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EXECUTIVE SUMMARY

OBJECTIVE

Estimate the array gain achievable using adaptive matched-field beamforming of large multi-
dimensional acoustic arrays in coherent and incoherent noise fields.

APPROACH

A mathematical description of adaptive matched-field beamforming for coherent and inco-
herent noise fields is developed. Data covariance matrices are defined for 150 interference noise
sources varying in level. The matched-field beamformer output and array gain are estimated
when the array is focused on each of the sources for various interference-to-independent-noise
ratios.

RESULTS

Array gain is predicted to be in excess of directivity index by the interference-to-
independent-noise ratio and is observable for ratios of 0 dB and greater.

RECOMMENDATIONS

Experiments using multidimensional arrays of 100 to 1000 hydrophones are recommended to
test the predictions.
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INTRODUCTION

Matched-field beamforming (MFB) is a generalization of plane-wave beamforming in which
the complex steering vectors are modeled as solutions to the wave equation for the measured
environment rather than as plane waves. Both linear, or Bartlett, and adaptive (e.g., minimum
variance (MV)) processing schemes have been reported in the literature.1,2,3,4,5,6 Beamformers
provide signal-to-noise improvement (i.e., array gain) and estimates of signal parameters. In con-
trast to plane wave beamforming of a volumetric array, which estimates the azimuth and eleva-
tion of the signal arrival, MFB estimates the range, depth, and azimuth of the source of signals
incident on the array.

This report reviews linear and adaptive matched-field beamforming processors and derives
expressions for the mean array gain of the processors, assuming either incoherent or correlated
noise. The energy contribution of an interference on a sidelobe is calculated to provide peak
sidelobe criteria for array design. The sensitivity to mismatch of the processors is examined ver-
sus the number of hydrophones and the input-signal-to-noise ratio.

MATCHED-FIELD BEAMFORMERS

Consider a multidimensional array with horizontal and vertical aperture sufficient to resolve
interferences and element spacing larger than �/2 in an arbitrary ocean environment similar to
that shown in figure 1. The acoustic array data contain samples of the signal and noise incident
upon the array. The hydrophone data are conditioned, filtered, sampled, and Fourier analyzed,
generating a complex Fourier coefficient for each frequency, hydrophone, and time sample. The
data for each frequency bin are organized into a data matrix:

X =

e
l
e
m
e
n
t
s

��
������

�

�

       ��������
�

�

t i m e   s a m p l e s

x11

x21

�

�

xN2

x12

x22

�

�

xN2

�

�

�

�

�

x1T

x2T

�

�

xNT

�

�

�

�

�

�

�

�

�

�

(1)

where N is the number of array hydrophones and T is the number of time samples. A covariance
matrix is estimated by averaging over the time that targets are in a search cell (+ denotes com-
plex transpose):

K
^
� X X� (2)

The signal energy arriving during the averaging time in a search cell is estimated using either
linear or adaptive matched-field beamforming.
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Figure 1. Matched-field beamforming process.

LINEAR MATCHED-FIELD BEAMFORMING

Linear beamforming in the frequency domain estimates the received energy by applying
steering vectors to the estimated covariance:

� EL ( a^ ) � � s�(a^ ) K
^

s(a^ ) (3)

where s�(a^ ) is the complex steering vector. The energy is estimated for each search cell in the
search area by varying the trial parameter, a^ , of the steering vector and searching for an energy
peak. The position of the peak is an estimate of the range, depth, and azimuth of the signal
source. s(a^ ) is calculated by using measurements of the array element locations, estimates of the
sound speed structure derived from oceanographic measurements, and acoustic propagation
models.

In the far-field plane-wave beamforming case, the signal model assumes a plane wave para-
meterized in azimuth and elevation, a^ � (�,�). For focused beamforming, the signal model is a
spherical wave propagating from a target location parameterized in range, azimuth, and eleva-
tion, a^ � (r,�,�). In both cases, the complex steering weight is of the form sj  = e- j �j with unit
amplitude and is normalized according to

�
N

j�1

sj s
*
j � N (4)

For matched-field beamforming, the signal is modeled with an acoustic propagation model
parameterized in trial range, depth, and azimuth. a^ � r� � (r,d,�) is the set of search space
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parameters. The vector s = ( s1, s2, . . sN ) is called the replica for a signal at the trial location.
Using the normalization from Eq. 4, the steering vector is derived from the modelled pressures
by

sj (a
^ ) �

pj (a^ )

�
N

k�1
pk ( a^ ) p*

k ( a^ )

N

� (5)

The replica accounts for the propagation multipaths and curved wavefronts included in the
propagation model. The replica amplitude and phase both depend on the hydrophone, j, because
of the depth dependence of the propagation and vertical multipath interference pattern. Plane-
wave and focused beamforming are special cases of matched-field beamforming which assume
plane- and spherical-wave propagation models.

ADAPTIVE MATCHED-FIELD BEAMFORMING

In adaptive MFB, the output energy is estimated according to

� EA ( a^ ) � � w�(a^ ) K
^

w (a^ ) (6)

The adaptive weights are determined from the estimated covariance, K
^

, to minimize the out-
put energy subject to the constraint

w�(a^ ) s(a^ ) ��
N

j�1

w*
j (a

^ ) sj (a
^ ) � 1 (7)

Adaptive MFB minimizes the energy received by nulling interferences, while the constraint
assures that signals matching the replica vector, s, are passed without distortion. The minimum
variance weight vector is given by

wA(a^ ) �
K
^ –1

s(a^ )

s�(a^ )K
^ –1

s(a^ )

(8)

and the output energy is obtained by substituting  in Eq. 6:

� EA (a^ ) � � 1

s�(a^ ) K
^ –1

s(a^ )
(9)

Minimizing energy is accomplished in the process by using the measured data to estimate the
amplitudes and phases of interference signals which do not match the steering vector and
coherently subtracting the energy. Knowledge of the replica vectors for the interferences, includ-
ing the associated locations and propagation parameters, is not required by the process. Knowl-
edge of the interference positions can be used in the inverse problem to estimate the sound-speed
structure and array element positions.7
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SUMMARY

Matched-field beamforming allows the use of large vertical apertures which fill the water
column. It provides the potential of separating submerged target signals from surface and sound
channel noise. If plane-wave beamforming were to be performed on the array, its vertical resolu-
tion would be �1 degree. Arrival angles from nonbottom interacting sources typically vary
between �20 degrees. The plane-wave beamformer smears the signal multipath arrivals, result-
ing in gain degradation. MFB combines the coherent vertical signal multipath and corrects for
changes of signal arrival angle over the vertical aperture.

Adaptive MFB reduces sidelobe energy by minimizing the energy that does not match the
signal replica constraint. By focusing on the signal source and minimizing the sidelobe energy,
the processor increases the signal-to-noise ratio (SNR).

ARRAY GAIN IN NONUNIFORM INCOHERENT NOISE

For the purposes of this section, it is assumed that the ocean has a single point source with
incoherent noise which varies from element to element. K  then has the form

K � �
2
s dd�� �

2
n� (10)

where dd+ is the dyadic matrix formed from the vector of pressures from a source at the source
position r�s� (rs,  ds,  �s). The average signal energy incident on the array is �

2
s . �� is a diagonal

matrix of the relative noise energy and �
2
n is the average noise in the array elements. If the noise

energy is equal on all of the hydrophones, �� I�� I, the identity matrix.

LINEAR MFB IN INCOHERENT NOISE

For a linear beamformer, the output energy from Eq. 3 is given by

�EL(a^, r�s) � � �
2
s s�(a^ ) d ( r�s)d�(r�s) s(a^ )� �

2
n s�(a^ )� s(a^ ) (11)

Assuming perfect match, s = d, and using Eq. 4, the output energy becomes

�EL(a^, r�s)� � N2
�

2
s� N �n

s
�

2
n (12)

where

�n
s
�

s�� s
N

�

�
N

j�1

sj s
*
j �j

N

(13)

is the signal weighted average relative noise power in the array elements, which accounts for the
combination of noise and signal variation across the array. For example, if the noise is high on

the elements where the signal energy is high, then �n
s
 will be higher and the gain will be lower.

Note that if either the noise is equal on all elements or all the signal powers are equal (as in

plane-wave beamforming), then �n
s
 = 1.



5

From Eq. 12, we see that when the matched-field beamformer is steered at the signal, the sig-
nal energy increases by N2 and the noise energy increases by N. The array gain is defined as the
output SNR divided by the input SNR:

AG� 10 log
	� E(�2

n�0) �

� E(�2
s�0) �



	 �2
s

�2
n



(14)

For linear MFB, the array gain is given by

AGL � 10 log	 N

�n
s
 (15)

The array gain in uniform incoherent noise, �� I , is the directivity index, DI = 10 log N.

ADAPTIVE MFB IN INCOHERENT NOISE

For adaptive MFB, the output energy from Eq. 9 is given by

�EA (a^, r�s) � � 1

s�( a^ ) 	 �2
s d (r�s)d�(r�s) � �2

n� 

–1

s( a^ )
(16)

Assuming perfect match (s = d), and using8

�USV�� B �
–1
� B–1–B–1U �V�B–1U � S–1�

–1
V�B–1 (17)

the output energy and optimum weight vector become

�EA(a^, r�s)� � �
2
s �

�2
n

N�–1
n

s (18)

wA � �–1s
s��–1s

(19)

where ��1
n

s
�

s���1 s
N

�

�
N

j�1

 
sjs*

j

�j

N
 is the mean of the inverses of the relative noise power in the

array elements weighted by the relative signal powers. The array gain becomes

AGA � 10 log	N�
–1
n

s
 (20)

If the noise is equal on all elements, �
�1
n

s
 = 1, adaptive MFB has the same weights and array

gain as linear MFB. When the noise varies from element to element, the elements with high
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noise are weighted less than the elements with low noise. Thus, even in the case with incoherent
but unequal noise, the array gain is increased with adaptive processing.

ARRAY GAIN IN NOISE WITH MULTIPLE UNCORRELATED
INTERFERENCES

In this section, the array gain is derived by assuming that the array noise consists of signals
from M uncorrelated sources plus uniform independent element noise. The source, labeled k, is
defined as the signal upon which the array is focused. The covariance matrix for this assumption
is

K � �
2
k dkd�k � K n

K n �	
M

j�1
j�k

�
2
j d j d

�
j � �

2
n I (21)

It is also assumed that the independent noise is equal on all elements. The effects of unequal but
independent noise are similar to that discussed in the preceding section.

LINEAR MFB WITH MULTIPLE INTERFERENCES

Assuming that the array is steered at the signal s = dk, the energy at the output of a linear
matched-field beamformer (using Eq. 3, 4, and 21) is given by

�EL � � N2
�

2
k � N2 	

M

j�1
j�k

�
2
j L js� N�2

n (22)

where s�djdjs� N2Ljs and Ljs is the sidelobe power level for a linear beamformer of the jth signal
when the array is steered at s.

For this case, the array gain is defined as the output-signal-to-total-noise ratio divided by the
input-signal-to-total noise-ratio

AG� 10 log

�� E(�2
n��2

j�0) �

� E(�2
k�0) �

�
� �2

k

�2
T

�
(23)

where �2
T � �2

n �	
M

j�1
j��k

  �2
j  is the total noise energy. The linear array gain is given by

AGL � 10 log N–10 log���




�

1 � N 	
j

�2
j
L js

1 � �2
I

��
�

�



(24)
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where α 2
j� �2

j ��
2
n  is the input interference-to-independent-noise ratio (IINR) for the jth interfer-

ence and 10 log   2I �  10 log ��
�



�
j�1
j��k

   2j��
�

�
α α  is the total IINR, IINRT.

Note that array gain is reduced from the isotropic noise case by the interference signals in the
sidelobes. If there is no interference in the main beam and all the sidelobes are lower than 1/N,
gain better than 10 log N can be achieved for all resolved signals. When the array is steered
where an interference is in a high sidelobe, the gain is less than 10 log N. Obtaining low side-
lobes requires a large number of elements, closely spaced and with high tolerance on the ampli-
tude and phase. Linear MFB gain, even with most careful array design, will typically be less than
10 log N because sidelobes within a few decibels of the main lobe occur at convergence zone
(CZ) spacing.2 These sidelobes result from propagation in the oceanic waveguide and cannot be
reduced by array design methods.

In the discussion of linear mismatch effects, Eq. 42, it is shown that the mean sidelobe level

is Ls �
1
N

. The linear MFB array gain in coherent noise, assuming all interferences are at the
mean sidelobe level, reduces to the directivity index, AGL � 10 log N � DI.

ADAPTIVE MFB  WITH MULTIPLE INTERFERENCES

Adaptive MFB reduces the sidelobe energy whenever the sidelobe is greater than a few deci-
bels down from the main lobe. This helps in removing the CZ sidelobes and allows the use of
thinned arrays with element spacing greater than �/2.9

Using Eq. 17, it can be shown that if K  = a dd+ + Kn, then

K –1 � K –1
n –aK –1

n d [1� ad�K –1
n d ]–1d�K –1

n (25)

The output energy of adaptive MFB becomes

�EA � �
1� �2

k
d�

k
K –1

n dk

s�K –1
n s �1� �2

k
d�

k
K –1

n dk 	1–
s�K –1

n dk d�
k K –1

n s

s�K –1
n s d�

k
K –1

n dk

 � (26)

When the steering vector matches the signal vector (s = dk) the term in (..) equals zero, giving
the following equation for the output energy:

�EA � � �
2
k �

1
s�K –1

n s
(27)

From repeated applications of Eq. 17 to  in Eq. 21 (see Appendix), the following expression
can be derived for the inverse of the total noise covariance matrix:

K –1
n � 1

�2
n

��
�

�

�

I–�
M

j�1
j�k

�
�



�2
j
dj d�

j

�2
n� N�2

j
�
�
�
��
�

�

�
(28)
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The output energy of the adaptive MFB process is given by

�EA � � �
2
k �

�2
n

N

���������

�

�

1

1–N 

M

j�1

j�k

� �2
j L j s

1 � N�2
j

	

���������

�

�

(29)

and the array gain is given by

AGA � 10 log
����

�

�

N (1� �
2
I )
���
�

�

�

1–N 

M

j�1

j�k

�
�
�

�2
j
L js

1� N�2
j
�


�
���
�

�

�

����




�

(30)

Using Ls �
1
N

 (Eq. 42), the adaptive MFB output energy, assuming all interferences are at the
mean sidelobe level, is given by

�EA � � �
2
k �

�2
n

N

���������

�

�

1

1–

M

j�1

j�k

� �2
j

1 � N�2
j

	

���������

�

�

(31)

and the array gain is given by

AGA � 10 log
����

�

�

N (1� �
2
I )
���
�

�

�

1–

M

j�1

j�k

�
�
�

�2
j

1� N�2
j
�


�
���
�

�

�

����




�

(32)

As the number of elements increases, N>M, the array gain increases asymptotically as

AGA
�

N � M
10 log N� 10 log�2

I
(33)
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The array gain is then bounded by 10 logN plus IINRT.

The array gain and output energy from adaptive MFB can be calculated for various �
2
I  by

using Eq. 31 and 32, and by assuming a distribution of interference levels, �
2
j . We assume, in

figure 2, that the acoustic field consists of 150 sources of varying levels, with a total level of
79.95 dB. In this example, the total noise level is 80 dB. The total input interference to indepen-
dent noise, IINRT, is assumed to be 10 dB.

"�"��� ���!�� ��$��� �� ��� &�

��$��� ��� ����������"� ���!�� �� ��� &�

���� ��"� �� ����!� "�"������ ������ &�

��"� �� ����� �"� ��"�� �#��� 

 
�
�
�
�$
�
�
��
�
$
�
�

�&
�
�(
'
��
��
�
%
��
)
�

�

��


�

��

	�

�

�	�

� 
� 
� �� �	� ���

Figure 2. Noise field assumption for figure 3. Total noise level = 80 dB.
Independent noise level = 69.95 dB. 150 interferences uniformly distributed
in energy, totaling 79.95 dB.

The received energy when the array is focused at each of the interferences is shown in fig-
ure 3 for various number of array elements, N. As N increases, the measured noise floor drops
and more signals are detected. For example, with 1,000 hydrophones, signals approximately
40 dB below the 80-dB total noise level can be detected, achieving a 40-dB array gain, 10 dB
above 10 logN.

The array gain in this noise field, calculated by using Eq. 32, is shown in figure 4 versus 
N. In this plot, IINRT is varied from -30 to +20 dB. The conditions of figure 2 and figure 3, 
IINRT = 10 dB, are marked with “+” in the figure. From figure 4, measurements with 1,000-
element volumetric arrays can determine the IINR. The array gain achievable with a larger num-
ber of elements is 10 log N + IINRT.
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Figure 3. Received level from adaptive MFB versus number of elements, N,
when the processor is steered at the interference.
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independent-noise ratio, IIINRT.
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PEAK SIDELOBE LEVEL REQUIREMENTS FOR ADAPTIVE MFB

The results presented above are expected values since the mean sidelobe level of –10 logN
was used. In order to establish array design criteria, the portion of the noise floor energy of a
given interference is estimated by assuming one signal (k), one interference (i), and independent
noise in Eq. 29. This is given by

�E A �(sk � di ) � �
2
k �

�2
n

N


�

�

1

1–
N�2

i Lis

1�N�2
i




�

	
(34)

The second term is the contribution to the noise floor from the interference. It is plotted in fig-
ure 5 versus the sidelobe level (Lis) as a function of N and the individual interference-to-indepen-
dent-noise ratio, IINRi  = 10 log �

2
i . For large IINRi , an interference contributes 1 dB to the

noise floor for peak sidelobes below –6 dB re the main lobe. A few sidelobes as high as –3 dB
are acceptable. Arrays can be designed by using the linear matched-field beampattern statistics in
a process similar to random arrays.9,10,11,12
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Figure 5. Contribution to the measured noise floor from a single interference
versus the Bartlett sidelobe level at the interference for vaious N � IINRi .

The high sidelobe tolerance of adaptive MFB has great impact on the design of arrays, elimi-
nating the need for large numbers of accurately positioned high-tolerance hydrophone channels,
which are required to obtain the low sidelobe levels needed to detect weak signals in multiple
interferences.
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SENSITIVITY OF MATCHED-FIELD BEAMFORMING TO
MISMATCH ERRORS

Errors in element location, propagation modeling, and sound-speed structure measurement
result in errors in the prediction of the signal replica, s. These mismatch errors cause both loss of
array gain and bias errors in estimating the source position.2 The latter occur when a near perfect
match is obtained for true source positions that differ from the estimated positions, r�s � �

^ . The
sensitivity of array gain and output spectrum of optimum array processors has been thoroughly
analyzed by Cox.13 Though derived assuming plane wave propagation, his results are directly
applicable to matched-field beamformers. For this report, we examine the array spectral output
degradation (ASOD) due to mismatch, defined as the ratio of the energy at the signal peak with
mismatch to the energy with no mismatch:

ASOD� 10 log��E �MM

�E �
� (35)

This definition is experimentally estimated using a strong signal at a known position. The
energy in the peak nearest the known location is measured and compared to the predicted energy
with no mismatch. The definition and measurement include a component of the output energy
from increased sidelobes caused by the nulling of the mismatched signal. This section describes
the array gain degradation (AGD) for linear and adaptive MFB as a function of input SNR. It is
assumed that the acoustic field is generated by a single-point source and incoherent noise. The
covariance matrix is shown in Eq. 10.

LINEAR MFB MISMATCH EFFECTS

In practice, the signal energy measurement includes some noise energy, as shown in Eq. 12.
Linear array spectral output degradation, ASODL, is obtained using Eq. 11 and 12 in Eq. 35:

ASODL � 10 log

	


�2

s (s�d d�s) � N�n
s
�2

n

N2�2
s � N�n

s
�2

n )


�
�

� 10 log

	




cos2(s,d ) �
�n

s

N�2

1 �
�n

s

N�2



�

�

(36)

where �2 � ��2
s

�2
n

� is the input SNR and

cos2(s, d ) �
(s�d ) (d�s)
(s�s) (d�d )

(37)

is the generalized cosine between the steering vector, s, and the signal vector, d.13 The latter is a
measure of the mismatch signal gain degradation which results from nonalignment between the
steering vector and the received signal vector. It is also the ASOD and AGD for a large output
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SNR. The linear ASOD for various output SNRs,  Nα2, is plotted in figure 6 as a function of
mismatch AGD, 10 log cos2(s, d). We have assumed equal noise on all of the elements, �n

s
� 1.

Note that the output SNR must be 20 dB or greater for a direct measurement of ASOD. How-
ever, a measurement of the input SNR, �n

s, and ASOD can be used with Eq. 36 to estimate the
mismatch AGD with finite SNR.
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Figure 6. Bartlett array gain degradation versus mismatch array gain
degradation for various output SNRs.

Following the work of Berman,14 we assume that s and d differ only in phase, dj  = sje–i� j.
The true mismatch is given by

cos2 (s, d ) �

�
�

�
�
N

j�1

s2
j
e–i �j�
	



�
�
�
�
N

k�1

s2
k
ei �k�
	



N 2

�

�
N

j�1

s4
j
� �

N

j�1k� j

�
N

k�1

s2
j
s2

k
e– i (�j – �k )

N 2

(38)

If it is assumed that the mismatch errors are represented by independent Gaussian distributed
phase errors on each element of the array, given by

P(�k �
1

2��2�
e�

�2
k

2�2 (39)
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2where �2 is the RMS phase error in radians; then

� e–i (� j – �k ) � � e–�2 (40)

We have used the fact that the probability density of the difference of two independent zero
mean normal distributions is also a zero mean normal distribution whose variance is the sum of
the component variances.

Using ��N
j�1

s2
j�

2

��
N

j�1

s4
j ��

N

j�1

 
j� k

  �
N

k�1

s2
j s

2
k  and Eq. 4 in Eq. 38, the expected value of the output

with mismatch is given by

� cos2(s, d ) � �
1 � (Ne–1)e– �2

Ne
(41)

where Ne �
N2

�
N

j�1

 s4
j

 is the effective number of elements illuminated by the signal.

The mismatch AGD from phase errors is plotted in figure 7. It can be seen that the signal

replica at a range near the true range must be calculated to �

10
 relative accuracy. This implies that

relative array element locations be known to better than �

10
 and that the acoustic models and

sound-speed structure measurements generate replicas to this relative accuracy.
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Figure 7. Expected mismatch array gain degradation versus RMS phase
error in wavelengths.

Equation 41 can also be used to derive an expression for the mean sidelobe level. Consider
the case where the array is steered away from a source. In this case, the mean phase error, �2, is
large and the mean sidelobe level is given by

�cos2(s,d ) � � L � 1
Ne

(42)
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ADAPTIVE MFB MISMATCH EFFECTS

Assuming a single point source and uniform incoherent noise, the covariance matrix is given
by Eq. 10 with �� I . The adaptive MFB array spectral output degradation due to mismatch—
obtained using Eq. 9, A-3, and 38—is given by

ASODA � 10 log

	


�EA–MM �

�EA�


�
�
� –10 log � 1 � N�2 �1– cos2(s, d )� � (43)

ASODA is plotted versus mismatch AGD for various output SNRs, N�2, in figure 8. At high
output SNRs, large degradation results from rather small mismatch. In this case, the adaptive
processor is nulling the portions of the signal that do not match the replica. However, low-level
signals near the output noise level (–10 logN) have degradation only slightly larger than the
degradation from linear MFB. The adaptive processor does not null the mismatch portions of
low-level signals.
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Figure 8. Adaptive array gain degradation versus mismatch array gain
degradation for various output SNRs.

Mismatch errors with adaptive MFB thus degrade the performance more than linear MFB
only at high SNR. At low output SNR, the mismatch degradation is approximately the same as
with linear MFB. The dynamic range of the search space is thus compressed.

The degradation at high SNR can be reduced by bounding the magnitude of the adaptive
weight vectors using the white noise constraint algorithm.13,15,16,17 These methods prevent nul-
ling of the signal in the main beam by limiting the depth of the nulls in the focal pattern. For
high-level interferences, the contribution to the noise floor shown in figure 5 will be greater than
shown, depending on the value of the bound of the weight magnitude.
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CONCLUSIONS

Adaptive matched-field beamforming with large arrays is predicted to achieve gain equal to
the directivity index plus the total IINR. An example of a physically derived distribution of
received interference levels illustrates that measurements with volumetric arrays of approxi-
mately 1,000 hydrophones can determine the IINR, enabling an estimation of achievable array
gain.

Array sidelobe level requirements for adaptive MFB are derived, showing that loud interfer-
ences contribute less than 1 dB to the noise floor for peak sidelobes below -6 dB re the main
lobe. A few sidelobes as high as –3 dB are acceptable.

Adaptive matched-field gain degradation from replica errors is shown to approach the linear
matched-field gain degradation at low output SNR.
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A-1

Appendix

INVERSE OF Kn

Kn in Eq. 21 is of the form

Cm��
m

j�1

bj d
�
j � I (A-1)

where it is assumed that the interferences are orthogonal:

b�j bk� b2
j �j k (A-2)

This appendix shows the proof by induction that

C –1
m � I–�

m

j�1

bj b�j
1 � b2

j

(A-3)

Define

C0� I
C1� C0� b1 b�1
C2� C1� b2 b�2

.

.
Cm� Cm–1� bmb�m

(A-4)

Eq. 17 can be used to show that

C –1
k
� C –1

k–1
–

C –1
k–1

bk b�
k

C –1
k–1

1� b�
k

C –1
k–1

bk

(A-5)



A-2

Thus, using Eq. A–2

C –1
0
� I

C –1
1
� I �

b1 b�
1

1 � b2
1

C –1
2
� I–

b1 b�
1

1 � b2
1

–
b 2 b�

2

1 � b2
2

.

.

(A-6)

If we assume that

C –1
m–1

� I–�
m–1

j�1

bj b�j
1 � b2

j

(A-7)

then, using Eq. A-5

C –1
m � I–�

m–1

j�1

bj b�j
1 � b2

j

 –

bmb�m –�
m–1

j�1

bj b�j bmb�m –�
m–1

j�1

bmb�m bj b�j ��
�

�
�
m–1

j�1

bj b�j bm�
�

�
�
�

�
�
m–1

j�1

b�m bj b�j �
�

�

1� b2
m–�

m–1

j�1

b�m bj b�j bm

1�b2
j

(A-8)

All the sums in the third term are zero by the orthogonality assumption, Eq. A-2, yielding

Eq. A-3.


