantees that for programs hav-
ing multiple input ports, the messages will be received in the same order by each instance of the pro-
gram.

Figure 7 shows the control signals used by the SPE to provide the message-passing
synchronization needed between program instances and to buffer the data between sending and
receiving programs. The request lines from program B to program A indicate that the FIFO buffers in
B are ready for more data and also indicate how empty they are. The sync lines from B0 to B1 and B2
indicate the order in which B0 has received its messages. The SPE uses this information to force mes-
sages to be received by the user’s program on B1 and B2 in the same order as on B0.

��	�

��
���

���

��
���

���

��
���

���

Figure 7 . Control signals.

��	�

��

��

��

��

��

��

13

3. USER INTERFACE

The user controls the SPE through a System Definition file, Program Definition files, and Database
Startup files. The System Definition file and Program Definition files describe in two levels how each
program in a system interfaces to other programs in the system, and how each program interfaces to
its outside world. The Database Startup files are used by the SPE to enter variables into a global data-
base that can be used by each program in the system.

A user loads and runs an SPE application by executing the program spe and supplying it with a
path name to the System Definition file for the application. When spe starts, it reads the System
Definition file and Program Definition files. From these files, it determines the configuration of the
system, and loads the programs specified in the System Definition file onto nodes of the target hard-
ware. spe then creates and downloads a unique port map to each program instance in the system,
which describes exactly how each program is connected to the other programs of the system. spe
then reads the Database Startup files as specified on the command line and initializes the SPE data-
base. Once all the programs have received their unique port map and the SPE database is initialized,
the programs are ready to run. spe interacts with the user through standard input and output.

The spe has a number of features that provide flexibility for the input files. Comments (pre-
pended with two slash characters “//”) allow documentation of the files and increased readability. All
input files are filtered through a C preprocessor (GNU cpp) that allows for file inclusion and macro
expansion as specified by the C language. spe also does expression evaluation for further flexibility
and scalability of the input files.

Details of the format and grammar of these files are described in Appendix D. See Section 5.3 for
a complete description of all the arguments that may be provided to the spe program.

The content of the input files, after preprocessing, must conform to the file formats described in the
following sections. In each of these sections, an example input file is given that illustrates a possible
description file for the example system shown in figure 8. Each box represents a different program in
the system, with a number in the lower right-hand corner indicating the number of nodes on which it
runs. Each box has named ports through which it communicates data to other ports on its net. Input
ports that are additionally buffered or transposed have an attached bubble containing an integer or the
letter “T,” respectively.

3.1 SYSTEM DEFINITION FILE

The System Definition file defines which programs are used in a system, how many nodes each
program will run on, and how programs are interconnected. spe uses it to determine what programs
will be loaded on what nodes and to make a unique port map for each program instance. Figure 9 is
an example of a System Definition file.

The System Definition file specifies the path name to each program that is to be loaded by spe , the
number of nodes that each program will run on, and a path name to the Program Definition file for
each program that will be loaded. After reading the System Definition file, spe then reads each
Program Definition file so that it can completely determine the port map for each program in the
system. The port map describes for each program instance what portion of the problem it will work
on and how it is connected to other programs in the system. spe determines which portion of the
data each program instance will work on based on the Program Definition file for a program and on
the number of nodes on which the program is specified to run.

14

Figure 8 . Example showing an implementation of an acoustic receiver system.

����	����� �������

	����

����������

����������

� ��

�

�

��

�

�

��� ���

����

��

���

��

����

���

��� �����

// File: system/receiver
//
// Key Word #Nodes Program Prog_Def_Path Executable_Path
// ––
 PROGRAM 1 ship ”def/ship” ”bin/ship”
 PROGRAM 1 hydrophone ”def/hydrophone” ”bin/hydrophone”
 PROGRAM 1 display ”def/display” ”bin/display”
 PROGRAM (10,20,0.5) beamformer ”def/beamformer” ”bin/beamformer”
 PROGRAM (15,40,1.0) matched_filter ”def/matched_filter” ”bin/matched_filter”

// Key Word Port
// ––
 BUFFER matched_filter:gain 1
 TRANSPOSE beamformer:d_in

// Key Word Net_list
// ––
 NET ship:gain, matched_filter:gain, beamformer:gain
 NET ship:ctl, beamformer:ctl
 NET hydrophone:elem, beamformer:d_in, display:elem
 NET beamformer:d_out, matched_filter:d_in

// dump all input data to the beamformer (after transposition)
 DUMP beamformer:d_in [:][:] SPE=”input data”
// dump rows 10 through 20 of frame 5 in MATLAB format
 DUMP beamformer:d_out [10:20][:] MATLAB=”float_complex” FRAMES=5

Figure 9 . System Definition file corresponding to the system shown in figure 8.

The System Definition file also specifies the net lists that interconnect the ports of each program in
the system. Programs communicate by passing input and output data through their ports. Data writ-
ten to an output port of a program are sent to the input ports on the net list to which the output port is
connected. A program is unaware of where its data go or where the data come from. This basic prin-
ciple of the SPE allows users to build modular systems that can be quickly modified or extended to
meet the changing needs of an application, and also promotes the reuse of software when new
applications are built.

The System Definition file specifies whether the data received by an input port need to be trans-
posed or additionally buffered to meet the input requirements of a program. Data must be transposed
when two connected programs need to process their data along different dimensions (such as in a

15

two-dimensional fast Fourier transform (FFT)). Additional buffering on an input port may be needed
to improve efficiency by increasing the amount of data the port can store.

Within the System Definition file, the user may specify that data sent or received on a striped or
replicated port also be written (dumped) to a file. The SPE handles gathering the distributed data into
a single file record. In addition, the user may specify that a subset of the transmitted data be recorded
that can often result in an important reduction in file size. Data can be dumped in MATLAB format,
in ASCII format, or in a binary format unique to the SPE. Data frames dumped from ports on pro-
grams that have multiple instances are written to the file as one logical record. Data dumped from dif-
ferent ports of the same program are normally written as multiple records to the same file, although
this can be changed with the use of options. On each invocation of the SPE, the first write to the file
normally erases the previous contents of the file; this behavior can also be controlled with an option.
Each record written to the dump files contains a header section that names and describes the data in
the record. The name given to a data record is composed of the port name and the frame number of
the data. For MATLAB files, the name of the record becomes the variable name. By use of the optional
dumping controls and multiple DUMP commands, multiple ports may be dumped to the same file and
different subranges of data from a single port may be dumped to one or more files.

The rules for making a System Definition File are as follows:

1. Each line of the System Definition file must begin (ignoring white spaces) with
PROGRAM, BUFFER, TRANSPOSE, EXCLUDE, NET or DUMP. These reserved words
determine the format of the rest of the line.

2. Each line starting with PROGRAM specifies a program used in the system. The first field
is a specification of the number of instances of the program (i.e., the number nodes on
which the program runs). This can be given as a single integer, or as three values
(min,max,weight) that give the minimum and maximum number of nodes and a
node allocation weighting factor. The weighting factor is used in conjunction with the
weighting factors of the other programs to allocate any available nodes after the mini-
mum requirements are met. When allocating the additional nodes, the SPE attempts to
match the ratio of the total number of nodes allocated to each program to the ratios of the
weighting factors. For instance, in the example of figure 9, the first five additional nodes
are allocated to the matched filter program giving it a total of 20 nodes. Since the beam-
former program has the minimum 10 nodes, this brings the total number of nodes allo-
cated to 20 and 10: the 2-to-1 ratio of the weighting factors. After this, two additional
nodes will be allocated to the matched filter program for each one allocated to the beam-
former program.

The second field is an identifier specifying the symbolic name by which the program will
be referenced in other parts of this file and the Database Startup files. The third field is a
string that specifies the path name to the Program Definition file. The fourth field is a
string that specifies the path name to the executable that runs on the nodes. The path
name field can include program arguments that are separated by spaces within the string.

3. Each line starting with BUFFER specifies an input port that needs extra buffering to store
data received on that port. The amount of additional buffering requested is expressed in
integer multiples of the normal buffer size provided by the SPE. The normal buffer size
is dependent on a number of factors internal to the SPE.

4. Each line starting with TRANSPOSE specifies an input port that must have its data trans-
posed when received.

16

5. Each line starting with EXCLUDE specifies a program that, although described elsewhere
in the System Definition file, is ignored by the SPE. This makes it easy for the user to
work with different configurations of the same program without continually modifying
other parts of the System Definition file.

6. Each line starting with NET specifies a list of ports that are connected together in a net.
Ports are formatted as program:port , where program and port are replaced by
identifiers. The first port in a net must be an output port. The remaining ports must be
input ports. Ports do not have to be connected to a net. (There is an SPE call that can
check if a port is connected, spe_port_is_connected().)

Control ports can only be connected to Control ports (see Section 2.2).

The rows dimension of all nontransposed input ports on a net must agree with the out-
put port to which it connects. The rows dimension of all transposed input ports on a net
must agree with the columns dimension of the output port to which it connects.

7. Each line starting with DUMP specifies a port whose data are to be dumped to a file. The
first field specifies the port to be dumped. Ports are formatted as program:port ,
where program and port are replaced by identifiers. Data can only be dumped from
striped or replicated ports. A port that is not connected can nevertheless dump data; this
allows specification of unused ports for the purpose of viewing internal data.

The second field indicates the rows and columns of the data array to be dumped. Rows and
columns are specified as [first_row:last_row][first_col :last_col]
indicating the range (inclusive) of rows and columns to dump. Any or all values may be
left empty indicating that the first or last row or column should be dumped. See figure 9
for examples.

The third field is specified as filetype=format. Filetype specifies the type of the output
data file and must be one of MATLAB, ASCII , or SPE. The format field is a string that
gives the type of data on the port. If filetype is MATLAB or ASCII , the format string
must be one of:

”double” ”double_complex”
”float” ”float_complex”
”int” ”int_complex”
”short” ”short_complex”
”ushort” ”ushort_complex”
”uchar” ”uchar_complex”

When filetype is SPE, the format may be an arbitrary string that will be included in the
record header.

A number of options may be given in any order at the end of the DUMP specification line:

� APPEND — The output file will not be erased when the first port record is written. Rather,
new records will be appended to the file.

� FILENAME=”string” — The output file name is changed to “string ”. By default, the
file is named “programname.extension” where extension is one of “mat ”, “ ascii ”, or
“spe ” depending upon the specified filetype.

� FRAMES= start:stop — This option specifies which data frames to dump. Start and stop
indicate the range of frames to dump. Frame numbers start with 1 and increase. To dump a
single frame, the colon and stop frame indicator are omitted. By default, all frames are
dumped.

17

� LABEL=” string” — For an SPE filetype, an arbitrary string may be specified for inclusion
in the header. This allows the user to include with the data a description of its source or
processing history.

� NO_HEADER — For an SPE filetype, the header information may be omitted in the case
that the user needs a file containing just the raw data. Normally, a header is included that
describes the data in the dump file. For the exact description of the data header, refer to the
SPE_FILE_HEADER type definition in “spe.h” (see Section 5.1).

� RENAME=”string” — The output port record is renamed to “string _xx” where xx is the
frame number. By default, every record is given the name of its port and frame number.

� STRUCTURE= offset,count,stride — If the array element is a data structure, this option
allows the amount of data dumped to be limited to a portion of the structure. Offset is an
offset in bytes into the structure indicating where a subarray of data is located. The number
of elements of data to dump is specified with count. If the count field is given as ALL, then
the number of elements dumped is derived from the data block size, the given starting off-
set, and the stride. The optional stride argument specifies the distance in bytes between ele-
ments. If stride is omitted, it is derived from the output format. The type of the output data
items is that indicated by format in the filetype field.

� CONVERT=convert_type — Normally, the SPE checks that the type of the output data
items specified by format in the filetype field is consistent with the port element size. When
the user is converting port data elements before dumping, the sizes of the types before and
after conversion may differ. This checking is disabled when the CONVERT option is used.
The optional convert_type field is an integer that is passed to the user-specified dump con-
version routine (see the entry for spe_dump_define() in Appendix C).

3.2 PROGRAM DEFINITION FILE

The Program Definition files define each program’s input and output. They are used, along with the
System Definition file, to make a unique port map for each program and instance in the system. Each
Program Definition file defines only the input and output for its own program, that is, there is no in-
formation in it defining what the program is connected to. For each use of a program in a system,
there can be a different Program Definition file.

A Program Definition file defines each port of a program. A port is defined by its direction, type,
array size, element size, and other options specific to certain types of ports.

The port direction indicates whether a port is an input or output port. Other fields of a port’s defini-
tion can or cannot be specified, depending on its direction.

The port type describes whether or how data will be decomposed among a program’s instances
when data are received or sent from a program. The port type can be defined as striped, replicated, or
control (see Section 2 for descriptions of each).

The port array size defines the size of the data a port receives or sends. It is specified only for rep-
licated and striped port types. If specified, it defines a port by two dimensions, rows and columns. It
need not actually be two-dimensional, but to the SPE it must be described as such (i.e., [1][1] ,
[1][5], and [5][1] are valid).

The port array size defines the size of the data before decomposition. That is, if the port is striped,
then each instance of a program will see only its portion of the data. If the port is replicated, then each

18

instance will see all the data. For striped ports, the data are decomposed across rows of the array (see
Section 2.1).

If a port is replicated, then the rows dimension can be any value. If it is striped, then the number of
rows must be greater than or equal to the number of program instances.

The port element size defines the size of each element of the data when the port array size is speci-
fied. The port element size will vary depending on the data that are processed (i.e., complex, real,
etc.).

The port stripe overlap option defines how many rows of overlap to use when decomposing data
across a striped input port. For striped ports, the SPE decomposes the data across rows of the array.
When the data are overlapped, adjacent program instances share common rows of the data between
them. The port stripe overlap can be specified only for input striped ports. Appendix E specifies the
algorithms used for decomposing striped overlapped and nonoverlapped data over program instances.

The port block overlap option allows columns of a data block taken from the input buffer to over-
lap with the next receive. This option is explained in Section 2.3 where the input FIFO buffers are
described.

Output control ports may be specified as sequential; input control ports may be specified as round-
robin. See Section 2.2 for a description of these port types.

Shown in figure 10 are examples of Program Definition files that could have been used in the
receiver system example in figure 8.

The rules for making a Program Definition file are as follows:

1. Reserved words that can be used in Program Definition files include PORT, INPUT,
OUTPUT, STRIPED, REPLICATED, STRIPED_OVLP, BLOCK_OVLP, CONTROL,
SEQUENCE, and ROUND_ROBIN.

2. Each line starting with PORT specifies the definition of a port. The fields are port, direc-
tion, type, array size, element size, and options.

3. The port field is an identifier specifying the name by which the port will be referenced.

4. The direction field must be specified as INPUT or OUTPUT.

5. The type field must be specified as CONTROL, STRIPED, or REPLICATED.

6. The array size and element size fields must be and can only be specified for striped and
replicated ports. The format for the array size field when specified is [rows][col-
umns] , where rows and columns are integers. The element size field is the number of
bytes for each element. On input ports, any of these three fields may be given as the re-
served word ANY in which case the corresponding value is derived from the output port
to which this input port is connected.

7. There are several optional fields that may be specified at the end of a PORT definition
line. These are specific to certain kinds of ports:

� BLOCK_OVLP=overlap_size — The block overlap option can only be specified for input
ports that are striped or replicated. The value of overlap_size must be an integer less than
the number of columns of the input data. Block overlap is described in Section 2.3.

� ROUND_ROBIN — The round robin option can only be specified for INPUT control ports.
See Section 2.2 for a description of round-robin control ports.

19

� SEQUENCE — The sequence option can only be specified for OUTPUT control ports. See
Section 2.2 for a description of sequenced control ports.

� STRIPED_OVLP=overlap_spec — The striped overlap option can only be specified for
input ports that are striped. The overlap_spec argument specifies one of several overlap
options as well as the size of the overlap. Section 2.1.2 describes how data overlap works
in general, while the decomposition algorithms are described in detail in Appendix E.

// File : def/beamformer
// Direc Array_ Elem_
// Key Word Port tion Type Size Size Options
// –––
 PORT gain INPUT REPLICATED [1][1024] 4
 PORT ctl INPUT CONTROL
 PORT d_in INPUT STRIPED [100][1024] 8
 PORT d_out OUTPUT STRIPED [100][512] 8

// File: def/hydrophone
// Direc Array_ Elem_
// Key Word Port tion Type Size Size Options
// ––
 PORT elem OUTPUT STRIPED [256][100] 8

// File: def/ship
// Direc Array_ Elem_
// Key Word Port tion Type Size Size Options
// –––
 PORT ctl OUTPUT CONTROL
 PORT gain OUTPUT REPLICATED [1][1024] 4

// File: def/display
// Direc Array_ Elem_
// Key Word Port tion Type Size Size Options
// –––
 PORT elem INPUT STRIPED [4][512] 8

// File: def/matched_filter
// Direc Array_ Elem_
// Key Word Port tion Type Size Size Options
// –––
 PORT d_in INPUT STRIPED [100][2048] 8 STRIPED_OVLP = 4
 PORT gain INPUT REPLICATED [1][1024] 4

Figure 10 . Possible Program Definition files for the receiver system of figure 8.

3.3 DATABASE STARTUP FILE

The SPE provides a global database to store symbolic names with their associated values. Pro-
grams are able to use the database to store such things as signal processing parameters, function con-
trol and switches, display parameters and control flags, and report and logging flags. Typically these
values are found in include files and are shared among programs. If instead they are stored in a global
database, then when the values are changed or new ones added, entire sets of programs need not be
recompiled.

The SPE allows the user to provide to spe a list of Database Startup files, which contain an initial
set of symbolic names and associated values for the system. Symbolic names and their associated
values can be assigned to different programs or to specific instances of programs. For example, one
may want to set a debugging or logging flag for a specific instance of a particular program, or may

20

want to set a program variable to different values for each use of the program (i.e., a program that can
do multiple functions).

A program can also initialize data in the database from the program interface. However, unlike
Database Startup files, a program cannot assign a variable to a specific program or instance of a pro-
gram.

The database manager is notified that a program will use a variable when the program registers for
the variable. When a variable in the database is given a value at program startup, the value is propa-
gated automatically to all programs that have registered to use that variable. This means that pro-
grams within a system can be developed without the programmer having to know the requirements of
other programs. Details about the program interface are discussed in Section 4.3.

The Database Startup files contain a list of variables and associated values used by different pro-
grams in the system. Because a system is a set of programs, and each program is a set of instances, a
symbolic name can have a different value for each program and instance in a system. Each line in the
Database Startup file allows a variable to be assigned to all instances of a specific program, to a spe-
cific instance of a program, or to all instances of all programs. The same variable can be specified
more than once (on a different line). An example of a Database Startup file is given in figure 11.
__

// File: database/receiver
//
// Key Word Name Type(Value) Program(instance)
// –––
 VAR number_of_widgets 100 display //integer
 VAR narrow_band TRUE matched_filter //integer
 VAR speed_of_sound 1500.0 //floating–point
 VAR input_filename ”sea_test1” hydrophone //string
 VAR debug_stuff OFF beamformer //report
 VAR interesting_vars FRAMES,gain,2,5 beamformer(0) //report

__

Figure 11 . Example of a Database Startup file.

The type of value that can be assigned to database variables are integer, real, string, and report.
Integer database variables may also be specified as TRUE or FALSE. Report variables are a special
type of variable that are specified either as ON or OFF, or as a list of four components: FRAMES,
portname, startframe, and endframe. The report type is explained in more detail in Section 4.4. With
the exception of the special report type, structures or arrays cannot be assigned through the user inter-
face to variables in the database.

The rules for making a Database Startup file are as follows:

1. Reserved words that can be used in Database Startup files include VAR, TRUE, FALSE,
ON, OFF, and FRAMES.

2. Each line starting with VAR declares and initializes a variable to be put in the SPE
Database. The first and second fields specify the variable name and value. The value
specified must be of the type integer, real, string, or report. The last field optionally
specifies the program or program and instance the variable is intended for. It may be left
empty, indicating that the variable is intended for everyone; it may contain a program
name, indicating that the variable is intended for all instances of a program; or it may
contain the specific instance of a program for which the variable is intended. If a

21

program name is given that does not match those used in the System Definition file, the
SPE provides a warning message.

3. If the variable is a report variable (see Section 4.4), then the value field is one of ON,
OFF, or FRAMES. If the value is OFF, then spe_report() calls that refer to that variable
will not generate output. If the value is ON, then spe_report() calls that refer to that vari-
able will generate output for the selected program and instance each time it is called. If
the value is FRAMES, then spe_report() calls that refer to that variable will generate out-
put between the times determined by the portname, startframe, and endframe fields,
where portname is the name of a port for the target program, and startframe and end-
frame specify the message counts that delimit the time the report will be generated.
Frame numbers start with 1 and increase. Figure 18 contains an example usage of a
report variable specified with FRAMES. An undefined report variable is considered to be
OFF.

22

23

4. PROGRAMMING INTERFACE

The programmer makes use of SPE features by calling SPE library routines from within the
application programs. This section describes the use of those library routines, grouped according to
the features provided by the routines: the message routines, the database routines, the report routines,
the memory allocation routines, the performance monitoring routines, and synchronizing operations.

4.1 MESSAGE INTERFACE

4.1.1 spe_init(), spe_send(), spe_recv(), spe_port_id(), spe_port_info()

The first SPE routine called by the program must be spe_init(). This routine blocks until the call-
ing program receives configuration information from the SPE loader. This information includes port
interconnections, program parameters, and database values specific to the program instance. The
spe_init() call determines and allocates the resources needed to perform the message-passing opera-
tions used later in the program.

Messages are passed between programs with the spe_send() and spe_recv() system calls. These
calls perform the special scatter and gather operations needed to transfer data between programs with
multiple instances. With these calls, each instance of a program will send or receive striped or
replicated portions of the data (see Section 2.1). There are also window versions of these calls,
spe_send_window() and spe_recv_window(), which provide the user more flexibility in copying out
of and into data buffers.

Programs communicate through ports, avoiding the need for the code of a program to contain
explicit information on where it is sending or receiving its data. The spe_send() and spe_recv()
system calls require the caller to provide the port ID of a port to send or receive data. The port ID of
a named port is returned by the spe_port_id() system call. Port IDs are assigned by the SPE and must
be used when referring to a port.

The portion of the problem that an instance of a program works on can be found from the
spe_port_info() system call. The spe_port_info() routine copies to the supplied address information
describing the portion of data that is striped or replicated for the given port and instance. The calling
program instance uses this information to determine the portion of data it will work on and to allocate
buffers for receiving or sending the data. The calling program must be written so that each instance
of it can work on any contiguous-row portion of the data.

These routines and spe_db_wait(), which will be described later, represent the minimum set of rou-
tines that must be used by a program. An example program using each of these routines is shown in
figure 12.

4.1.2 Message Interface Example

The program illustrated in figure 12 repeatedly performs FFTs on blocks of input data. The input
data blocks can be of any size, but must remain fixed over time. Each block of input data is received
on port “in”, and each transformed block of output data is sent to port “out”. The program repeats
itself forever until the SPE system shuts down.

The program is written so that it can be implemented over any number of instances. Resources,
such as the buffer space used to receive input messages, are allocated at run time. Careful use of the
spe_port_info() routine is critical to developing a flexible general-purpose program. The program is

24

__

/* File: fft.c
 *
 * Description: Performs FFTs on rows of input matrix (rows x columns).
 * The FFT size is equal to the number of columns in the matrix.
 * The rows of the input matrix are striped over the program
 * instances. For example if the input matrix is 100 x 128 then
 * a 128–pt FFT will be performed on each row of the matrix.
 */

#include <spe.h>

long ii, num_rows, fft_size, port_id, in_pid, out_pid;
COMPLEX *buffer;
size_t buffer_size;
SPE_PORT_INFO in_port_info;
SPE_STATUS status;

void main()
{
 /* Initialize the SPE interface */
 spe_init ();

 /* Register and assign database variables here. */

 spe_db_wait (); /* Explained in ”Database Interface” */

 /* Get the port IDs of ports ”in” and ”out” */
 in_pid = spe_port_id (”in”);
 out_pid = spe_port_id (”out”);

 /* Determine what portion of the problem this instance will work on. */
 spe_port_info (in_pid, &in_port_info);

 num_rows = in_port_info.end_row –
 in_port_info.start_row + 1;
 fft_size = in_port_info.num_columns;

 /* allocate space for the input data. */
 buffer_size = (size_t)(num_rows * fft_size * sizeof(COMPLEX));
 buffer = spe_malloc (buffer_size, ”main buffer”);

 /* Loop forever until some other program terminates the run. */
 while (1)
 {
 spe_recv (in_pid, buffer, buffer_size, &status);

 for (ii = 0; ii < num_rows; ii++)

 cfft(buffer+ii*fft_size, fft_size, 1); /* buf,size,1=forward */

 spe_send (out_pid, buffer, buffer_size);
 }
}

__

Figure 12 . Example FFT program illustrating the use of the basic SPE routines.

written so that it can work on any size data block (rows vs. columns), thus maximizing the reuse of
the software.

Figure 13 shows how quickly an application can be built by reusing software. The two-
dimensional FFT in figure 13b was constructed by simply connecting two copies of the one-
dimensional FFT of figure 13a through a transposed connection. No new software was developed.

25

��� �������������� 		�

		�

�

��
�

		�

�

��
�

		

�

��
�

��� ��������������� 		�

Figure 13 . Reuse of an SPE program.

4.1.3 spe_msg_wait(), spe_msg_wait_list(), spe_probe(), spe_probe_list()

In the example FFT given in figure 12, the program waits for data on a single port. To wait for
data from multiple input ports when the order of the messages is not known ahead of time, the
program must use the spe_msg_wait() and spe_probe() routines. The spe_msg_wait() routine blocks
until a message is ready to be received on one of the input ports. When a message is available, the
spe_msg_wait() routine returns with the port ID of the oldest pending message (the message that was
available first).

The spe_probe() routine determines whether a message on any input port is ready to be received.
spe_probe() returns immediately with either the port ID of the oldest pending message or the prede-
fined constant SPE_NULL_PORT if there is no message available to be received.

There are extended versions of both spe_msg_wait() and spe_probe(): spe_msg_wait_list() and
spe_probe_list() allow the user to specify a list of port IDs that should be checked.

The example program illustrated in figure 14 shows how one might use the spe_msg_wait()
routine. It is not known ahead of time the order in which messages become available over ports “in1”
and “in2”. However, it is known ahead of time that when a message becomes available on port
“in2”, another will soon follow on port “in3” (for instance, these messages may be sent from the
same program). In figure 14, the spe_msg_wait() routine is used to block the program until a
message is available to be received, and then if-else statements are used to determine from which port
__

/* Get the port IDs of each input port. */
in1_pid = spe_port_id (”in1”);
in2_pid = spe_port_id (”in2”);
in3_pid = spe_port_id (”in3”);
...
while (1)
{
 /* Wait on a message from any input port. */
 pid = spe_msg_wait ();

 if (pid == in1_pid)
 {
 spe_recv (in1_pid, buffer1, buffer1_size, &status);
 ...
 }
 else if (pid == in2_pid)
 {
 spe_recv (in2_pid, buffer2, buffer2_size, &status);
 spe_recv (in3_pid, buffer3, buffer3_size, &status);
 ...
 }
 else ...
}

__

Figure 14 . Usage of spe_msg_wait().

26

to get the message. When a message becomes available on port “in1”, it is received and processed.
When a message becomes available on port “in2”, it is received and processed along with the
message from port “in3”. The program does not necessarily have to receive and process messages in
the order in which they become available. In the period that the messages on ports “in2” and “in3”
are received, a message on port “in1” may have become available.

4.1.4 spe_port_exists(), spe_port_is_connected()

In a program that has been designed for general use, it may not be known ahead of time whether all
ports are actually connected. The routines spe_port_exists() and spe_port_is_connected() can be
used to determine these qualities. The spe_port_exists() routine returns a Boolean value indicating
whether the named port exists. The spe_port_is_connected() routine returns a boolean value
indicating whether the named port is connected. Both routines must be supplied with the string name
of the port of interest. Data sent to a disconnected port will be silently ignored unless it is being
dumped to a file. An attempt to receive data on a port that is not connected will cause the SPE to ter-
minate and produce an error message.

4.1.5 spe_eos()

A program can send to an output port an end-of-stream (EOS) mark, indicating that the program
will temporarily or permanently stop the flow of data to that port. The EOS mark can be used, for
instance, to determine when a system is finished processing or to reroute the flow of data through a
system. When sent to a replicated or striped port, the EOS mark also specifies the number of rows
and columns of data remaining in the data stream. The EOS mark and the number of rows and col-
umns of valid data can be detected by a receiving program from the status argument of the spe_recv()
routine.

The EOS mark must be used at the end of a stream of data sent to a replicated or striped port to
guarantee that the complete data stream can be received. Without the EOS mark, the user cannot
receive data from a port’s input FIFO if not enough columns have accumulated to make a complete
input message. This condition can occur when the number of columns on an input and output con-
nection are different or when block overlap is used at the receiving port.

The entry for spe_eos() in Appendix C contains additional details on its use.

Figure 15 shows how a typical data-flow system might be connected. Program A reads data from
an input file, program B processes the data, and program C writes the processed data to an output file.
Each program executes a loop that receives, processes, and produces frames of data. The system will
run until program C writes to the output file the last frame of data that program A produces and pro-
gram B processes. When program C writes the last frame of data to the output file, it will then initiate
system termination, causing all the programs to exit.

For this to happen, program C must be able to determine when it has received the last data that it
will write to disk. If this information is not embedded in the data, then it must use some out-of-band
technique to determine the end of the data. It is possible to use a separate control port to solve this
problem, but this solution often has synchronization problems. For this reason, the EOS mark is pro-
vided to indicate that the end of a stream has been reached. It provides a way to tell the user that the
last piece of data has been read.

The EOS mark is used as follows: When program A has finished reading the input file and has
assembled the last part of the data for program B, it sends an EOS mark to program B by calling

27

spe_eos(). Program B detects the EOS mark and the number of valid rows and columns from the sta-
tus information returned by the spe_recv() call and, in turn, calls spe_eos() to send the EOS mark to
program C. Finally, program C detects the EOS mark from the status information returned by the
spe_recv() call, closes the output file, and initiates system shutdown.

There is an additional example of the use of spe_eos() in Appendix C.

Figure 15 . EOS is daisy-chained through programs A, B, and C.

�

�	�

�

��

�

�� �	�

4.1.6 spe_enter_seq(), spe_leave_seq()

The spe_enter_seq() and spe_leave_seq() routines allow the SPE to maintain message order when a
program that sends data on one or more control sequence ports also must send data on other kinds of
ports. These two classes of ports have a fundamental difference in their method of use. With non-
control-sequence ports (replicated, striped, or regular control ports), each instance of a program must
access the ports in the same order and frequency. With control sequence ports, each instance of a pro-
gram is free to use the port(s) as many times as required or not at all, regardless of what occurs in the
other instances. To maintain message order without the spe_enter_seq() and spe_leave_seq() rou-
tines, the SPE would have to make a barrier call internally each time a noncontrol-sequence port was
called, a possibly expensive operation.

Before an instance of a program can send data to a control sequence output port, each instance of
the program must call spe_enter_seq(). This routine blocks until all instances of the program have
called the routine (i.e., a barrier call) and then causes the SPE to enter a state that allows instances of
the program to asynchronously send data to the program’s control sequence ports. While in this state,
the program cannot send data to striped ports, replicated ports, or regular control ports. Each instance
of a program must call spe_enter_seq() even if it does not send data to a control sequence port.

When the program is done sending data to its control sequence ports and wishes to send data to its
replicated ports, striped ports, or regular control ports, it must call spe_leave_seq(). This routine
blocks until all instances of the program have called the routine (i.e., a barrier call) and then causes
the SPE to enter a state that allows instances of the program to send data to the program’s striped,
replicated, or regular control ports. While in this state the program cannot send data to its control
sequence ports. Each instance of a program must call spe_leave_seq() even if it did not send data to a
control sequence port.

4.2 TERMINATING SPE PROGRAMS

Because a program is only one part of an SPE application, the correct procedure for terminating or
exiting a program used with the SPE is not the same as for a single sequential program. When used
with the SPE, a program should never exit. There are several reasons for this, primarily because the
SPE sends internal messages back and forth between programs. If a program instance exits, then the
operating system removes the program’s code, and there will be no response to these messages caus-
ing other parts of the application to hang. Secondly, even if the user’s code has finished its part of the
application, the user may wish to interrogate the program through the interactive user interface or to

28

print performance information collected during the program’s execution, and it is not possible to com-
municate with the program once it has exited.

The SPE provides the routines spe_idle() and spe_terminate() to correctly handle program and
application termination.

4.2.1 spe_idle()

If one of the programs in an application has completed its work, but others may still be working,
then spe_idle() should be called. When a program calls spe_idle(), it goes to sleep until the system
terminates (e.g., it never returns from the call). This allows a program to stop running without caus-
ing other programs to become hung. An idle program will still be able to report results collected from
its performance monitors when the program is terminated, as well as to respond to the interactive user
interface. An endless program loop that contains no calls to the SPE library will prevent the program
from being properly terminated by the SPE.

4.2.2 spe_terminate(), spe_terminate_define()

Any program may call spe_terminate() if it wishes to terminate the entire application. The SPE
will cause each program in the application to terminate when the next SPE routine is called, or if
the program is already executing in an SPE routine, to terminate immediately. The SPE does not
interrupt what the user’s program is currently doing. When notified to terminate, each program will
execute an optionally defined user termination routine that is specified using spe_terminate_define().
This allows a program to execute critical cleanup code (such as closing files) when the program is
terminated by some other program. After executing the user’s termination routine, the SPE will
generate any spe_report() summaries that have been requested and will then exit.

4.3 DATABASE INTERFACE

As described earlier, the SPE provides a global database to store symbolic names with their
associated values. Variables can be stored into and read from the database through either a user or
program interface. This section describes the program interface.

The program interface, unlike the user interface, does not consider a variable to have a specific des-
tination. That is, a program cannot specify that a variable should contain different values for different
programs or instances of programs. This is consistent with the SPE philosophy that a program need
not contain knowledge of the existence or requirements of other programs in a system.

A program interfaces to the SPE database by first registering each variable that it will access in the
database. When a program sets a variable’s value in the database, that value propagates to all pro-
grams that have registered for it.

4.3.1 spe_db_register(), spe_db_set(), spe_db_wait()

Three routines are used by a program to interface to the global database. A program calls the
spe_db_register() routine to tell the database manager that it is interested in a variable. The program
supplies to the routine a string containing the name of the database variable, an address in memory
where the local copy of the variable will be maintained, an enumeration indicating the type of vari-
able that it expects, and the size of the variable in bytes.

A program sets the value of a database variable by calling the spe_db_set() routine. It supplies to
the routine a string containing the name of the database variable, the address in memory where the

29

value will be copied from, an enumeration indicating the type of variable being stored, and the size of
the variable in bytes. Possible values for the types of variables allowed are given in Appendix C
where spe_db_register() and spe_db_set() are described.

After a program has registered or set all database variables, it must call the spe_db_wait() routine.
This routine is a system-synchronizing routine that waits until all programs in the system have also
called spe_db_wait(), indicating that they too have registered or set database variables. This routine
must be called by every program regardless of whether or not the program actually registers or sets
database variables. At this time the SPE propagates the values of all variables that have been set,
either by the user via configuration files or by the program via spe_db_set(), to all programs that have
registered for the variable. The spe_db_wait() routine also updates local copies of database variables.

The example in figure 16 shows how one might use the global database to make the FFT program
more general purpose. The program uses the global database variable “forward_fft” to determine
whether it should perform a forward or reverse FFT. The variable would be set from a Database
Startup file where it could be set differently for each usage of the program. The FFT program (or any
program in the system) must make sure that it does not set a value to this database variable, thus
propagating the same value to all usages of the program (different executions of the program may be
directed, for instance, to do the FFT in the opposite direction).

void main()
{
 ...
 BOOLEAN forward_fft = TRUE; /* Default: forward FFT */
 ...
 spe_init ();

 /* ”forward_fft” will be set in the Database Startup file. */
 spe_db_register (”forward_fft”, &forward_fft, SPE_DB_INT, sizeof(BOOLEAN));

 /* Wait for other programs to register or set database variables.
 * Update local copies of the database variables. */
 spe_db_wait ();
 ...

 while (1)
 {
 spe_recv (in_pid, buffer, buffer_size, &status);

 for (ii = 0; ii < num_rows; ii++)
 if (forward_fft)
 cfft(buffer+ii*fft_size, fft_size, 1); /* Forward FFT */
 else
 cfft(buffer+ii*fft_size, fft_size,–1); /* Reverse FFT */

 spe_send (out_pid, buffer, buffer_size);
 }
}

Figure 16 . Using a global database variable.

Figure 17 shows how one might use the new FFT program to build a simplified beamformer. Also
shown is the Database Startup file that controls whether each program does forward or reverse FFTs.
One can see how quickly a system can be built by reusing software.

Extending this concept of reusable software, one might build a general-purpose processing module
that could perform any of the functions found in a standard vector-processing library. A global

30

database variable would determine how each usage of the processing module within a system would
function. For instance, the string database variable “libxx_function” could be used to determine if the
libxx.c program would perform an FFT, correlation, or vector magnitude function. From the Data-
base Startup file, one could specify a different function for each use of the program.

����

�

�����

����

	

���� �

����

�

����

����� �������������

// File: database/beamformer
//
// Key Word Name Type(Value) Program(instance)
// ––
 VAR forward_fft TRUE fft1
 VAR forward_fft TRUE fft2
 VAR forward_fft FALSE fft3

���
������� ������� �����

Figure 17 . Program reuse controlled by the global database.

4.4 REPORT INTERFACE

Debugging a parallel application requires that the user deal with multiple programs and multiple
instances of programs. Using the traditional printf() statement to trace the progress of an application
is not practical because of its replicated use when called from programs implemented on multiple
nodes or from common modules used by multiple programs. When printf() is used in a replicated
program, the user gets more output than wanted (e.g., 50 repetitions of the same message), and in
addition, the user usually does not know from which program or program instance the message has
been generated. Also, typically when more than one printf() is used simultaneously, their results frag-
ment and mix in the standard output. What is needed instead is a routine that acts like printf() but that
conditionally executes based on conditions that the user can control.

4.4.1 spe_report()

The SPE provides the spe_report() call that provides the programmer a way to control and filter
debugging and reporting output printing. In addition, all output generated through the spe_report()
call is recorded into the log file.

The spe_report() system call functions the same as the printf() system call except that it requires
one extra argument. The first argument to spe_report() specifies a report variable in the global data-
base that spe_report() will use at run time to determine if it should actually write the data to standard
output. Report variables are created by the user, through Database Startup files, to control which
spe_report() calls write to standard output. Each use of spe_report() can refer to a different report
variable, but through careful selection of categories and placement of spe_report() calls, one can
create an effective debugging environment. The other arguments to spe_report() look the same as
that used in printf().

The user creates report variables by setting their value in the Database Startup files. Through the
use of these variables, the user can specify which categories of reports to display, for which programs

31

and instances, and for what range of time (time is dictated by range of messages over a specific port).
Most of the time, the user will indicate that reports are not desired. spe_report() calls that use a
report variable that has not been defined will not generate output. Figure 18 is an example of how
one might specify a report variable in a Database Startup file.

// Key Word Name Type(Value) Program(instance)
–––
 VAR interesting_vars FRAMES,gain,2,5 beamformer(0)

Figure 18 . Specifying spe_report() output using FRAMES mode.

This line says that we want to see output referring to “interesting_vars” from the spe_report() rou-
tines called within instance 0 of the beamformer program and called between the times that the gain
port receives its second and fifth message. The user can set a different value for “interesting_vars”
for each program and instance in the system, or the same value to all instances of a specific program,
or the same value to all instances of all programs.

For this report variable to be effective, the beamformer program would contain spe_report() calls
after places where these interesting variables are computed. For example, a portion of the beamform-
er program might look like:

speed_of_sound = ...
spe_report (”interesting_vars”,”speed_of_sound=%f”,speed_of_sound);
...
num_bad_sensors = ...
spe_report (”interesting_vars”, num_bad_sensors=%d”, num_sensors);

As a result, when these calls are executed, meeting the conditions specified in the report variable,
the spe_report() will generate output. For example, the following output might appear:

REPORT:beamformer(0):gain:frame=2, interesting_vars, clk=87.887,node=24
–––
speed_of_sound=1588.1

REPORT:beamformer(0):gain:frame=2, interesting_vars, clk=87.889,node=24
–––
num_bad_sensors=0

When the spe_report() routine writes data to standard output, it provides a header portion that
indicates the name of the report variable, the name of the calling program, the instance of the calling
program, the time at which it occurred, and the physical node number. This information is also
recorded identically in the SPE log file.

4.4.2 spe_report_enabled()

There are times when information to be reported is not readily available, requiring extra manipula-
tion or calculations. In order to avoid this extra work when the report variable is not turned on, the
user may call the Boolean function spe_report_enabled() to determine if a report call will actually
result in any output being produced. As an example:

32

/* avoid extra work if the report variable is not turned on */
if (spe_report_enabled (”interesting_vars”))
{
 /* calculations for report output */
 spe_report (”interesting_vars”, ...);
}

4.4.3 Predefined Report Variables

The report variables “error”, “warning”, and “info” are predefined, and they are always set to ON.
When a program uses them in a spe_report() call, it forces the formatted data to be written to standard
output. The “error” and “warning” variables also produce a large noticeable banner on the output.
The SPE generates a summary report at system termination that indicates how many times the “error”
and “warning” variables were used. Shown below are example uses of these categories:

/* Force spe_report() to generate output. */
spe_report (”info”,”Beginning Initialization”);
...
if (speed_of_sound > 2000)
 spe_report (”warning”,”speed of sound out of range”);
...

Many of the SPE system calls have associated report variables that can be set by the user. They
can be used to determine when system calls are entered and exited, thus tracing the execution of a
program. Other report categories can be used to determine when memory is allocated with spe_mal-
loc() or to report performance monitoring statistics. Appendix A contains a list of these variables and
shows the information they provide. In Appendix C, the description of each library call summarizes
the associated report variables.

4.5 MEMORY ALLOCATION INTERFACE

4.5.1 spe_malloc(), spe_free()

Within the SPE, memory allocation is done through special SPE library calls. Users should always
use spe_malloc() and spe_free() rather than calling malloc() and free() directly. The SPE uses mal-
loc() and free() internally while protecting these calls from interruption by other SPE interrupt rou-
tines in the SPE library. The two routines spe_malloc() and spe_free() work together to maintain
memory usage statistics and the purpose, provided by the caller, for which the various memory
allocations were needed. These statistics are used to determine current memory usage that is dis-
played with spe_report() messages. Detailed statistics may be viewed at run time using the interac-
tive user interface (see Section 5.4).

4.6 PERFORMANCE MONITORING INTERFACE

4.6.1 spe_monitor_on(), spe_monitor_off()

The SPE provides two simple routines, spe_monitor_on() and spe_monitor_off(), which the user
can use to monitor the performance of sections of code within an application program. The user
would use these routines to help find bottlenecks within the application and thus optimize the slow
programs of an application or reallocate the hardware resources to the application programs.

The spe_monitor_on() and spe_monitor_off() routines are placed around sections of code for which
the programmer wants performance statistics. The programmer supplies a string argument to the

33

monitor routines that identifies the section of code to be monitored. The monitor routines keep track
of how many times each section of code is entered, how much accumulated time is spent in each sec-
tion, the minimum and maximum times spent in each section, and the accumulated number of
operations performed in each section.

At the end of a run, or by using the interactive user interface during execution, the user can view
the information recorded by each of the monitors. For an example of how to use the monitors and
view the results, see the entry for spe_monitor_on() in Appendix C.

4.7 SYNCHRONIZING OPERATIONS

Parallel programming libraries usually include a set of routines for global operations. These rou-
tines are barrier calls, that is, every program in the application must arrive at the same point in the
code and make the same call before they can proceed. In the SPE, where applications are composed
of multiple heterogeneous programs, these operations will clearly not work properly because the dif-
ferent programs are doing unrelated things at any given time. However, the SPE provides a similar set
of library calls that synchronize only the instances within a given program.

4.7.1 spe_program_sync()

Under some circumstances, it is necessary to make certain that all the instances of a program have
reached a certain point in their processing before any instance proceeds. The SPE provides a way to
synchronize all instances of a program using the spe_program_sync() call. spe_program_sync()
blocks each instance of a program until all instances have arrived at the same point, and then returns.

4.7.2 spe_global()

This routine allows the programmer to define a global, synchronizing operation. A typical example
is to find the maximum value of a set of values distributed across the instances of a program. An
argument to spe_global() provides the name of a function that will perform a user-defined operation
on data contributed by each instance of the program. The function must be able to reduce (combine)
data contributed by each node using an operation that is both associative and commutative (e.g., sum,
product, maximum, minimum). Each instance blocks when spe_global() is called; when all instances
have been provided the output values, the call returns.

4.8 VERIFICATION OF SPE ROUTINE CALLING ORDER

A typical SPE application will have multiple programs, with each program performing a different
task. Each program will have multiple instances with each instance performing the same algorithm
but on different data. With a few exceptions, this is a basic requirement of the SPE. For the SPE to
function properly, most of the calls made to the SPE by each instance of a program must be done in
the same order with the same arguments. For example, when a program receives and sends data over
replicated, striped, or regular control ports, each instance of the program must make the same port
calls in the same order (not true for sequential control ports).

The SPE tries, in the least expensive way, to check that this is being done. As SPE routines are
called, each instance of a program maintains a hash value of the sequence of SPE calls, along with
their arguments. When the program calls an SPE routine that requires that data be passed between
instances, the current hash value is also sent (piggybacked with the message) and checked. If the hash
values between instances of the program are different, the SPE will terminate the application and
print a list of the most recent SPE routines called by the instances with different hash values.

34

The SPE routines that are hashed are spe_probe(), spe_probe_list(), spe_recv(), spe_recv_win-
dow(), spe_discard_data(), spe_send(), spe_send_window(), spe_eos(), spe_init(), spe_pro-
gram_sync(), spe_eos(), spe_enter_seq(), spe_leave_seq(), and spe_global(). The port ID arguments
of these routines are also hashed. The routines spe_recv() and spe_send() are not hashed if they refer
to data sent via a control sequence port since there is no requirement that all instances of a program
execute these calls in the same order.

The routines that cross check (between instances) the hash value are spe_probe(), spe_probe_list(),
spe_discard_data(), programsync(), spe_eos(), spe_enter_seq(), and spe_leave_seq(). If the database
variable “spe_hash_check” is TRUE, then the routines spe_recv() and spe_recv_window() will also
cross check the hash value.

35

5. USING THE SPE

This section describes how to create and run application programs that use the SPE. Both calling
line options and interactive commands are explained.

5.1 COMPILING AND LINKING AN SPE PROGRAM

The source code of an SPE program must include the spe.h definitions file as indicated in the
library descriptions in Appendix C. When compiling and linking an SPE program on the Intel Para-
gon, you must use the –nx switch. To understand the effects of this switch, see the Paragon User’s
Guide manual. When linking an SPE program, you must link in the library libspe.a.

For example, the following command line compiles and links the file myprogram.c to create an
executable file called myprogram:

% cc –nx –o myprogram myprogram.c libspe.a –lkmath

5.2 RUNNING AN SPE APPLICATION

A user loads and runs an SPE application by executing the spe program. This program takes as an
argument the name of the System Definition file that spe will read to start the application. spe then
begins to load the programs specified in the System Definition file onto the target nodes of the hard-
ware. From the System Definition file, spe reads the Program Definition files and builds and down-
loads a unique port map to each program instance in the system. spe then reads the Database Startup
files as specified on the command line and in the Program Definition files and initializes the SPE
database. Once this is done, the programs are ready to run.

As an example, to run the system described in figure 8 you would execute:

% mkpart –sz 30 mypart
% spe –pn mypart –on 0 –s system/receiver -d database/receiver

5.3 SPE PROGRAM ARGUMENTS

The calling sequence for spe is:

% spe –pn partition –on 0 –s sys_def_filename
[[-d database_startup_filename]...]
[-l log_filename]
[-ident] [–identall] [–nocheck] [–noload] [–nolog] [–portmap]
[[–Dname]...] [[–Dname=def]...]

The arguments –pn partition –on 0 are arguments to the Paragon application (1) command, which
say that the spe program will run on node 0 of partition partition. The remainder of the arguments
are passed to the spe program after it is loaded on node 0.

Here is a description of the program arguments (listed alphabetically) that may be specified when
executing spe :

–d database_pathname
the pathname of the Database Startup file to use for this execution. This option may
be repeated allowing the use of multiple Database Startup files that are read and pro-
cessed in the order given. (optional)

36

–Dname or –Dname=value
the given named variables are set for preprocessing by cpp allowing additional con-
trol at load time over multiple configuration file parameters. This argument may be
repeated to set multiple variables. (optional)

–ident
if specified, spe will search all binaries specified in the System Definition file for a
string matching the pattern ‘$Header: .* $’ and log the resulting output. These strings
may be generated automatically by the RCS revision control system. (optional)

–identall
works identically to the –ident option except the RCS header strings for the internal
SPE library modules, normally suppressed, are also printed. (optional)

–l logfile_pathname
the pathname in which spe will log all output from report calls. By default, all report
output is logged to the file report_log.nn in the current directory. Interactive
user input is also echoed into the log. (optional)

–nocheck
if specified, spe will not execute the usual check that the user has compiled and
linked with an spe.h header file and an libspe.a library file that are consistent with the
currently executing version of spe . Normally, spe halts with an error message if the
consistency check fails. This option can be used to force spe to continue to execute
in the presence of mismatching versions, but the user must understand the reason for
the inconsistency as well as any possible consequences. (optional)

–noload
if specified, spe will check all configuration files but will not actually load any pro-
grams. This is a quick way to verify that the System Definition file and all Program
Definition files are self-consistent. (optional)

–nolog
if specified, no output will be generated to the log file. (optional)

–on 0
specifies that spe itself will execute on only the first node in the partition. This argu-
ment indicates to the Paragon runtime system that spe is to be loaded and executed
on node 0 and only node 0; this is also a requirement of the spe program. (required)

–pn partition_name
indicates to the Paragon runtime system the partition in which spe will execute.
(required)

–portmap
if specified, spe will log additional detailed information on the port connections
between all instances of all programs. (optional)

–s system_definition_pathname
the pathname of the System Definition file to use for this execution. (required)

37

5.4 INTERACTIVE USER INTERFACE

While an SPE application is running, the user can interact with the SPE to determine a number of
things about the status of the application. Here is a description of the available interactive commands
(listed alphabetically):

b <node#>
Show why node# is blocked.

database or d
Print the contents of the database.

help or h or ?
Print this list of interactive commands.

hi <node#>
Print a history of the most recent SPE library calls made on node#.

list or l
List the nodes that have not terminated or cannot respond to the SPE stop command.

ma <node#>
List all monitor values (including detailed SPE monitors) for node#. If node# is
omitted, list them for instance 0 of all programs.

me <node#>
Show how much memory has been allocated on node# using the spe_malloc() call.
This includes memory allocated internally by the SPE.

mesh or m
Show a picture of the mesh and the nodes on which programs are running.

mo <node#>
List the monitor values for node#. If node# is omitted, list the monitor values for
instance 0 of all programs.

node_state or n
Print a summary of the states of all instances of all programs including in which SPE
library routine the program is executing, and how much memory has been allocated.

rm
Reset the monitors on all nodes to zero.

stop or s
Stop spe and all its programs. Each node initiates termination at the next entry to the
SPE library: any user-specified termination function is invoked and the program then
exits.

w <node#>
Cause the program on node# to print a function stack trace and the contents of the
hardware registers.

38

A-1

Appendix A: PREDEFINED REPORTS

The following report variables are predefined by the SPE and produce output messages as
described below.

spe_db_wait
spe_db_wait()(entering):

spe_db_wait()(exiting):

spe_discard_data
spe_discard_data(” portname ”)(entering): Waiting to discard data.

spe_discard_data(” portname ”)(exiting): Done discarding data.

spe_eos
spe_recv(” portname ”)(exiting): EOS detected

(rows=%d, cols=%d, frame = %d).

spe_recv_window(” portname ”)(exiting): EOS detected

(rows=%d, cols=%d, frame = %d).

spe_idle
spe_idle()(entering) : Program has gone into idle state.

spe_init
spe_init()(entering):

spe_init()(exiting): freemem = %d

spe_malloc
spe_malloc() : Malloced %d bytes of memory, at address = %d for

” purpose_str” . %d bytes of memory left.

spe_msg_wait
spe_msg_wait()(entering): Waiting for an available message on any port.

spe_msg_wait()(exiting): Message available on port ” portname ”

spe_msg_wait_list
spe_msg_wait_list()(entering): Waiting for an available message on

selected ports.

spe_msg_wait_list()(exiting): Message available on port ” portname ”

spe_probe
spe_probe()(entering): Checking for message on any port.

spe_probe()(exiting): Message available on port ” portname ”.

spe_probe()(exiting): Message not available.

spe_probe_list
spe_probe_list()(entering): Checking for message on selected ports.

spe_probe_list()(exiting): Message available on port ” portname ”.

spe_probe_list()(exiting): Message not available.

A-2

spe_program_sync
spe_program_sync()(entering): Waiting for instances of program

to sychronize.

spe_program_sync()(exiting): Instances of program have sychronized.

spe_recv
spe_recv(” portname ”)(entering): Waiting to receive message (frame %d).

spe_recv(” portname”)(exiting): Received message (frame %d).

spe_recv_window
spe_recv_window(” portname ”)(entering): Waiting to receive message

(frame %d).

spe_recv_window(” portname”)(exiting): Received message (frame %d).

spe_send
spe_send(”portname”)(entering): Waiting to send message (frame %d).

spe_send(”portname”)(exiting): Sent message (frame %d).

spe_send_window
spe_send_window(”portname”)(entering): Waiting to send message

(frame %d).

spe_send_window(”portname”)(exiting): Sent message (frame %d).

spe_show_monitors
[standard monitor information display is printed]

spe_terminate
Starting termination.

Finishing termination .

B-1

Appendix B: RESERVED WORDS

These words are reserved for SPE use in all configuration files.

ALL
ANY
APPEND
ASCII
BLOCK_OVLP
BUFFER
CEIL
CONTROL
CONVERT
DUMP
EXCLUDE
FALSE
FILENAME
FLOOR
FRAMES
INPUT
INT
MATLAB
MAX
MIN
NET
NO_HEADER
OFF
ON
OUTPUT
PORT
PROGRAM
REAL
RENAME
REPLICATED
ROUND_ROBIN
SEQUENCE
SPE
STRIPED
STRIPED_OVLP
STRUCTURE
TRANSPOSE
TRUE
VAR

B-2

C-1

Appendix C: PROGRAMMING CALLS

Routine name Page number.

spe_clock() C-3.
spe_db_register() C-4.
spe_db_set() C-5.
spe_db_wait() C-6.
spe_discard_data() C-7.
spe_dump_define() C-8.
spe_enter_seq() C-9.
spe_eos() C-10.
spe_free() C-13.
spe_global() C-14.
spe_idle() C-17.
spe_init() C-18.
spe_leave_seq() C-19.
spe_malloc() C-20.
spe_monitor_off() C-21.
spe_monitor_on() C-22.
spe_msg_count() C-24.
spe_msg_len() C-25.
spe_msg_wait() C-26.
spe_msg_wait_list() C-27.
spe_port_exists() C-29.
spe_port_id() C-30.
spe_port_info() C-31.
spe_port_is_connected() C-33.
spe_port_name() C-34.
spe_probe() C-35.
spe_probe_list() C-36.
spe_program_info() C-38.
spe_program_sync() C-39.
spe_recv() C-40.
spe_recv_window() C-42.
spe_report() C-44.
spe_report_enabled() C-46.
spe_send() C-47.
spe_send_window() C-48.
spe_terminate() C-49.
spe_terminate_define() C-50.

C-2

C-3

SPE_CLOCK��

spe_clock(): Returns the elapsed time in seconds since the application started running.

�������
#include <spe.h>

double spe_clock(void);

������ �	���
Returns a double precision value for the elapsed time in seconds since the application
started running.

���������
The spe_clock() routine measures the time interval in seconds since the application
started running. When the SPE starts an application, it sends to each program
instance an offset time that the SPE uses (adds the value to dclock()) to get the
elapsed time since the application started running.

On the Intel Paragon, the time interval has a resolution of 100 nanoseconds.

������
None.

������ �	�	
���
None.

C-4

SPE_DB_REGISTER��

spe_db_register(): Tell the database manager that we are using a variable of a given name and size.
��������

#include <spe.h>

void spe_db_register(
const char *name,
void *address,
SPE_DB_TYPE type,
size_t size);

typedef enum SPE_DB_TYPE {
SPE_DB_INT,
SPE_DB_FLOAT,
SPE_DB_DOUBLE,
SPE_DB_STRING,
SPE_DB_REPORT,
SPE_DB_USER_DEFINED

} SPE_DB_TYPE;

�
�
����

name is the symbolic name of the variable to be registered. name must be
31 characters or less.

address is the address in memory where the variable will be maintained.
type is an enumeration indicating the type of variable expected.
size is the size in bytes of the variable to be maintained.

����������
Tell the database manager that a variable of the given name and size will be used.
Each program that uses a database variable must register for it. All programs register-
ing for the same variable must give the same value for the type and size parameters.
After registering for all database variables used by the program, the program must
call spe_db_wait(), after which the values of the variables will have been updated
from the database. If a variable is not given a value in the database, either by being
initialized from the Database Startup file or by being set in a program with
spe_db_set(), then the value of the variable will not be changed.

Each instance of a program must call spe_db_register() with the same arguments.

Normally, the SPE checks the size of the variable to verify that it is consistent with
the type specified. However, if the user gives the type as SPE_DB_USER_DEFINED,
this check is skipped and the user can specify a variable of any size.

������
The SPE will terminate and produce an error message if the type or size arguments
disagree with what is stored in the database.

����� 	
��
���
none

C-5

SPE_DB_SET��

spe_db_set(): Copy the value at the specified address to the named variable in the database.

��������
#include <spe.h>

void spe_db_set(
const char *name,
void *address,
SPE_DB_TYPE type,
size_t size);

typedef enum SPE_DB_TYPE {
SPE_DB_INT,
SPE_DB_FLOAT,
SPE_DB_DOUBLE,
SPE_DB_STRING,
SPE_DB_REPORT,
SPE_DB_USER_DEFINED

} SPE_DB_TYPE;

�
�
����

name is the symbolic name of the database variable to which a new value
will be copied. name must be 31 characters or less. The variable must
have already been registered with spe_db_register().

address is the address in memory where the value is copied from.
type is an enumeration indicating the type of variable being stored to the

database.
size is the size in bytes of the variable to be copied. If the size does not

agree with the registered variable, then the SPE system will terminate
and produce an error message.

����������
Copy the value at the specified address to the named variable in the database. See
spe_db_register() for a description of database operation.

Each instance of a program must call spe_db_set() with the same arguments.

������
The SPE will terminate and produce an error message if the type or size arguments
disagree with what is stored in the database.

����� 	
��
���
none

C-6

SPE_DB_WAIT��

spe_db_wait(): Wait until all programs in the system have registered and set database variables.

�������
#include <spe.h>

void spe_db_wait(void);

���������
Wait until all programs in the system have registered and set database variables. This
routine is used as a form of synchronization to the database to make sure that all pro-
grams have registered variables and have the correct values before proceeding.
Every program must call spe_db_wait() whether or not any database variables are
used.

������
Must be called only once and after spe_init() or else the SPE will terminate and pro-
duce an error message.

������ �	�	
���
spe_db_wait

C-7

SPE_DISCARD_DATA ��

spe_discard_data(): Discard columns of input data on a port.

��������
#include <spe.h>

void spe_discard_data(
long port_id,
size_t num_columns);

�
�
����

port_id is the port ID of the input port on which data is to be discarded.
num_columnsis the number of input columns of data to discard.

����������
Discard the given number of columns of input data on the specified port. The call
does not block. If the requested number of columns is not currently available, they
will be discarded when they eventually arrive.

Each instance of a program must call spe_discard_data() with the same arguments.

�����������
This call may only be used in very limited circumstances. Discarding data is only
done at the very start of a data stream. It must be called just once before any call to
receive data and will fail to work properly if an EOS mark is encountered on the port
before the designated number of columns has arrived.

������
The port_id argument must refer to a valid, noncontrol input port or else the SPE will
terminate and produce an error message. The port must also be connected. The
num_columns argument must be greater than zero and less than or equal to the num-
ber of columns specified for the port.

����� 	
��
���
spe_discard_data

C-8

SPE_DUMP_DEFINE��

spe_dump_define(): Specifies a data format conversion function to be executed when port data are
being dumped.
��������

#include <spe.h>

void spe_dump_define(
long port_id,
void (*dump_function) (void *src, void *dst, long choice));

�
�
����

port_id is the port ID of the port on which data are to be dumped.
dump_function is the name of the function to execute when the data for port_id are

being dumped and a format conversion is required. The function
must have three arguments as described below and return no value.

src is the address of the source data element to be converted.
dst is the address of the output data element after conversion.
choice is an integer that is passed to the dump conversion routine from the

System Definition file where the dump is specified.

����������
Specifies a data conversion function to be executed when port data are being dumped
and the element being dumped must be converted from one format to another. The
choice argument to the conversion function passes on to the conversion routine an
integer from the DUMP specification in the System Definition file, thereby allowing
the user to select from more than one format conversion possibilities on a given port.
If the choice field was omitted in the dump specification, the value passed is 0.

������
None.

����� 	
��
���
None.

C-9

SPE_ENTER_SEQ��

spe_enter_seq(): Allow access to control sequence ports.

�������
#include <spe.h>

void spe_enter_seq(void);

���������
Before an instance of a program can send data to a control sequence output port, each
instance of the program must call spe_enter_seq(). This routine blocks until all
instances of the program have called the routine (i.e., a barrier call) and then causes
the SPE to enter a state that allows instances of the program to asynchronously send
data to the program’s control sequence ports. While in this state, the program cannot
send data to striped ports, replicated ports, or regular control ports. Each instance
of a program must call spe_enter_seq() even if it does not send data to a control
sequence port.

The spe_enter_seq() and spe_leave_seq() routines allow the SPE to maintain mes-
sage order when a program must send data to both control sequence and noncontrol
sequence ports. These two classes of ports have a fundamental difference in that with
noncontrol sequence ports (replicated, striped, or regular control ports), each
instance of a program must access them in the same order and frequency whereas
with control sequence ports, each instance of a program is free to use the port(s) as
many times as it wants or not at all, regardless of what the other instances are doing.
To maintain message order without the spe_enter_seq() and spe_leave_seq() rou-
tines, the SPE would have to make a barrier call internally each time a noncontrol
sequence port was called, a possibly expensive operation.

������
The SPE will terminate and produce an error message if the code is already running
within a sequential area.

������ �	�	
���
None.

C-10

SPE_EOS()

spe_eos(): Sends an end-of-stream (EOS) mark to an output port.
��	
��

#include <spe.h>

long spe_eos(
long port_id,
long rows,
long columns);

���������

port_id is the port ID of the output port to which the EOS mark will be sent.
rows is the number of rows of data remaining before the EOS mark (may

be zero). spe_eos() ignores the rows value if port_id specifies a con-
trol port.

columns is the number of columns of data remaining before the EOS mark
(may be zero). spe_eos() ignores the columns value if port_id speci-
fies a control port.

��������
	
spe_eos() sends a transparent EOS mark to a specified output port. The EOS mark
indicates the program will temporarily or permanently stop the flow of data to the
port. The EOS mark and the number of valid rows and columns of data at the end
of the stream can be detected by a receiving program from the status argument of the
spe_recv() routine.

The EOS mark must be used at the end of a stream of data sent to a replicated or
striped port to guarantee that the complete data stream can be received. Without the
EOS mark the user cannot receive data from a port’s input FIFO if not enough col-
umns have accumulated to make a complete input message. This condition can occur
when the number of columns on an input and output connection are different, or when
block overlap is used at the receiving port.

When spe_eos() is used on a replicated or striped port and both the rows and columns
arguments are non-zero, then the EOS mark occurs within the data sent in the next
spe_send() call. The rows and columns values indicate the amount of data remaining
in the stream. One of the two values must be set to its corresponding value found in
the Program Definition file, while the other value may be truncated in the range from
1 to its corresponding value. Valid data are contained within the rows 0 to rows–1
and columns 0 to columns–1. An entire buffer may be valid. The second spe_send()
call following the spe_eos() call will contain the beginning of the next stream of data.

When spe_eos() is used on a control port, or on a replicated or striped port when
either the rows or columns argument is set to zero, then the EOS mark is inserted
between the previous and next frame of data sent to the specified output port. The
next spe_send() call after the spe_eos() call will contain data for the beginning of the
next stream of data.

Each instance of a program must call spe_eos() with the same argument values.

C-11

�����	��	��
When EOS is used with nontransposed replicated or striped connections, the rows
value can be truncated only if, in the Port Definition files, the number of columns on
the output and input port are equal, and block overlap is not specified.

When EOS is used with transposed replicated or striped connections, the columns
value can be truncated only if, in the Port Definition files, the number of rows on the
output port and the number of columns on the input port are equal and block overlap
is not specified.

spe_eos() cannot be used on a control-sequence output port.

spe_discard_data() cannot be used on an input port that will get an EOS mark on
the first spe_recv().

�����
The SPE will terminate and produce an error message if the port_id argument is not
a valid output port ID or the rows or columns arguments have values out of range.

����� ���	��
��
spe_eos

�����
�
–––

/* Program which generates data. */

...

spe_port_info (out, &info);

rows_in_pkt = info.no_rows;

columns_in_pkt = info.no_columns;

for (stream = 0; stream < num_streams; stream++)

{

 columns_left_in_stream = num_columns_in_stream;

 while (columns_left_in_stream)

 {

 /* make packet of data */

 ...

 /* If last packet then send EOS mark to port */

 if (columns_left_in_stream <= columns_in_pkt)

 {

 spe_eos (out, rows_in_pkt, columns_left);

 spe_send (out, buf, size);

 columns_left_in_stream = 0;

 }

 else

 {

 spe_send (out, buf, size);

 columns_left_in_stream –= columns_in_pkt;

 }

 }

}

C-12

spe_idle ();

–––

/* Program which filters data. */

...

while (1)

{

 spe_recv (in, in_buf, in_size, &status);

 /* status is structure containing EOS flag, valid rows and

 * columns.

 */

 if (status.eos)

 spe_eos (out, status.rows, status.columns)

 if (!status.eos || status.columns != 0)

 {

 /* process data */

 ...

 spe_send (out, out_buf, out_size);

 }

}

–––

C-13

SPE_FREE()

spe_free(): Releases memory just like free() but also maintains SPE statistics for memory usage.

��������
#include <spe.h>

void *spe_free(
void *buf);

����������

buf is the address of a buffer that was previously allocated with spe_mal-
loc().

���
�������
Frees memory allocated with spe_malloc() using free() while protecting the free()
call from interruption by other SPE interrupt routines in the SPE library. Users
should always use spe_free() rather than calling free() directly. The spe_free()
library call maintains the internal SPE statistics on memory usage. See spe_malloc()
for details.

������
None.

������ �����	��
None.

C-14

SPE_GLOBAL()

spe_global(): Performs a user-defined global operation across all instances of the program.
��	
��

#include <spe.h>

void spe_global(
void (*user_function) (void *src1, void *src2, void *dst1),
void *src,
void *dst,
long size);

���������

user_functionis the name of the user-defined function that will be called to perform
work on data collected by spe_global(). user_function() has two
input (source) pointers and one output (destination) pointer.

src is a pointer to the source of data provided by each instance of the pro-
gram.

dst is a pointer to the buffer where the results of the global operation are
stored.

size is the number of bytes of data in the source and destination buffers.

��������
	
The spe_global() function performs the user-defined global operation on data con-
tributed by each instance of the program. The user-defined function must be able to
reduce (combine) data contributed by each node using an operation that is both
associative and commutative (e.g., sum, product, maximum). Each instance of the
program is returned the same results from the global operation.

The spe_global() function arranges that the user-defined function is called repeated-
ly so that the global data are reduced in a pair-wise fashion across the instances of
the program. spe_global() communicates source data and results from previous
reductions between instances so that the final results can be reduced into one instance
and then passed to the other instances of the program. The order in which the pair-
wise reductions of data is performed is implementation dependent.

The user-defined function must be able to reduce data pointed to by src1 and src2 and
store the results to dst1. The function must have no other side effects since on any
given program instance, the SPE may call the user-defined function once, several
times, or not at all.

If a single-instanced program calls spe_global(), then the user-defined function will
be called once with src1 set to src, src2 set to NULL, and dst1 set to dst. It will be
left up to the user-defined function to copy the contents of src1 to dst1 if that is the
desired effect (e.g., maximum, minimum, sum).

When spe_global() is called, it allocates an internal working space of three times size
bytes. This space is freed before returning to the user.

Each instance of a program must call spe_global().

C-15

���
The SPE will terminate and produce an error message if all instances do not provide
the same user-defined function and the same size argument.

����� �����	��
None.

���
�	��
This example illustrates an implementation of the common global operation of find-
ing the sum of the values in a distributed vector. This example assumes that each pro-
gram instance contains only a single value to be summed. The user-defined function
sum() simply adds the two input values.

–––

long myvalue

long total;

void sum(long *src1, long *src2, long *dst)

{

 if (src2 == NULL)

 /* this is the only instance so copy input to output */

 *dst = *src1;

 else

 *dst = *src1 + *src2;

} /* end sum() */

...

spe_global (sum, &myvalue, &total, sizeof(long));

/* total now contains sum of all values across all instances */

–––

In the following example, each program instance contains an array of values that is
to be summed columnwise across all instances. The user-defined function sumv()
adds a series of input values, the number of which is given by the global variable
num_elts . The result of the call to spe_global() is an array in which each element
contains the sum of the corresponding elements from all instances.

–––

long num_elts = 3; /* global to communicate with sum routine */

long input[3], output[3]; /* arrays of length num_elts */

void sumv(long *src1, long *src2, long *dst)

{

 long ii;

 if (src2 == NULL)

 /* this is the only instance so copy input to output */

 for (ii=0; ii < num_elts; ii++)

 dst[ii] = src1[ii];

 else

 for (ii=0; ii < num_elts; ii++)

C-16

 dst[ii] = src1[ii] + src2[ii];

} /* end sumv() */

...

if (mynode = 0)

 {input[0] = 1; input[1] = 2; input[3] = 3;}

else

 {input[0] = 10; input[1] = 20; input[3] = 30;}

spe_global (sumv, input, output, num_elts * sizeof(long));

printf(”node %d: %d %d %d\n”,

 mynode, output[0], output[1], output[2]);

––

When run with two instances, the output of this example program would be:

 node 0: 11 22 33

 node 1: 11 22 33

C-17

SPE_IDLE��

spe_idle(): Goes to sleep until the system terminates (never returns).

�������
#include <spe.h>

void spe_idle(void);

���������
Goes to sleep until the system terminates (never returns). Allows a program to stop
running without causing other programs to hang. An idle program will still be able
to report results collected from its performance monitors when terminated or
requested by the user from the interactive user interface.

������
None.

������ �	�	
���
spe_idle

C-18

SPE_INIT��

spe_init(): Initializes the SPE interface. Blocks until all programs in an SPE application have
called this routine.
�������

#include <spe.h>

void spe_init(void);

���������
Initializes the SPE interface and must be the first SPE routine called. This routine
blocks until all programs have called spe_init().

������
The SPE will terminate if a program cannot initialize properly.

������ �	�	
���
spe_init

C-19

SPE_LEAVE_SEQ��

spe_leave_seq(): Leave control sequence port access code.

�������
#include <spe.h>

void spe_leave_seq(void);

���������
When the program is done sending data to its control sequence ports and wishes to
send data to its replicated ports, striped ports, or regular control ports, it must call
spe_leave_seq(). This routine blocks until all instances of the program have called
the routine (i.e., a barrier call) and then causes the SPE to enter a state that allows
instances of the program to send data to the program’s striped ports, replicated ports,
or regular control ports. While in this state, the program cannot send data to its con-
trol sequence ports. Each instance of a program must call spe_leave_seq() even if
it did not send data to a control sequence port.

See the entry for spe_enter_seq() for more information.

������
The SPE will terminate and produce an error message if the code is not currently run-
ning within a sequential area.

������ �	�	
���
None.

C-20

SPE_MALLOC()

spe_malloc(): Gets memory just like malloc() but also generates report() messages indicating
usage.
��������

#include <spe.h>

void *spe_malloc(
size_t size,
char *purpose_str);

����������

size is the amount of memory in bytes to allocate.
purpose_str is the string describing the purpose of the allocation.

������ ����
Returns pointer to space allocated.

���
�������
Gets memory using malloc() while protecting the malloc() call from interruption by
other SPE interrupt routines in the SPE library. Users should always use spe_mal-
loc() rather than call malloc() directly. The argument purpose_str is a string supplied
by the caller indicating the purpose of the allocation. This argument is used in report
and statistics messages.

The two routines spe_malloc() and spe_free() work together to maintain memory
usage statistics and the purpose for which the various memory allocations were need-
ed. These statistics are used to determine the current memory usage that is displayed
with spe_report() messages. Detailed statistics may be viewed through the interac-
tive user interface.

������
The SPE will terminate and produce a report message if there is not enough memory
to allocate the amount requested.

������ �����	��
spe_malloc

C-21

SPE_MONITOR_OFF()

spe_monitor_off(): Keep performance statistics on a section of code.

��������
#include <spe.h>

void spe_monitor_off(
const char *section_name,
long num_ops);

����������

section_nameis the name of the section being monitored. Must be the same as used
in the corresponding spe_monitor_on() call for the section being
monitored. section_name must be 31 characters or less.

num_ops is the number of operations executed in the section of code being
monitored. The user provides this value based on the user’s knowl-
edge of the algorithms performed in the monitored section of code.
The num_ops argument can be set to zero if the user does not care
about the operations per second statistic for this section of code.

���
�������
See the entry for spe_monitor_on() for a description of how this routine is used.

������
The SPE will terminate and produce an error message if spe_monitor_on() and
spe_monitor_off() are not called in order for a given section of code.

������ �����	��
spe_show_monitors

C-22

SPE_MONITOR_ON()

spe_monitor_on(): Keep performance statistics on a section of code.

��������
#include <spe.h>

void spe_monitor_on(
const char *section_name);

����������

section_nameis the name of the section being monitored. Must be the same as used
in the corresponding spe_monitor_off() call for the section being
monitored. section_name must be 31 characters or less.

���
�������
The performance monitoring routines are placed around sections of code for which
the programmer wants performance statistics. spe_monitor_on() and spe_moni-
tor_off() are placed, respectively, at the beginning and end of a section of code. The
same section_name string must be supplied to both. When the spe_monitor_on()
routine is called, the time on the hardware clock is recorded for the section of code
that will be monitored. When the corresponding spe_monitor_off() routine is called
(with the same section_name), the hardware clock is read, and the elapsed time since
the spe_monitor_on() routine was called is computed. The elapsed time is added
to a variable keeping track of accumulated time, and compared to other variables
keeping track of minimum and maximum values. Also recorded are the number of
times each section of code is entered and the number of accumulated operations per-
formed by each.

The user can view the data recorded by the monitor routines either interactively dur-
ing the run, or at the end of the run by turning on the “spe_show_monitors” report
variable for the programs and instances of interest.

Sections of code surrounded by the spe_monitor_on() and spe_monitor_off() rou-
tines can be embedded within other sections of code being monitored. Also, different
sections of code can use the same section_name, thus grouping the statistics for those
sections.

������
The SPE will terminate and produce an error message if spe_monitor_on() and
spe_monitor_off() are not called in order for a given section of code.

������ �����	��
spe_show_monitors

������
...

spe_monitor_on (”both”);

/* 128-pt Forward FFT */

spe_monitor_on (”fft”);

C-23

cfft(buf, 128, 1);

spe_monitor_off (”fft”,4480); /* 5n*logn = 4480 */

/* 128-pt Inverse FFT */

spe_monitor_on (”ifft”);

cfft(buf, 128, –1);

spe_monitor_off (”ifft”,4480);

spe_monitor_off (”both”,0);

...

C-24

SPE_MSG_COUNT��

spe_msg_count(): Returns the number of times data have been sent or received on a port.

��������
#include <spe.h>

long spe_msg_count(
long port_id);

�
�
����

port_id is the port ID of the input or output port for which the user is request-
ing information.

����������
This routine provides the user a way to find out how many send or receive calls have
been made on a given port.

������
The SPE will terminate and produce an error message if the port does not exist.

����� 	
��
���
None.

C-25

�
��������	��

spe_msg_len(): Returns the length in bytes of the most recently encountered control message.

��������
#include <spe.h>

long spe_msg_len(void);

�����������
This routine provides the user a way to find out the number of bytes in the last mes-
sage encountered by a call to spe_probe(), spe_probe_list(), spe_msg_wait(),
spe_msg_wait_list(), or spe_recv().

������
None.

������ ��������
None.

C-26

SPE_MSG_WAIT��

spe_msg_wait(): Waits until a message is ready to be received and returns the port ID for the mes-
sage.
�������

#include <spe.h>

long spe_msg_wait(void);

������ �	���
Returns the port ID of a message ready to be received.

���������
The spe_msg_wait() routine blocks until a message is ready to be received on one
of the input ports. Then when a message is available, the spe_msg_wait() routine
returns with the port ID of the pending port. The spe_msg_wait() routine always
returns the port IDs of the input messages in the order they were received. All
instances of a program are guaranteed to receive the input messages in the same
order. See also spe_msg_wait_list() and spe_probe().

������
The SPE will terminate and produce an error message if there are no input ports speci-
fied in the System Definition file for the calling program.

������ �	�	
���
spe_msg_wait

C-27

SPE_MSG_WAIT_LIST��

spe_msg_wait_list(): Waits until a message on one of the specified input ports is ready to be
received and returns the port ID for the message.
��������

#include <spe.h>

long spe_msg_wait_list(
long port_id_list[],
long num_port_ids);

�
�
����

port_id_list is a list of port IDs that spe_msg_wait_list() will wait on for a mes-
sage ready to be received. spe_msg_wait_list() will ignore entries
in the port ID list that are set to the predefined constant
SPE_NULL_PORT. The port ID list must contain at least one non-
null entry.

num_port_idsis the number of port IDs (including any null entries) in port_id_list.
num_port_ids must be greater than zero.

����� 	
��
Returns the port ID of the next message ready to be received, which is in the list of
port IDs passed to spe_msg_wait_list().

����������
The spe_msg_wait_list() routine blocks until a message on one of ports specified by
port_id_list is ready to be received. When a message becomes available, its port ID
is returned. spe_msg_wait_list() will ignore entries in the port ID list that are set to
the predefined constant SPE_NULL_PORT. All instances of a program are guaran-
teed to receive input messages in the same order. See also spe_msg_wait() and
spe_probe().

������
The SPE will terminate and produce an error message if the input port ID list contains
a nonvalid input port ID or it does not specify at least one non-null, connected input
port.

����� 	
��
���
spe_msg_wait_list

��
����
–––

/* Example of how to use spe_msg_wait_list() */

...

data = spe_port_id (”data”);

cmd1 = spe_port_id (”cmd1”);

cmd2 = spe_port_id (”cmd2”);

list[0] = data;

list[1] = cmd2;

C-28

...

/* Wait for message on any port */

pid = spe_msg_wait ()

...

/* Wait for message on the ”data” or ”cmd2” port */

pid = spe_msg_wait_list (list, 2);

–––

–––

/* Example of how to use SPE_NULL_PORT */

...

data = spe_port_id (”data”);

cmd1 = spe_port_id (”cmd1”);

cmd2 = spe_port_id (”cmd2”);

list[0] = data;

list[1] = SPE_NULL_PORT;

list[2] = cmd2;

/* Wait for message on the ”data” or ”cmd2” port */

pid = spe_msg_wait_list (list, 3);

/* Now wait for message on only the ”cmd2” port */

list[0] = SPE_NULL_PORT;

pid = spe_msg_wait_list (list, 3);

–––

C-29

SPE_PORT_EXISTS()

spe_port_exists(): Returns a Boolean value indicating whether a port exists.

��������
#include <spe.h>

BOOLEAN spe_port_exists(
char *port_name);

����������

port_name is the name of the port to check for existence or connectivity.
port_name must be 31 characters or less.

���
�������
spe_port_exists() returns a Boolean value indicating whether the named port exists.
This routine can be used by a program designed to work with any number of input
or output ports. For example, in a multiplexing program it may not be known ahead
of time how many input ports will be used to multiplex the data.

������
None.

������ �����	��
None.

C-30

SPE_PORT_ID��

spe_port_id(): Returns the port ID for the named port.
��������

#include <spe.h>

long spe_port_id(
char *port_name);

�
�
����

port_name must be the name of one of the ports specified in the Program Defini-
tion file of the calling program. If the named port does not exist, then
the SPE will terminate the run and produce an error message.
port_name must be 31 characters or less.

����� 	
��
Returns the port ID for the named port.

����������
Returns the port ID for the named port. The SPE library calls use port IDs to receive
or send data over the specified ports.

������
The SPE will terminate if the named port does not exist in the Program Definition
file of the calling program.

����� 	
��
���
None.

C-31

SPE_PORT_INFO��

spe_port_info(): Copies the configuration information of a port to an address supplied by the caller.

��	
��
#include <spe.h>

void spe_port_info(
long port_id,
SPE_PORT_INFO *port_info);

typedef struct SPE_PORT_INFO {
/* Contains values that are common to each instance. */
char name[32];
SPE_PORT_TYPE type;
BOOLEAN is_input;
BOOLEAN is_transposed;
long num_buffers; /* additional buffers requested */
long num_rows; /* across all instances */
long num_columns; /* across all instances */
long elem_size; /* in bytes */
long block_ovlp; /* in columns */

/* Contains values that are unique to each instance. */
long start_row;
long end_row;
long start_ovlp_row;
long end_ovlp_row;

} SPE_PORT_INFO;

typedef enum SPE_PORT_TYPE {
SPE_REPLICATED, SPE_STRIPED, SPE_CONTROL,
SPE_CONTROL_SEQUENCE, SPE_CONTROL_ROUND_ROBIN

} SPE_PORT_TYPE;

���������

port_id is the port ID of the port for which information is sought.
port_info is the address to which the port’s configuration information will be

copied.

C-32

�	���
��
�
Copies the configuration information of a port to the address supplied by the caller.
Portions of the configuration information will be unique to the instance of the calling
program. The calling program uses this information to determine which portion of
the problem it works on. If type is SPE_STRIPED, then start_row, end_row,
start_ovlp_row, and end_ovlp_row contain valid data that are unique to each
instance. They are not used for any other port type. For output SPE_STRIPED ports,
there is no overlap, so start_ovlp_row and end_ovlp_row are set equal to start_row
and end_row, respectively. The other fields of the structure always contain valid data
and are the same for each instance of a given port.

�����
The SPE will terminate and produce an error message if the port_id argument is not
a valid port ID.

�	��� ���
���	�
None.

C-33

SPE_PORT_IS_CONNECTED()

spe_port_is_connected(): Returns a Boolean value indicating whether a port is connected.

��������
#include <spe.h>

BOOLEAN spe_port_is_connected(
char *port_name);

����������

port_name is the name of the port to check for connectivity. port_name must be
31 characters or less.

���
�������
spe_port_is_connected() returns a Boolean value indicating whether the named
port is connected to a net. This routine can be used by a program designed to allow
partial connectivity to its ports. It will allow the program to avoid reading or writing
to ports not connected to a net.

������
The SPE will terminate and produce an error message if port_name is not a valid port.

������ �����	��
None.

C-34

SPE_PORT_NAME��

spe_port_name(): Returns a pointer to the string name of a port.

��������
#include <spe.h>
char *spe_port_name(

long port_id);

�
�
����

port_id must be a valid port ID.

����������
Returns a pointer to the string name of the port for the given port ID.

������
The SPE will terminate and produce an error message if port_id is not valid.

����� 	
��
���
None.

C-35

SPE_PROBE��

spe_probe(): Checks whether a message on any input port is ready to be received (nonblocking).

�������
#include <spe.h>

long spe_probe(void);

������ �	���
If a message is ready to be received on any input port, then spe_probe() returns its
port ID. Otherwise, spe_probe() returns the predefined constant
SPE_NULL_PORT.

���������
The spe_probe() routine checks if a message on any input port is ready to be received
and returns immediately (nonblocking). If a message is ready to be received, then
its port ID is returned. Otherwise, spe_probe() returns the predefined constant
SPE_NULL_PORT. See also spe_wait() and spe_probe_list().

Each instance of a program must call spe_probe().

����������
spe_probe() cannot be used if there are any connected round-robin control ports in
the program. If the program has any round-robin ports, spe_probe_list() may be
used to probe non-round-robin ports.

������
The SPE will terminate and produce an error message if there are no input ports speci-
fied in the System Definition file for the calling program.

������ �	�	
���
spe_probe

C-36

SPE_PROBE_LIST��

spe_probe_list(): Checks whether a message on one of the specified input ports is ready to be
received (nonblocking).
��������

#include <spe.h>

long spe_probe_list(
long port_id_list[],
long num_port_ids);

�
�
����

port_id_list is a list of port IDs that spe_probe_list() will check for a message
ready to be received. spe_probe_list() will ignore entries in the port
ID list that are set to the predefined constant SPE_NULL_PORT. The
port ID list must contain a least one non-null entry. The port ID list
cannot contain port IDs for round-robin control ports.

num_port_idsis the number of port IDs (including any null entries) in port_id_list.
num_port_ids must be greater than zero.

����� 	
��
If a message is ready to be received on one of the ports specified in port_id_list, then
spe_probe_list() returns its port ID. Otherwise, spe_probe_list() returns the prede-
fined constant SPE_NULL_PORT.

����������
The spe_probe_list() routine checks if a message on one of the input ports specified
in port_id_list is ready to be received. spe_probe_list() immediately returns (non-
blocking). If a message is available then its port ID is returned; otherwise, the prede-
fined constant SPE_NULL_PORT is returned. spe_probe_list() will ignore entries
in the port ID list that are set to SPE_NULL_PORT. All instances of a program are
guaranteed to receive input messages in the same order. See also spe_msg_wait()
and spe_probe().

Each instance of a program must call spe_probe_list() with the same arguments.

�����������
portprobe_list() cannot be used to check for a message on a round-robin control
port.

������
The SPE will terminate and produce an error message if the input port ID list contains
a nonvalid input port ID or if it does not specify at least one non-null, connected input
port.

����� 	
��
���
spe_probe_list

C-37

�������
–––

/* Example of how to use spe_probe_list() */

...

data = spe_port_id (”data”);

cmd1 = spe_port_id (”cmd1”);

cmd2 = spe_port_id (”cmd2”);

list[0] = data;

list[1] = cmd2;

...

/* Check for message on any port */

pid = spe_probe ()

if (pid != SPE_NULL_PORT)

{

 /* process data */

}

/* Wait for message on the ”data” or ”cmd2” port */

pid = spe_msg_wait_list (list, 2);

if (pid != SPE_NULL_PORT)

{

 /* process data */

}

–––

C-38

SPE_PROGRAM_INFO��

spe_program_info(): Copies the program information to the address supplied by the caller.

��������
#include <spe.h>

void spe_program_info(
SPE_PROGRAM_INFO *prog_info);

typedef struct SPE_PROGRAM_INFO {
char name[32];
long num_ports;
long num_instances;
long my_instance;

} SPE_PROGRAM_INFO;

�
�
����

prog_info is the address to which the program information will be copied.

����������
Copies program information to the address supplied by the caller. The calling pro-
gram can use this to determine its symbolic name, how many ports it has, how many
instances of the program there are, and which instance it is.

������
None.

����� 	
��
���
None.

C-39

SPE_PROGRAM_SYNC��

spe_program_sync(): Synchronizes all instances of a program.

�������
#include <spe.h>

void spe_program_sync(void);

���������
Blocks an instance of a program until all instances have arrived at the same point,
then returns.

������
None.

������ �	�	
���
spe_program_sync

C-40

SPE_RECV��

spe_recv(): Posts a receive for a message on an input port and blocks the calling process until the
receive completes.
�����	�

#include <spe.h>

void spe_recv(
long port_id,
void *buf,
size_t len,
SPE_STATUS*status);

typedef struct SPE_STATUS {
BOOLEAN eos;
long rows;
long columns;

} SPE_STATUS;

����
�����

port_id is the port ID of the input port on which the message will be received.
buf points to the buffer where the message will be received.
len is the size of the receiving buffer in bytes. This is used as a consisten-

cy check by the SPE. The Program Definition File specifies what the
message size should be. If the values do not agree, then the SPE will
terminate the run and produce an error message.

status points to a user-provided buffer where the status information will be
copied. If status is NULL, then no status is returned. The status
information returned indicates whether an EOS mark has been
detected.

�����	�	��
Posts a receive for a message on an input port and blocks the calling process until the
receive completes.

This routine can also detect whether the sender has sent an EOS mark. If an EOS
mark is detected, then the eos field of the status argument will be set to TRUE. If
the input port is a striped or replicated port, then the rows and columns fields will indi-
cate the portion of data that is valid (valid data are contained within rows 0 to rows
– 1 and columns 0 to columns – 1, while the remaining portion of the buffer will be
filled with zeros). If the port is a control port, then the rows and columns fields are
not used (they are set to zero by the SPE), and the data are not valid. See also
spe_recv_window().

When EOS is detected and columns is non-zero and equal to the input port overlap,
then the EOS mark is equivalently at the end of the previously received buffer. In
this case, the programmer must make a decision as to whether to process the data in
the current buffer.

C-41

Unless port_id refers to a control round-robin port, each instance of a program must
call spe_recv() with the same arguments.

���
�
The SPE will terminate and produce an error message if the len argument is not the
right size or if the port_id argument is not a valid input port ID.

���
�� ������	�
spe_recv
spe_eos

C-42

SPE_RECV_WINDOW��

spe_recv_window(): Like spe_recv() except the SPE uses a window copy to put the data in the
user’s buffer.

�����	�
#include <spe.h>

void spe_recv_window(
long port_id,
void *buf,
size_t len,
long start_column,
long num_columns,
SPE_STATUS*status);

typedef struct SPE_STATUS {
BOOLEAN eos;
long rows;
long columns,

} SPE_STATUS;

����
�����

port_id is the port ID of the input port on which the message will be received.
buf points to the overall user’s buffer where the message will be received.
len is the number of bytes that will be received. This is used as a consis-

tency check by the SPE. The Program Definition File specifies what
the message size should be. If the values do not agree, then the SPE
will terminate the run and produce an error message.

start_column is the first column to fill in the user’s buffer.
num_columnsis the number of columns in the overall user’s buffer.
status points to a user-provided buffer where the status information will be

copied. If status is NULL, then no status is returned. The status
information returned indicates whether an EOS mark has been
detected.

�����	�	��
Posts a receive for a message on an input port and blocks the calling process until the
receive completes.

The difference between spe_recv_window() and spe_recv() is that this routine spec-
ifies that the SPE is to deliver data to a specific rectangular portion (i.e., window) of
the user’s buffer. This may allow the user to avoid allocating an extra buffer and
doing an extra copy of the data.

This routine can also detect whether the sender has sent an EOS mark. If an EOS
mark is detected, then the eos field of the status argument will be set to TRUE. If
the input port is a striped or replicated port, then the rows and columns fields will

C-43

indicate the portion of data that is valid (valid data are contain within rows 0 to rows
– 1 and columns 0 to columns – 1).

Unless port_id refers to a control round-robin port, each instance of a program must
call spe_recv_window() with the same arguments.

�����	��	���
Cannnot be used with control ports.

������
The SPE will terminate and produce an error message if the len argument is not the
right size, if the start_column argument is out of range, if the port_id argument is not
a valid input port ID, or if the indicated port is a control port.

����� ���	��
��
spe_recv_window
spe_eos

C-44

SPE_REPORT��

spe_report(): Conditionally writes formatted data to the standard output and the log file.

�����
�
#include <spe.h>

void spe_report(
const char *report_flag,
const char *format,
...);

�����	�	��

report_flag is the name of the global database variable that determines whether
this routine will write to standard output. report_flag must be 31
characters or less.

format is the format string that controls how the data are written. It is identi-
cal to the printf() format string.

�	���
��
�
This routine conditionally writes formatted data to the standard output as well as to
the log file. It functions identically to printf() except that it has an additional argu-
ment, report_flag, which determines whether the write will actually occur.
report_flag is the name of a report variable in the global database. The user creates
and manipulates report variables for use by the spe_report() routine. The
spe_report() routine will write information based on the contents of the report vari-
able. The following formula is used to decide whether or not to actually write the
argument strings:

if ((mode == ON) ||

((mode == FRAMES) &&

(current_frame(port_name) >= start_frame) &&

(current_frame(port_name) <= end_frame)))

The user creates report variables by specifying them in the Database Startup files.
From this file, the user can control the contents of report variables, thus affecting
which spe_report() calls will output data. For a complete description, see Section
4.4.

When the spe_report() routine writes data, it provides a header portion indicating
the name of the report variable, the name of the calling program, the instance of the
calling program, the physical node number, and the time at which it occurred.

������	
To turn on a report that prints the “interesting” variables computed by instance 0 of
the beamformer program, between the times that the “gain” port receives its second
and fifth message, the following line would be included in one of the Database Start-
up files:

VAR interesting_vars FRAMES,gain,2,5 beamformer(0)

C-45

The beamformer program would have embedded spe_report() calls in the program
where the “interesting” variables are computed.

speed_of_sound = ...

spe_report (”interesting_vars”,

”speed_of_sound=%f”,speed_of_sound);

...

num_bad_sensors = ...

spe_report (”interesting_vars”,

”num_bad_sensors=%d”, num_sensors);

The standard output might look like:

REPORT:beamformer(0):gain:frame=2,interesting_vars,

clk=87.887,node=24

–––

speed_of_sound=1588.1

REPORT:beamformer(0):gain:frame=2,interesting_vars,

clk=87.889,node=24

–––

num_bad_sensors=0

�����	
��� ����� ���
�����
The variables “error”,, “warning”, and “info” are predefined report variables that are
always ON. When a program uses them in a spe_report() call, it forces the formatted
data to be written to standard output. When the “error” and “warning” variables are
used, an additional large banner is printed to attract the user’s attention. The SPE
keeps track of how many “error” and “warning” spe_report() calls are made and
prints a summary at the end of execution. Example usage:

spe_report (” info ”,”Beginning Initialization”);

...

if (speed_of_sound > 2000)

/* Force this warning to be printed */

spe_report (” warning ”,”speed of sound out of range”);

...

C-46

SPE_REPORT_ENABLED ��

spe_report_enabled(): Returns a Boolean value indicating whether a report variable is set so that
it would cause a spe_report() call to generate output.
��������

#include <spe.h>

BOOLEAN spe_report_enabled(
const char *report_flag);

�
�
����

report_flag is the name of the global database variable that determines whether
a spe_report() routine would generate output. report_flag must be
31 characters or less.

����������
This routine returns a Boolean value indicating whether the report_flag variable is
set so that it would cause a spe_report() call to generate output. report_flag is the
name of a report variable in the global database. The routine is the same routine that
the spe_report() routine uses internally and is provided so that users can avoid com-
putations that are only used to create optional output information. See spe_report()
for more information about its usage.

������
None.

����� 	
��
���
None.

C-47

SPE_SEND��

spe_send(): Sends a message to an output port and blocks until the send completes.

��������
#include <spe.h>

void spe_send(
long port_id,
void *buf,
size_t len);

�
�
����

port_id is the port ID of the output port to which the message will be sent.
buf points to the buffer containing the message to send.
len is the size of the sending buffer in bytes. This is used as a consistency

check by the SPE. The port map specifies what the message size
should be. If the values do not agree, the SPE will terminate the run
and produce an error message.

����������
Sends a message to an output port and blocks until the send completes. When the
routine returns, the buffer can be reused. See also spe_send_window().

Each instance must call spe_send() when sending data to a striped, replicated, or reg-
ular control port. For replicated or regular control ports, the data sent must be the
same on each instance (the SPE will determine, based on efficiency, which
instance(s) will actually transmit the data).

������
The SPE will terminate and produce an error message if the len argument is not the
right size or if the port_id argument is not a valid output port ID.

����� 	
��
���
spe_send

C-48

SPE_SEND_WINDOW��

spe_send_window(): Like spe_send() except the SPE uses a window copy to get the data from the
user’s buffer.

��������
#include <spe.h>

void spe_send_window(
long port_id,
void *buf,
size_t len,
long start_column,
long num_columns);

�
�
����

port_id is the port ID of the output port to which the message will be sent.
buf points to the overall user’s buffer containing the message to send.
len is the number of bytes of data to send. This is used as a consistency

check by the SPE. The port map specifies what the message size
should be. If the values do not agree, the SPE will terminate the run
and produce an error message.

start_column is the first column of the user’s buffer from which to get data.
num_columnsis the number of columns in the overall user’s buffer.

����������
Sends a message to an output port and blocks until the send completes. When the
routine returns, the buffer can be reused.

The difference between spe_send_window() and spe_send() is that this routine
specifies that the SPE is to send data from a specific rectangular portion (i.e., win-
dow) of the user’s buffer. This may allow the user to avoid allocating an extra buffer
and doing an extra copy of the data.

Each instance must call spe_send_window() when sending data to a striped, repli-
cated, or regular control port. For replicated ports, the data sent must be the same
on each instance (the SPE will determine, based on efficiency, which instance(s) will
actually transmit the data).

�����������
Cannnot be used with control ports.

������
The SPE will terminate and produce an error message if the len argument is not the
right size, if the port_id argument is not a valid output port ID, or if the indicated port
is a control port.

����� 	
��
���
spe_send_window

C-49

SPE_TERMINATE��

spe_terminate(): Tells the SPE to terminate the application.

�������
#include <spe.h>

void spe_terminate(void);

���������
Tells the SPE to terminate the application. The SPE will cause each program in the
system to terminate when the next SPE routine is called, or if already in an SPE
routine, to terminate immediately. (It does not interrupt what the user’s program is
currently doing.) Each program will execute an optionally defined user termination
routine (see spe_terminate_define()), will generate any spe_report() summaries
that have been requested, and will then exit. Any program in the system can initiate
a system termination by calling this routine.

������
None.

������ �	�	
���
spe_terminate

C-50

SPE_TERMINATE_DEFINE��

spe_terminate_define(): Specifies a function to be executed when the program terminates.

��������
#include <spe.h>

void spe_terminate_define(
void (*term_function) (void));

�
�
����

term_functionis the name of function to execute when the program terminates. The
function must have no arguments and return no value.

����������
Specifies a function to be executed when the program terminates. This allows a pro-
gram to execute critical cleanup code (such as closing files) when the program is ter-
minated by some other program. See spe_terminate().

������
None.

����� 	
��
���
None.

D-1

Appendix D: FORMAT OF DESCRIPTION FILES

The SPE is controlled by a number of ASCII files: the System Definition file, Program Definition
files, and the Database Startup files. This Appendix describes the format and grammar of these files.

COMMENTS

Comments may be included freely to describe and document the contents of configuration files. A
comment begins with a double forward slash (//). This symbol and the rest of the line are ignored by
SPE processing.

C PREPROCESSOR DIRECTIVES

Before processing the configuration files, the SPE filters them through the C language preproces-
sor cpp . This allows the user to take advantage of all features of the preprocessor such as including
other files, defining variables, and defining macros.

GRAMMAR

The grammar of the various configuration files is defined by reserved words and user-provided
tokens of type identifier, integer, real, and string. Tabs, spaces, and blank lines are white space and
are used to delimit lines into tokens interpreted by the parser; they are otherwise ignored.

Identifiers must be an allowable C language identifier, up to 31 characters in length, and cannot be
any of the reserved words. Reserved words must be specified either as all upper or all lower case;
user identifiers are case sensitive.

Integers must be specified as an integer without a decimal point (e.g., 100).

Real values contain a decimal point (e.g., 1500.0) or an exponent (e.g., 1e+3) or both; their type is
internally represented as a double.

Strings are enclosed in double quotes (e.g., ”sea_test1”) and are limited to 254 characters in
length.

EXPRESSIONS

The SPE allows integer, real, and string-valued expressions. Precedence and associativity of oper-
ators allowed in expressions are shown in the following table (listed from high to low precedence).

Operators Associativity
__
unary_minus (int) (double) right to left
* / % left to right
+ – left to right
& left to right
| left to right
__

Some notes on expressions:
1. Real expressions can mix real and integer numbers. Binary operations combining real and

integer numbers will promote the result to a real value.

D-2

2. The (int) operation converts a real or integer expression to an integer number. The
(real) operation converts a real or integer expression to a real number.

3. The ‘+’ operation concatenates strings.

GRAMMAR

Each command of an SPE configuration file begins with a reserved word and is terminated by the
end of the line. A ‘‘logical’’ line may be extended to multiple actual lines by ending intermediate
lines with a backslash character (\).

Reserved words and symbols are shown below in typewriter font. The symbol (...) means that
the previous symbol may be repeated. The symbol (,...) means that the previous symbol may be
repeated, but if so, the symbols must be separated by a comma (,). Alternatives are show below on
separate lines.

System_Definition_File:
system_statement ...

system_statement:
buffer_statement
dump_statement
exclude_statement
net_statement
program_statement
transpose_statement

Program_Definition_File:
port_statement ...

Database_Startup_File:
variable_statement ...

buffer_statement:
buffer net_connection integer_expr

dump_statement:
dump net_connection dump_array_spec matlab = dump_format dump_option ...
dump net_connection dump_array_spec ascii = dump_format dump_option ...
dump net_connection dump_array_spec spe = dump_format dump_option ...

exclude_statement:
exclude program_name

net_statement:
net net_connection, net_connection ,...

program_statement:
program node_specification program_name program_def_path program_exec_path

transpose_statement:
transpose net_connection

dump_array_spec:
dump_row_spec dump_column_spec

D-3

dump_row_spec, dump_column_spec:
[:]
[integer_expr :]
[: integer_expr]
[integer_expr : integer_expr]

dump_format:
”double”
”double_complex”
”float”
”float_complex”
”int”
”int_complex”
”short”
”short_complex”
”ushort”
”ushort_complex”
”uchar”
”uchar_complex”

dump_option:
append
convert
convert = convert_flag
filename = string_expr
frames = start_frame : end_frame
frames = one_frame
label = string_expr
no_header
rename = string_expr (this string limited to 31 characters or fewer)
structure = dump_offset , dump_elements
structure = dump_offset , dump_elements , dump_stride
structure = dump_offset , all
structure = dump_offset , all , dump_stride

net_connection:
program_name : port_name

node_specification:
number_of_instances
(min_nodes , max_nodes , node_weight)

port_statement:
port port_name input control
port port_name input control sequence
port port_name output control
port port_name output control round_robin
port port_name input replicated [rows] [columns] elem_size bovlp
port port_name output replicated [rows] [column] elem_size
port port_name input striped [rows] [columns] elem_size sovlp bovlp
port port_name output striped [rows] [columns] elem_size

D-4

rows, columns, elem_size:
any_expr

any_expr:
any
integer_expr

bovlp:
/* empty */
block_ovlp = integer_expr

sovlp:
/* empty */
striped_ovlp = ovlp
striped_ovlp = start_ovlp : end_ovlp
striped_ovlp = ovlp : all
striped_ovlp = start_ovlp : end_ovlp : all

variable_statement:
var variable_name db_value db_destination

db_value:
integer_expr
real_expr
string_expr
true
false
off
on
frames , port_name , start_frame , end_frame

db_destination:
/* empty */
program_name
program_name (instance)

program_name, port_name, variable_name:
identifier

convert_flag, dump_elements, dump_offset, dump_stride,
end_frame, end_ovlp, instance, max_nodes, min_nodes,
number_of_instances, one_frame, ovlp, start_frame, start_ovlp:

integer_expr

node_weight:
real_expr

program_def_path, program_exec_path, dump_fmt_descriptor:
string_expr

D-5

real_expr:
(real_expr)
real_expr + real_expr
real_expr – real_expr
real_expr * real_expr
real_expr / real_expr
– real_expr
(real) integer_expr
real_function
real

integer_expr:
(integer_expr)
integer_expr + integer_expr
integer_expr * integer_expr
integer_expr / integer_expr
integer_expr % integer_expr
integer_expr & integer_expr
(int) real_expr
integer_function
integer

string_expr:
string_expr + string_expr
string

integer_function:
ceil (real_expr)
floor (real_expr)

real_function:
max (real_expr , real_expr)
min (real_expr , real_expr)

D-6

E-1

Appendix E: STRIPE AND OVERLAP ALGORITHMS

BASIC STRIPE ALGORITHM

The basic striping algorithm used to compute the range of rows that will be allocated to each
instance of a program is as follows:

 if (instance < num_rows % num_instances)
 {
 start_row = instance * (num_rows / num_instances + 1);
 end_row = start_row + (num_rows / num_instances);
 }
 else
 {
 start_row = instance * (num_rows / num_instances) +
 (num_rows % num_instances)
 end_row = start_row + (num_rows / num_instances)– 1
 }

For example, if an array with 100 rows is striped over 3 instances, then instance 0 will have rows 0
to 33, instance 1 will have rows 34 to 66, and instance 2 will have rows 67 to 99. Note that the first
instance has one more row than the others. This is illustrated in figure E-1. The columns dimension
of the array does not affect the striping.

Figure E-1 . Row allocation for basic striping with no overlap.

������� �

������� �

��������

���������

�	��

���

������� �

STRIPE OVERLAP ALGORITHMS

The SPE allows the user to specify for an input port that the incoming data rows should be distrib-
uted to the program instances with an overlap of rows between adjacent instances. In general terms,
the overlap is specified by giving the number of rows of overlap needed by the application. The
overlap can be symmetrical or asymmetrical. That is, considering the block of rows allocated to a
particular program instance, the number of rows of overlap at the beginning of a block can be the
same (symmetrical) or different (asymmetrical) than the rows of overlap at the end of the block. In
addition, the SPE allows the overlap on the first and last instances of a program to be treated

E-2

differently than on the other instances, a feature required by some applications. There are four forms
of overlap specification (see Appendix D for a description of the syntax). Each case is illustrated for
the same example used above in which 100 input rows are allocated to three program instances. The
figures indicate graphically the allocation of the rows to instances; the overlapped rows are shaded
and annotations within the figures show the specific row numbers and total number of rows for each
instance.

STRIPED_OVLP=ovlp

In this, the simplest case, a single value is given for a symmetrical overlap. The ovlp argument
gives the number of extra rows to be sent to a program instance at both the start and end of the block.
This is in addition to the block of rows that would have been allocated by the basic algorithm. Fig-
ure E-2 illustrates this case. Note that the first and last instances are allocated a smaller number of
rows because there is overlap on only one edge. The assumption here is that the application itself
does something special at the outside edges (rows) of the overall data block.

Figure E-2 . Row allocation for STRIPED_OVLP=2.

�������� �

�������� �

�������� �

�������

����		��

	
������

�

�

�

�

������	

����	��

	�������

STRIPED_OVLP=start_ovlp: end_ovlp

In this case, two overlap values are given to describe an asymmetrical overlap. The start_ovlp
argument gives the number of extra rows at the start of the block, and the end_ovlp argument gives
the number of extra rows at the end of the block. This is in addition to the block of rows that would
have been allocated by the basic algorithm. Figure E-3 illustrates this case. As with the symmetrical
case of figure E-2, the first and last instances are allocated a smaller number of rows on the assump-
tion that the algorithm itself does something special at the outside edges (rows) of the overall data
block.

STRIPED_OVLP=ovlp:ALL

This case differs from the simple case of figure E-2 in that the application requires an overlap at
the outside edges of the overall data block; that is, the first and last program instances must have the
same overlap as the other instances. This is done by executing the basic allocation algorithm with a
smaller number of rows: the total rows in the overall data block minus twice the amount of the ovlp

E-3

Figure E-3 . Row allocation for STRIPED_OVLP=3:1.

������� �

������� �

������� �

��������

����		���

	
�������

�

�

�

�

��������

����	
��

	�������	

argument. Then when the overlap is allocated uniformly to every instance, the first and last instances
have the same overlap to work with as all other instances. Figure E-4 illustrates this case. Note that
the overall program will now output a fewer number of rows than was input. In the example, only
96 rows will be output.

Figure E-4 . Row allocation for STRIPED_OVLP=2:ALL.

������� �

������� �

������� �

��������

����	����

		���
���

�

�

�

�

�������	

����	
��	

	�������	

�

�

STRIPED_OVLP=start_ovlp: end_ovlp:ALL

This is the same as the case in figure E-4 except that it allows for asymmetrical overlap as shown
in figure E-3. Here again the result is that the first and last instances have the same overlap to work
with as all other instances. Note as before that only 96 rows are output from the program. Figure
E-5 illustrates this case.

E-4

Figure E-5 . Row allocation for STRIPED_OVLP=3:1:ALL.

�������� �

�������� �

�������� �

�������

����		��

	
������

�

�

�

�

������	

����	
�	

	������	

�

�

I-1

INDEX

Reserved words are shown here in all capitals, e.g., EXCLUDE. Function names are given with ap-
pended parentheses, e.g., spe_report().

�

"%%*3*/.",,8 #4''&1&%� %&'*.&%� ��

���� ��� �:�� �:�� �:�� �:�

",,/$"3*/.
/' -&-/18� ���-&-/18 ",,/$"3*/.
/' ./%&2 3/ 01/(1"-2� �	
/' 1/62 3/ *.23".$&2� �:�

�� � ��

������� �
� �:�

"00,*$"3*/.
%&'*.&%� �
01/(1"- "1(4-&.32� �	

"1(4-&.32
'/1 "00,*$"3*/. 01/(1"-� �	
'/1 20& 01/(1"-� �	

"11"8 2*9&� /' " 0/13� ��

�����
'/1-"33&% %4-0 '*,&2� �	
+&86/1%� �
� �:�

�

#"11*&1 1/43*.&2� ��� 28.$)1/.*9*.(/0&1"3*/.2

#,/$+ /5&1,"0� ��� ��
42&% 6*3) ���� �:��

�����!����� ��� �:�

������� �	� �:�

#4''&12
"%%*3*/.",� ��
����2� ��

�

� 01&01/$&22/1� ��

$",,*.(/1%&1 /' ��� 1/43*.&2� ��

����� �:	

$)&$+*.(1/43*.& $",,*.(/1%&1� ��

$/,4-.2
. �1/(1"- �&'.*3*/. '*,&2� ��
. �823&- �&'.*3*/. '*,&� �

$/--".%2� *.3&1"$3*5&� ��

$/--&.3 '/1-"3� *. %&2$1*03*/. '*,&2� �:�

$/-0*,*.(20& 01/(1"-2� �	

$/.$"3&."3*/.� /0&1"3*/. /. 231*.(2� �:�

$/.'*(41"3*/. '*,&2� ��� %&2$1*03*/. '*,&2

$/..&$3&%.&22� /' " 0/13� �

�������� ��� �:�

$/.31/, 0/132� � �
� ��

�������� ��� �:�

$/.5&13*.(
%"3" '/1-"32 *. %4-02 /' 0/13 %"3"� �:�
%"3" 380&2 *. 0/13 %"3" %4-02� ��
*.3&(&12 ".% 1&",2 *. &701&22*/.2� �:�

$00� ��

�
%"3"#"2& *.3&1'"$&� ��

�"3"#"2& �3"1340 '*,&� �

%"3"#"2& 5"1*"#,&2� �
380&2 /'� �:�

%((*.(
��� ���� 1&0/13 ".% 1&0/13 5"1*"#,&2
01/(1"- /03*/.2 '/1)&,0'4, *.'/1-"3*/.� �	

%&2$1*03*/. '*,&2
�"3"#"2& �3"1340 '*,&� �
'/1-"3� �:�
(1"--"1� �:�
�1/(1"- �&'*.*3*/. '*,&� ��
�823&- �&'*.*3*/. '*,&� ��

%*1&$3*/.� /' " 0/13� ��

����� �
� �:�

%4-0*.(0/13 %"3" 3/ ". &73&1.", '*,&� �	
$/.5&13*.(3)& %"3" '/1-"3� ��
24#2&32 /' 3)& %"3"� ��

�
&,&-&.3 2*9&� /' " 0/13� ��

I-2

%-$9.&9120%!, ,!0*� ��

��� ,!0*� ��

�������� ��� �9�

%6%#32)-' 1/%� 	�

%6)12%-#%� .& ! /.02� ��

%6)2)-' ! /0.'0!,� ��� 2%0,)-!2)-' ��� /0.'0!,1

%6/0%11).-1
)- $%1#0)/2).- &)+%1� �9�
)-2%'%0� �9�
0%!+� �9�
120)-'� �9�

%62%0-!+ &)+%1� $3,/)-' /.02 $!2! 2.� ��

�
������ ��� �9

���� "3&&%01� ��

��������� ��� �9	

&)+%1
��� ���� $%1#0)/2).- &)+%1
$3,/)-' /.02 $!2! 2.� ��

������ �9�

&+.5 #.-20.+� .& ,%11!'%1� ��

&.0,!2� .& %62%0-!+ &)+%1� ��
��� ���� %62%0-!+ &)+%1

&0!,% -3,"%01� ��

������� ��� �9	� �9

&.0 0%/.02 4!0)!"+%1� ��
)- $!2! $3,/)-'� ��

&0%%��� 	�
��� ���� 1/% &0%%��

&3-#2).-1)- %6/0%11).-1
)-2%'%0� �9�
0%!+� �9�

�
'+."!+ ./%0!2).-1� ��� 17-#(0.-)8)-' ./%0!2).-1

'+."!+ 4!0)!"+%1� ����!2!"!1% �2!023/ &)+%

'0!,,!0� .& $%1#0)/2).- &)+%1� �9�

�
(!1(4!+3%� 31%$ 2. 4%0)&7 #!++)-' .0$%0� 		

(%+/�)-2%0!#2)4% #.,,!-$� 	

�
)$%-2)&)%01�)- $%1#0)/2).- &)+%1� �9�

������ ��� �9	

)-12!-#%1
$%&)-%$� �
(.5 2. &)-$ (.5 ,!-7� �9	�
(.5 2. &)-$ 7.30)-12!-#% -3,"%0� �9	�
1/%#)&7)-' (.5 ,!-7� ��
5%)'(2)-' &!#2.0 &.0 !++.#!2)-' 2(% -3,"%0 .&� ��

���� �9�� �9�

)-2%'%01�)- $%1#0)/2).- &)+%1� �9�

)-2%0!#2)4% 31%0)-2%0&!#%� 	

�
*%75.0$1� ��� 0%1%04%$ 5.0$1

�
������ �� �9	

+)"0!07 0.32)-%1
$!2!"!1%)-2%0&!#%� ��
,%,.07 !++.#!2).-)-2%0&!#%� 	�
,%11!'%)-2%0&!#%� �	
/%0&.0,!-#% ,.-)2.0)-')-2%0&!#%� 	�
0%/.02)-2%0&!#%� 	�
17-#(0.-)8)-' ./%0!2).-1� 		
2%0,)-!2)-' ��� /0.'0!,1� �

+)"1/%�!� 	�

+)-*)-' !- 1/% /0.'0!,� 	�

+)12
.& /0%$%&)-%$ 0%/.02 4!0)!"+%1� �9�
.& 0%1%04%$ 5.0$1�)

+.' &)+%� 	�
��� ���� 0%/.02 !-$ 0%/.02 4!0)!"+%1
$)1!"+)-' .32/32 2.� 	�
1/%#)&7)-' ! &)+% -!,%� 	�

�
,!++.#��� 	�
��� ���� 1/% ,!++.#��

������
&.0,!22%$ $3,/ &)+%1� ��
*%75.0$� ��� �9�

I-3

��#� �<	

0)024; %//2'%6-21 4276-1)5� ��

0)55%+)
*/29 '21642/� ��
/-&4%4; 4276-1)5� ��
24()4� ��

���� �<	

021-624-1+ 3)4*240%1')� ��� �<��

�
1%0) 2* 342+4%0� ,29 62 *-1(-6� �<��

�� � �
� �<�

1)6 /-565� ��

��$������� ��� �<�

170&)4 2* -156%1')5
,29 62 *-1(,29 0%1;� �<��
2* % 342+4%0� �	
9,-', 21) %4) ;27� �<��

170&)4 2* 32465� ,29 62 *-1(,29 0%1;� �<��

�
���� ��� ��� �<�

��� ��� ��� �<�

23)4%6245� -1):34)55-215 -1 ()5'4-36-21 *-/)5� �<�

24()4� 2* 0)55%+)5� ��

�! �! � ��� �<�

28)4/%3
%/+24-6,0 *24 429 %//2'%6-21� �<�
2* &/2'. (%6% -1 ����5� ��
2* 564-3)((%6%� � ��� �<�

�
3)4*240%1') 021-624-1+� /-&4%4; 4276-1)5� ��

��� � ��� �<�

3246 ��� ��

3246 0%3� �

32465
'20071-'%6-21� �
(%6%<*/29):%03/)5� �
,29 62 *-1(,29 0%1;� �<��
4)3/-'%6)(� �

564-3)(� �
6;3)5 2*� ��

34)()*-1)(4)3246 '%6)+24-)5� /-56)(� �<�

34)342')5524� (-4)'6-8) 75%+)� �<�

�������� �	� �<�

�42+4%0 �)*-1-6-21 *-/)� ��

342+4%0 1%0)� ,29 62 *-1(-6� �<��

342+4%00-1+ '%//5� /-56)(� �<�

�
����� �<�� �<	

4)%/ 8%/7)5� -1 ()5'4-36-21 *-/)5� �<�

4)+-56)4-1+� *24 % (%6%&%5) 8%4-%&/)� ��

������� ��� �<�

������� ��� ��� �<�

4)3/-'%6)(32465� �� ��

4)3246
/-&4%4; 4276-1)5� ��
34)()*-1)(8%4-%&/)5� �<�

4)3246 /2+� ��� /2+ *-/)

4)3246 8%4-%&/)5� ��
34)()*-1)(� ��
34)()*-1)(� /-56)(� �<�
71()*-1)(� ��

4)5)48)(924(5� �<�
���� �<�� �<�
�����$�"��� ��
�!����� �	
����� �<	
��� ���� ��
�!��� �	
�#��!��� �	
������ ��
������ �<	
������� ��
���! � ��
��#� �<	
���� �<	
�� � �	
���� ��
��� ��
�! �! � ��
��� � ��
�������� �	
������� ��� ��
��!��$������ ��
���!����� ��
� ������ ��

I-4

 !�����%�#��� ��� �>	� �>

!��� �� �� ��
!�"�� 	�
#��� 	�

6392)�63'.2 (328630 43687� �

��"��%������ ��� �>

63;7
.2 �63,6&1 �*+.2.8.32 +.0*7� ��
.2 =78*1 �*+.2.8.32 +.0*� �

6922.2, 74*�
�

�
 ��"����� ��� �>

7*59*28.&0 (328630 43687� �

 ��
&(632=1)*+.2*)� �
+361&88*))914 +.0*7� ��
/*=;36)� �� �>	

74*
&6,91*287 +36 8-* 74* 463,6&1�
�
6922.2, 8-* 463,6&1�
�

74*�-�
�

74*%(03(/��� �>

 ��%��%��"���� �>�

 ��%��%����!� �>�

 ��%��%��!� �>�

74*%)'%6*,.78*6��� 	�� �>�

 ��%��%�����!� �>�

74*%)'%7*8��� 	�� �>�

 ��%��% !����� �>�

 ��%��%!$��� *291*6&8.32 8=4*� �>�

 ��%��%" ��%�������� �>�
97* 3+� �>�

74*%)'%;&.8��� 	�� �>

74*%).7(&6)%)&8&��� �>�

74*%)914%)*+.2*��� �>�

74*%*28*6%7*5��� 	�� �>�

74*%*37��� 	� �>��

74*%+6**���
	� �>�

74*%,03'&0���

� �>��

74*%.)0*��� 	�� �>��

74*%.2.8��� 	
� �>��

74*%0*&:*%7*5��� 	�� �>��

74*%1&003(���
	� �>	�

74*%132.836%3++���
	� �>	�

74*%132.836%32���
	� �>		

74*%17,%(3928��� �>	�

74*%17,%0*2��� �>	�

74*%17,%;&.8��� 	�� �>	

74*%17,%;&.8%0.78��� 	�� �>	�

 ��%�"��%���!� 	�� �>	�� �>
�� �>

<&140� �>	�� �>
�

74*%4368%*<.787��� 	� �>	�

74*%4368%.)��� 	
� �>
�

 ��%���!%�����)&8& 7869(896*� �>
�

74*%4368%.2+3��� 	
� �>
�

74*%4368%.7%(322*(8*)��� 	� �>

74*%4368%2&1*��� �>
�

 ��%���!%!$��� *291*6&8.32 8=4*� �>
�

74*%463'*��� 	�� �>
�

74*%463'*%0.78��� 	�� �>

 ��%�������%�����)&8& 7869(896*� �>
�

74*%463,6&1%.2+3��� �>
�

74*%463,6&1%7=2(���

� �>
�

74*%6*(:��� 	
� �>��

74*%6*(:%;.2)3;��� �>�	

74*%6*4368���
�� �>��

74*%6*4368%*2&'0*)���
�� �>�

74*%7*2)��� 	
� �>��

74*%7*2)%;.2)3;��� �>��

 ��% !�!" �)&8& 7869(896*� �>��

74*%8*61.2&8*��� 	�� �>��

74*%8*61.2&8*%)*+.2*��� 	�� �>��

7834� .28*6&(8.:* (311&2)�
�

786.2,7
(32(&8*2&8.32 3+� �>	
.2)*7(6.48.32 +.0*7� �>�

 !������ ��� �>

786.4*)
&0,36.8-1 +36 63; &003(&8.32� �>�
&0,6.8-17 +36 3:*60&4)*8*61.2&8.32� �>�
3:*60&4� �� ��
43687� �� ��

 !�����%�#��� ��� �>�� �>	� �>

I-5

���������� ��� �0�

)+�)�*)� �+$'"% '&(* ��*�� ��

).%�!(&%"/"% &'�(�*"&%)� ��

).)*�$� ���"%��� �

�.)*�$ ���"%"*"&% �"#�� �� ��
(+#�)� �	

�

�($"%�"% ��� '(& (�$)� ��
"%*�(��*",�#.� ��

���������� �	� �0�

*(�%)'&)��� ���"%��� ��

����� ��� �0�

*.'�)
&� ��*� "% �+$' �"#�)� �

&� ��*���)� ,�("��#�)� �� �0�
&� '&(*)� ��

�
+%���"%�� (�'&(* ,�("��#�)� ��

+)�("%*�(����� ��
��� ���� ��)�("'*"&% �"#�)
"%*�(��*",�� ��

�
���� ��� �0�

,�("��#�)� ��� ��*���)� ,�("��#�)

,�("�."% (&+*"%� ��##"% &(��(� ��

�
-�" !*"% ���*&(� �&(�##&��*"% %&��)� �	

-"%�&-
���"%��� �0��� �0��
)�%� �%� (���",� &'�(�*"&%)� ��

	approv: Approved for public release; distribution is unlimited

