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SUMMARY

Given a sparse nonsquare system of linear equations Mx = b where MTM is either dense or full, we
present a direct method that generates a least squares solution of the original system Mx = b by solv-
ing a smaller least squares problem. The method accomplishes this decomposition by applying ortho-
gonal transformations to a restructured form of the original system of equations. The algorithms
derived from the decomposition result are well-suited for both sequential and parallel architecture
machines. In a specific Navy signal processing application, the presented algorithm computed on a
Sun SPARC 10 workstation a least squares solution of a rank deficient system comprising 703 equa-
tions and 592 variables in a number of floating point computations tenfold smaller than a method that
does not expoit the sparsity structure of M.
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1.  INTRODUCTION

The method of least squares is a fundamental computational tool for estimating unknown parame-
ters, curve fitting, data smoothing as well as solving nonsquare systems of equations. When the prob-
lem is formulated as a nonsquare system of linear equations

Mx = b , (1)

in which M is an m by n full rank or rank deficient matrix, the linear least squares problem is
expressed in the standard form

(2)
min
x � Mx � b �2  . 

A number of efficient, direct methods for solving large and sparse linear least squares problems
have been developed using orthogonalization, elimination and augmentation (George & Heath, 1980;
Golub, 1965, Hachtel, 1974; Heath, 1982; Heath, 1984; Liu, 1986; Peters & Wilkinson, 1970). A
central assumption in all these methods is that the matrix MTM is sparse. In this work, we expand the
choice of methods by developing a method that efficiently handles the case in which M is a sparse
matrix while MTM is dense, and possibly full. Our method is based on a decomposition result
obtained from the application of orthogonal transformations to a restructured form of the system
Mx = b. With this result, the original sparse linear least squares problem is reduced to a smaller least
squares problem. The size of this smaller problem depends on the original zero-nonzero structure of
the sparse matrix M. For a specific navy signal processing application in which M is a 703 by
592 sparse and rank deficient matrix and MTM is full, the smaller problem consisted of a dense, rank
deficient system comprising 231 equations and 120 variables. The application of our direct method
to the smaller problem produced a solution to the original sparse linear least squares problem in a
number of floating point computations tenfold smaller than a method that did not exploit the sparsity
structure of M.

The algorithms derived from our decomposition method are well-suited for both sequential and
parallel architecture machines. This work covers results obtained obtained from implementations on
a sequential machine, whereas future work will cover results obtained from implementations on par-
allel architecture machines.

This report is organized as follows: Section 2 reviews some of the most common methods for solv-
ing the sparse linear least squares problem. These include the normal equations method, sequential
row orthogonalization method (George & Heath, 1980) and multifrontal QR factorization (Liu,
1986). Section 3 presents the main decomposition result; Section 4 discusses various sparsity struc-
tures suitable for the proposed decomposition result including the block bordered triangular form;
Section 5 gives two high-level implementations of the decomposition result; Section 6 reviews four
methods available in the linear algebra package Matlab (Mathworks, 1990) for solving dense and
sparse linear least squares problems; Section 7 presents a procedure to structure the overdetermined
matrix arising from the signal processing application into the block bordered triangular form, and
discusses the key computational issues in permutating an arbitrary nonsquare matrix into block bor-
dered triangular form; Section 8 outlines some of the parallel features inherent in our algorithms, and
concludes with numerical results and comparisons.
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2.  BACKGROUND AND MOTIVATION

The system of normal equations

(3)MTMx � MTb

plays a pivotal role in many methods developed for the solution of the linear least squares problem.
If M has full column rank, then the solution of the linear least squares problem (2) is given by the
solution of the system of normal equations (3). This leads to the following three important contribu-
tions (George & Heath, 1980; Heath, 1984; Liu, 1986) for solving the sparse linear least squares
problem.

1. Normal Equations Method. For any n by n permutation matrix P, PTTMTMP is symmetric pos-
itive definite since matrix M has full column rank. As a result, the normal equations method
leads to the following algorithm (Heath, 1984) for the solution of the sparse linear least
squares problem.

procedure  normal_equations:
begin

determine symbolic structure of MTM;
find permutation matrix P so that P TMTMP has sparse upper Cholesky factor;
factor P TMTMP symbolically;
comment  this generates a row-oriented data structure for Cholesky factor;
compute MTM and MTb numerically;
perform Cholesky factorization P TMTMP = R TR;
solve R Tz = P TMTb, RY = z and x = Py in that order

end

Although the normal equations method is appealing for its simple formulation, it may give rise
to serious loss of information in the explicit computation of the products MTM and MTb. Also,
the condition number of MTM is the square of the condition number of M, and so an accurate
solution of the system (1) may be extremely difficult to compute if M is ill-conditioned. To
avoid these potential numerical instabilities associated with the normal equations method,
George and Heath (1980) combined orthogonalization with the normal equations method to
arrive at the following important method for solving the sparse linear least squares problem.

2. Sequential Row Orthogonalization Method. Let Q be an m by m orthogonal matrix and let P
be any n by n permutation matrix so that

(4)QTMP � �R0� , 

where R is an n by n upper triangular matrix and 0 is m-n by n zero matrix. Combining (1)
and (4), and partitioning QTb conformably into the direct sum of f and h, gives rise to the
upper triangular system

(5)Ry � f

in which y = PTx. The vector x = Py obtained subsequent to the solution of (5) is a solution to
the linear least squares problem (2) since the 2-norm is preserved under orthogonal trans-
formations (Golub, 1965). The matrix Q is usually obtained using either Householder reflec-
tions or Givens rotations, or by Gram-Schmidt orthogonalization (Golub & Van loan, 1989;
Lawson & Hanson, 1974).
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While orthogonalization eliminates the potential numerical instabilities encountered in the nor-
mal equations method, the application of orthogonal transformations to the matrix MP may
cause severe fill-in. George and Heath (1980), however, noted the following identity

(6)PTMTMP� RTR , 

which clearly shows that the upper triangular matrix R obtained from the application of ortho-
gonal transformations to the matrix MP is the upper Cholesky factor of the symmetric positive
definite matrix PTMTMP. This observation led George and Heath to an algorithm which com-
bines the attractive features in the normal equations method and orthogonalization into the fol-
lowing algorithm.

procedure  sequential_row_orthogonalization:
begin

apply the first three steps in procedure normal_equations
compute R and f by applying Givens rotations to rows of [MP b] one at a time;
solve Ry = f and x = Py in that order

end

The most significant contribution of the sequential row orthogonalization method is high-
lighted in step 2 of the above procedure where orthogonal transformations are carried out
using fixed (static) data structure for R (George & Heath, 1980). This feature makes the
sequential row orthogonalization method extremely efficient for sparse linear least squares
problems when MTM is assumed to be sparse.

3. Multifrontal QR Factorization Method. This method, originally called row merging scheme
(Liu, 1986), is a means to compute the upper triangular matrix R in the QR factorization (4) by
applying Householder reflections to small dense submatrices in such a way that each subma-
trix is factorized independently of the others. The allocation of these small submatrices (called
frontal matrices) and the subsequent treatment at the completion of their factorizations is
accomplished by exploiting the sparsity structure of the symmetric matrix R+RT.

In what follows, we highlight the main motivation that has led to the formulation of the multi-
frontal QR factorization method. For any i with 1�i�n, let ri and ci be two arrays so that
M(ri, ci) is the submatrix of M consisting of the rows containing the nonzeros in the ith column
of M, and the columns containing at least one nonzero in the submatrix M(ri,:). Then, the first
row obtained from the QR factorization of the submatrix M(ri, ci) is the first row of matrix R
in (4) for the case where P = I. Now let M(:,j) be any other column of M such that

(7)M(:, i) TM(:, j) � 0 . 

Assume that no cancellation of nonzero elements takes place in (7). Then no row of M con-
tains nonzero entries in both M(:,i) and M(:, j), and so the first row obtained from the QR fac-
torization of the submatrix M(rj, cj) is also a row of the matrix R in (4) for the case where
P = I. Consequently, for the case where P = I the first two rows of R can be obtained by inde-
pendent QR factorizations of the submatrices M(ri, ci) and M(rj, cj). Such submatrices are
called frontal matrices, and the method derived from the use of frontal matrices takes the fol-
lowing algorithmic form.
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procedure  multifrontal_QR_factorization:
begin

apply the first two steps in procedure normal_equations;
set M to MP;
while  M has any column do

begin
determine frontal matrices in M;
for  each frontal matrix M in M do

begin
use Householder reflections to compute QR factorization QTM;
comment  first row of QTM is a row of R in (4);
replace submatrix M of M by factorized frontal matrix QTM

end;
delete from M first row and column of each factorized frontal matrix

end
end

By equality (7), each pass of the for  loop in the above procedure can be done independently of
the other passes. This feature makes the multifrontal QR factorization method well-suited for
parallel computation. However, the overall effectiveness of the method rests on how efficiently
the frontal matrices in M are allocated and formed at each pass of the while loop. This subject
is covered next using a graph-theoretic setting. Our definitions are from Tarjan, 1983).

Let G = (V, E) be the directed graph of the upper Cholesky factor R. Then G is an acyclic
graph since R is an upper triangular matrix, and so there exists in G at least one vertex v such
that no edge in G enters v. A vertex such as v is called a root. Let X denote the set of roots
in G. We will now show that each root in G leads to a distinct frontal matrix. These are the
frontal matrices (|X| in total) that are determined at the first line of the while loop, and factor-
ized at the first pass of the for  loop.

Let G� = (V, E�) be the undirected graph of the symmetric matrix R + RT. We want to show
that X is an independent set (no two vertices are adjacent) in G�. Assume for contradiction that
there exists in X a pair of vertices v and w so that v is adjacent to w in G�. Then (v, w) is an
edge in G�, and so by the construction of G and G� it follows that there exists in G a directed
edge that either leaves v and enters w or leaves w and enters v. In each case, we have estab-
lished a contradiction since both v and w are roots in G. Consequently, X is an independent set
in G�, which means that X is an independent set in the undirected graph of PTMTMP since this
graph is a subgraph of G�. But if X is an independent set in the undirected graph of PTMTMP,
then each pair of columns in MP corresponding to a pair of vertices in X satisfy relation (7).
Hence, each root in G leads to a frontal matrix in MP.

Let M be the m – |X| by n – |X| matrix obtained at the completion of the last step in the while
loop. By the property that the first row of each factorized frontal matrix in the first pass of the
for  loop is a row of R in (4), the second pass of the for  loop will p roduce the next set of rows
of R in (4). This process is repeated until all n columns of M have been deleted, in which case
the while loop terminates and the computation of the upper triangular matrix R in (4) is com-
pleted.

In what follows, we cover some of the graph-theoretic details needed to form the frontal
matrices required at the start of the second through last pass of the for  loop, and also to con-
nect our interpretation with the one that is usually used to describe the multifrontal QR factor-
ization method.
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Let us set X0 to X, and define X1 as the set of roots in the induced subgraph G(V–X0). Since
no vertex in X1 is in the initial set of roots X0, no vertex in X1 is a root in G, which means that
for every root x in G(V–X0), there is at least one edge in G which leaves a root in G and
enters x. We will call the vertex v in X0 a parent of the vertex x in X1. With this notation in
hand, it is not hard to show that the frontal matrix associated with a root x in G(V–X0) is
derived from the frontal matrices associated with the parents of x in X0. It is important to note,
however, that no two distinct vertices x and y in X1 have a common parent in X0. Otherwise,
the pair (x, y) will be an edge in the induced subgraph G(V–X0) which contradicts the assump-
tion that x and y are roots in G(V–X0).

We complete the description of the multifrontal QR factorization method with the following
algorithm.

procedure  roots:
begin

compute the set of roots X 0 in G;
V � V – X 0;
i � 0;
while  V is not empty do

begin
i � i + 1;
compute the set of roots X i  in G(V);
for  each each x in X i  do  compute the set of parents of x in X i–1 ;

V � V – X i
end

end

Let h denote the value of the integer i at the completion of procedure roots. Then X0, X1, ...,
Xh are the sets of roots computed at the completion of procedure roots. Note that all parents of
a root in any Xi are in the set of roots Xi-1 for all i > 0. This means that any edge that has its
end points in two non-consecutive sets of roots is redundant as far as the computation of a
frontal matrix is concerned. Let G* = (V, E*) be the graph obtained from G by deleting all
such edges. Then the undirected version of G* obtained from G by replacing each directed
edge by an undirected edge is the elimination tree of the undirected graph G�, and h is the
height of the elimination tree. An elimination tree is usually the means for describing the mul-
tifrontal QR factorization method (Liu, 1986). However, this approach requires several
constructs which were not needed in our interpretation.

The problem of finding a permutation matrix P such that PTMTMP has sparse upper Cholesky
factor is crucial in each of the three methods covered herein. Therefore, the assumption that
MTM is a sparse matrix is critically important since these methods may behave very poorly for
the case where the matrix MTM is dense.

In this work, we expand the choice of methods for solving the sparse linear least squares prob-
lem by developing a method that efficiently handles the case where M is a sparse matrix while
MTM is dense, and possibly full. The need to deal with this case was motivated by an impor-
tant Navy signal processing application in which M is a highly sparse large overdetermined
matrix and MTM is completely full.
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3.  A DECOMPOSITION BASED ON THE SPARSITY OF M

Let P and S be permutation matrices such that PMS is a 2 by 2 block matrix

(8)PMS� �AC B
D�

in which the leading block A is an N by N square and nonsingular matrix. Replacing M by PMS in
the original system of equations Mx = b, we obtain the following equivalent nonsquare system

(9)(PMS)(STx) � (Pb) . 

Consider this system where PMS has the 2 by 2 block form in (8) and the vectors STx and Pb have
been partitioned conformably into the direct sums of y and z, and u and v respectively. The sys-
tem (9) then becomes

(10)�AC B
D��yz� � �uv� . 

Now let K be the 2 by 1 block matrix defined by

(11)K � �AC� . 

Since block A is nonsingular, matrix K has full column rank and so there exists an orthogonal
matrix Q such that QTK has the following 2 by 1 form

(12)QTK � �R0� , 

in which R is an N by N upper triangular matrix with nonzero diagonal entries and 0 is a zero matrix.
Define now the following identity

(13)�X
�

f
h� � QT�BD u

v� , 

where X, �, f and h have the same dimensions as B, D, u and v respectively. Then, by (9)
through (13), it follows that the following two nonsquare systems of equations

(14)(QTPMS)(STx) � (QTPb)

and

(15)�R0 X
�
��yz� � �fh�

are equivalent.

Since M is a nonsquare matrix and R is a square matrix, it follows that the block � in (15) is a
nonsquare matrix, which means that the system of equations �z = h is nonsquare. With this property
of block �, we are in position to state the main result. To facilitate the presentation of the result, we
will designate the solution to problem (2) as a least squares solution of system (1).
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Theoren 1. Suppose the m – N vector z* is a least squares solution of the nonsquare system

�z� h . 

Then the n vector x* defined by

x *� S�R�1(f � Xz *)
z *

� , 

is a least squares solution of the nonsquare system of equations Mx = b.

Proof. Assume for contradiction that the n vector x* is not a least squares solution of the system
Mx = b. Then there exists another n vector � such that

� M�� b �2�� Mx * � b �2  , 

and so we get

(16)� (QTPMS)(ST
�)� (QTPb) �2�� (QTPMS)(STx *) � (QTPb) �2  , 

since the 2-norm is preserved under orthogonal transformations. Not let y* be the N vector such that

(17)STz *� �y *
z *
� . 

Also, let us partition the n-vector ST� conformably into the direct sum of � and �. Then, by (14)
through (17), we obtain the following inequality

(18)(� R�� X�� f �2
2)

1�2 � (� Ry * � Xz * � f �2
2 �� �z * � h �22)

1�2 . 

By the assertion of the theorem and relation (17), however, we have

(19)Ry * � Xz * � f � 0 . 

So, by combining relations (18) and (19) we get the inequality

� ��� h �2�� �z * � h �2  , 

which is a contradiction since z* is a least squares solution of the nonsquare system �z = h. This
completes the proof.

Theorem 1 is applicable to both overdetermined and underdetermined systems of equations. Also,
Theorem 1 is applicable to both full rank and rank deficient nonsquare matrices. If M has full rank,
then the matrix � has full rank. Similarly, if M is rank deficient, then � is rank deficient, and so any
linear least squares method chosen for the solution of the original nonsquare system of equations
Mx = b can be used for the solution of the smaller nonsquare system �z = h in Theorem 1.

In computer implementations of the decomposition in Theorem 1, we compute the orthogonal
matrix Q in (12) as the product of two m by m orthogonal matrices Q1 and Q2 so that

(20)QT � QT
2Q

T
1 , 
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where Q1 has the special form

(21)QT
1 � � QT

       I�
in which I is an m – N by m – N identity matrix. This product form of Q allows us to use the N by N
orthogonal matrix Q in Q1 to exploit any special zero-nonzero structure that the leading block A
might have. The other orthogonal matrix Q2 in the product form is chosen so that

(22)QT
2(Q

T
1K) � QT

2�Q
TA
C
� � �R0�

where R is an N by N upper triangular matrix with nonzero diagonal entries and 0 is a zero matrix.

The product form of Q in (20) is also suitable for dealing with the practical case where the leading
block A in PMS is a singular matrix. This is done as follows. Let r denote the rank of the N by N sin-
gular block A. Without any loss of generality, assume that the leading r columns of A are the linearly
independent columns. Then there exists an N by N orthogonal matrix Q such that

(23)QTA � �R�      �

0       0�

in which R� is an r by r upper triangular matrix with nonzero diagonal entires and the 0s are zero
matrices. So, by combining (8), (21), and (23), we obtain the following 2 by 2 block matrix

(24)QT
1PMS� �R�     B�

C�     D�� . 

The N – r by r zero block in the first column of QTA is a submatrix of the block C�, while the N – r
by N – r zero block in the second column of QTA is a submatrix of the block D�. For the case that M
is an overdetermined matrix and the zero block in the first column of QTA occupies the last r rows of
block C�, the 2 by 2 block matrix in (24) takes the zero-nonzero structure shown in figure 1.

Figure 1 .  Zero-nonzero structure of QT
1PMS when M is overdetermined.
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Our next task is to zero the m – N by r dark shaded nonzero block below the upper triangular
matrix in figure 1. Let K be the 2 by 1 block matrix defined by

(25)K � �R�
C�� . 

Since R� is an upper triangular matrix with nonzero diagonal entries, the matrix K has full column
rank, and so there exists an orthogonal matrix Q2 such that

(26)QT
2K � �R0� , 

in which R� is an r by r upper triangular matrix with nonzero diagonal entries and 0 is m – r by r zero
matrix. Define now

(27)QT
1Pb� �R�

v�� , 

where u� and v� are r and m - r vectors respectively. Also, let

(28)�X     f

�     h� � QT
2�B�     u�

D�     v�� , 

where X, �, f and h have the same dimensions as B�, D�, u� and v� respectively. Then, by (20), (21)
and (23) through (28), it follows that the nonsquare system of equations (15) is equivalent to the fol-
lowing nonsquare system

(29)�R     X

0    � ��y�z�
� � � f

h�

in which y� and z� are r and m – r vectors respectively. Figure 2 illustrates the zero-nonzero structure
of the matrix QTPMS when M is overdetermined.

Figure 2 .  Zero-nonzero structure of QTPMS when M is overdetermined.

Note that the N – r by N – r zero block in the block Di in figure 1 remains zero in the process of
computing the block � in figure 2 since the N – r by r block right below the upper triangular
matrix R� in figure 1 is zero. Theorem 1 is now directly applicable to the case where the leading
block A in PMS is a singular matrix.
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4.  EXPLOITING THE STRUCTURE OF LEADING BLOCK IN PMS

The zero-nonzero structure of the leading block A in the 2 by 2 block matrix PMS is central in the
effective utilization of the decomposition in Theorem 1. If A is a dense matrix, then Theorem 1 pro-
vides no advantage over other methods for solving the sparse linear least squars problem. However,
when A is a large sparse matrix with rich structure, the benefits gained from the application of Theo-
rem 1 can be worthwhile.

Consider the most favourable situation where the leading block A in PMS is a block diagonal
matrix. Then PMS is called a block bordered diagonal matrix (Zhang, Byrd & Schnabel, 1992). The
following two observations highlight the key advantages in using a bordered block diagonal matrix
to compute a least squares solution of the system Mx = b. First, each diagonal block of A can be ort-
hogonalized independent of the remaining diagonal blocks. This means that the orthogonal matrix Q1
in (20) can be computed so that each of the N diagonal blocks of A is handled by a different proces-
sor on a parallel architecture computer. Second, the matrix R in (12) and R� in (23) are block diago-
nal matrices, which means that the sparsity of the off-diagonal part of the block diagonal matrix A is
fully preserved at the completion of orthogonalizations in (12) and (23).

It is important to note that each diagonal block of the block diagonal matrix A is a frontal matrix
in M if the off-diagonal block C in PMS is a zero matrix. This is not hard to see since any two col-
umns of A taken from two different diagonal blocks will satisfy equality (7) if C is a zero matrix. But
if the diagonal blocks of A are frontal matrices, then by the graph-theoretic interpretation of frontal
matrices given earlier there must exist in the undirected graph of the symmetric matrix MTM an
independent set of size N. However large independent sets are generally found in graphs that are
quite sparse. Hence for the case where MTM is assumed to be a dense or full matrix, the diagonal
blocks of A may not be found by the conventional methods used for allocating frontal matrices.

The permutation of an arbitrary nonsquare matrix M into a block bordered diagonal form is a very
difficult computational problem. Moreover, the existence of large block diagonal matrices in arbi-
trary nonsquare matrices have been seldom reported. Unlike nonsquare or nonsymmetric matrices,
block bordered diagonal forms are abundant when the underlying sparse matrix is symmetric. Indus-
trial applications in which block bordered diagonal forms are extensively utilized include domain
decomposition, VLSI circuit design, structural engineering, and power system network problems
(Zhang, Byrd & Schnabel, 1992). Also, given any sparse structurally symmetric matrix M, the work
in Kevorkian (1993) gives a linear-time algorithm for computing permutation matrices P and S so
that PMS has a block bordered diagonal form.

Another structural form of A that retains one of the attractive computational features of a block
diagonal matrix is the block triangular form. In sharp contrast to block bordered diagonal matrices,
2 by 2 block matrices in which the leading block is a block triangular matrix are encountered in real
industrial and government applications. One such application has been encountered in a Navy signal
processing problem involving the prediction of bistatic target scattering from monostatic data
(Schenk, 1968; Schenk, 1993; Schenk & Benthien, 1989). In this particular application, the Helm-
holtz integral equation together with given boundary conditions are discretized to arrive at the fol-
lowing algebraic system

(30)Y � FX , 

in which Y is a p by p complex symmetric matrix (scattering function) with known diagonal entries
(monostatic data), F is a p by q complex matrix (far-field propogator function), and X is a q by p
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matrix (surface pressures). The objective is to use the monostatic data (diagonal of Y) and the princi-
ple of reciprocity (symmetry of Y) to estimate the surface pressures (matrix X). This is done next.

Suppose we equate the diagonal of Y with the diagonal of the p by q product matrix FX in (30).
Then we get

(31)F(i, :)X(:, i) � Y(i, i)

Next, let us equate the (i, j) off-diagonal element of the symmetric matrix FX with its (j, i) element.
Then we have

(32)F(i, :)X(:, j) � F(k, :)X(:, i)   i � 1, ���, p–1; j� i � 1, ���, p

Equations (31) and (32) together form a system consisting of p(p+1)/2 linear equations and pq
unknown variables. To put this linear system of equations in matrix form, we let x be the pq vector

(33)x ���
�

	

X(:, 1)
X(:, 2)
�
�

X(:, p)

��



�
 , 

and let b be the pq vector

(34)b � �diag(Y)
0
� , 

where 0 is a zero column vector. Then, by combining (31) through (34), we obtain the following
nonsquare system of equations

(35)Mx � b , 

in which M is a p(p+1)/2 by pq complex matrix. For the special case where p = 37 and q = 16, M is a
703 by 592 complex matrix with the zero-nonzero structure shown in figure 3. This plot of matrix M
was obtained using the “spy” utility in version 4 of the linear algebra package Matlab (Mathworks,
1990).

Three key properties characterize the sparse linear least squares problem in (35). These are as fol-
lows:

a. MTM is a full matrix,

b. M contains q nonzeros in first p rows and 2q nonzeros in remaining rows,

c. M is a rank deficient matrix.

By property (a), all three methods of normal equations, sequential row orthogonalization and mul-
tifrontal QR factorization would produce poor results for this signal processing application. By prop-
erty (b), there does not exist in M a small subset of rows whose deletion will render the matrix MTM
sparse. By property (c), the bistatic target scattering problem is an inherently difficult problem whose
solution may require the use of singular value decomposition at some stage of the computation pro-
cess. This feature will be covered in more detail later on.
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Figure 3 .  Unstructured form of bistatic target scattering problem.

Exploitation of the sparsity structure of matrix M in figure 3 has led us to a computer implementa-
tion that generates permutation matrices P and S so that the N by N leading block A in PMS is a
p by p block upper triangular matrix with the following two distinct properties: (1) all p diagonal
blocks are full square matrices, and (2) the leading p-q+1 diagonal blocks of A are q by q matrices
while the remaining q-1 diagonal blocks have sizes q-1, q-2, ..., 2, 1 in that order. As an immediate
consequence of the second property of the leading block A in PMS, we obtain

(36)N� pq� q(q� 1)�2 . 

Thus, for the case where p = 37 and q = 16, we have N = 472, which shows that a large portion of the
original 703 by 592 matrix M is a block upper triangular matrix. Figure 4 shows the zero-nonzero
structure of the 2 by 2 block matrix PMS. Consistent with the definition of a block bordered diagonal
matrix, we call a 2 by 2 block matrix PMS a block bordered triangular matrix if the leading block A
of PMS is block triangular.

Suppose PMS is any block bordered triangular matrix in which the leading block A = [Aij ] is a
p by q block upper triangular matrix with square diagonal blocks. Then, the following result high-
lights a numerical property of PMS that will be frequently used in subsequent developments.
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Figure 4 .  Structured form of bistatic target scattering problem.

Lemma 1. Let Qi be an orthogonal matrix such that QT
i A ii is upper triangular, and

Q����

�

�

Q1
.
. 
. 

Qp

���

�

�

 . 

Then the N by N matrix QTA is upper triangular.

Proof. The proof is obtained by premultiplying A by QT.
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5.  IMPLEMENTATION OF THE DECOMPOSITION IN THEOREM 1

In this section, we use the decomposition in Theorem 1 to give detailed algorithms to solve the
sparse linear least squares problem for the case where MTM is dense. To make the algorithms
directly applicable to the bistatic target scattering problem (35), we assume that the leading block A
in the 2 by 2 block matrix PMS is a block triangular matrix with dense diagonal blocks. All algo-
rithms will be presented in the Algol-like language in Aho, Hopcroft & Ullman (1976) adopted ear-
lier.

Let ki denote the order of the ith diagonal block of the p by p block triangular matrix A = [Aij ] in
PMS. The purpose of the orthogonal matrix Q1 in (20) is to zero the strictly lower triangular parts of
the p diagonal blocks of A. Thus, the premultiplication of A by the transpose of the orthogonal
matrix Q1 will zero all but top element of the ki – j + 1 vector x defined by

(37)x � Aii(j : k i, j)   i � 1, ���, p; j � 1, ���, ki � 1 . 

The other orthogonal matrix Q2 in the product (20) is called upon to zero block Ci in the 2 by 1 block
matrix K in (25), and so the premultiplication of K by the transpose of Q2 will zero all but top ele-
ment of the m – N + 1 vector x defined by

(36)x � �R�(j, j)
C�(:, j)�              j� 1, ���, N . 

The vector x in both (37) and (38) is a dense subcolumn in the block bordered triangular matrix
PMS.

Since MTM is a dense or full matrix, the matrix R in (15) and (29) is a full upper triangular matrix,
and so there are two ways to proceed with the implementation of Theorem 1. First, set up a row-ori-
ented data structure for a full upper triangular matrix R, and subsequently use the sequential row ort-
hogonalization method in (George & Heath, 1980) to compute R by applying Givens rotations to
rows of [PMS Pb] one at a time. Second, avoid the use of sparse data structure since all their subma-
trices R, X and � in (15) and (29) are full matrices. In this work, we choose the second approach for
the implementation of Theorem 1 since memory savings brought about from the use of sparse data
structure is not substantial for problems where MTM is a dense or full matrix.

Let RS and CS be two single arrays so that

M(RS, CS)� [PMSPb] . 

Also, let IA be a (p+1) array defined by

IA � [1, 1� k1, ���, 1��p
1
ki] , 

in which the leading p elements are the pointers to the 1st row of the p diagonal blocks of the block
triangular matrix A whereas the (p+1)th element is the pointer to the first row of blocks C and D in
PMS as well as the first column of blocks B and D. From these three relations, one can readily allo-
cate all diagonal blocks of A, blocks B, C, and D and the sub-vectors u and v of Pb as given in (10).

For clarity of presentation, we first give an implementation of Theorem 1 in which we assume that
the leading block A is nonsingular. Next, we cover the more challenging case where the leading
block A is assumed to be singular.



15

5.1  LEADING BLOCK A IS NONSINGULAR

The following algorithm implicitly computes the two orthogonal matrices Q1 and Q2 defined in
relation (20). The integers a and z in procedure q_en_q designate the first and last rows of each diag-
onal block A considered in the algorithm.

procedure  q_en_q:
begin

comment  compute Q (and so Q 1);
for  i � 1 until  p do

begin
a � IA(i)
z � IA(i+1) – 1;
for  j � a until  z – 1 do

hshldr(RS(j:z))
end;

comment  compute Q 2;
for j � 1 until  N do

hshldr([RS(j), RS(N+find(M(RS(N+1: m), CS(j)) � 0))])
end

The procedure hshldr(rows) called in q_en_q uses Householder reflections to zero all but the top
element of the column vector w = M(rows, CS(j)). If rows = RS(j: z), then x is the vector given
in (37). In the same way, if rows = [RS(j), RS(N+find(M(RS(N+1: m), CS(j)) �� 0))], then x desig-
nates the nonzero part of the vector given in (38). The function “find” is a Matlab utility for finding
the indices of the nonzero elements in a vector.

procedure  hshldr(rows):
begin

x � M(rows, CS(j));
norm � ||x|| 2;
if  normx > 0 then

begin
� � x(1) + sign(x(1))*normx;
v � [1; x(2:|x|)/ �];
w � –(2/(v T*v))*v T*M(rows, CS(j:n+1))
M(rows, CS(j:n+1)) � M(rows, CS(j:n+1)) + v*w

end;
end

Given x = M(rows, j), procedure hshldr(rows) computes a Householder vector v so that the first
element of the vector (1 = 2vvT/vTv)x is nonzero and all other elements are zero. The Householder
vector v computed in hshldr(rows) is defined in the standard way (Lawson & Hanson, 1974) as

v� x� sign(x(1))� x � 2 e1

where e1 is the first column of |x| by |x| identity matrix. The signum function “sign” ensures that
| v(1) | = | x(1) | + || x ||2, which means that || v ||2 � || x ||2, and so large relative errors in the coeffi-
cient 2/vTv can be avoided in the process of computing the product (1 – 2vvT/vTv)x. In addition to
this standard practice, we also follow a guideline established in Golub & Van Loan, 1989) to normal-
ize the vector v so that v(1) = 1.

Since x = M(rows, CS(j)), the submatrix M(rows, CS(j:n+1)) can be written in the following aug-
mented form

M(rows, CS(j : n� 1))� [x M(rows, CS(j� 1 : n� 1))] . 
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Combining this with the last two lines in procedure hshldr we obtain the equality

M(rows, CS(j : n� 1))� (1–2vvT

vTv
)[x M(rows, CS(j� 1 : n� 1))] . 

Thus, at the completion of procedure hshldr, the vector (1 – 2vvT/vTv)x forms the first column of the
submatrix M(rows, CS(j:n+1)). Therefore, if x is the vector in (37), then all the elements below the
main diagonal in the jth column of block Aii  will be zero at the completion of procedure
hshldr(rows). Similarly, if x is the vector given in (38), then all the elements below the main diagonal
in the jth column of matrix PMS will be zero. Hence at the completion of procedure q_en_q we will
obtain the following three identities.

R� M(RS(1 : N), CS(1 : N)) , 

[X f] � M(RS(1 : N), CS(N� 1 : n� 1)) , 

[� h]� M(RS(N� 1 : m), CS(N� 1 : n� 1)) . 

At this point, we are in position to compute a least squares solution of the smaller nonsquare system
�z = h in Theorem 1. However, before we do this, we require the following result pertaining to the
upper triangular matrix R.

Lemma 2. Suppose the N by N leading block A in the block bordered triangular matrix PMS is
nonsingular. Then the upper triangular matrix R computed in procedure q_en_q has nonzero main
diagonal.

Proof. Since the block A has ful lrank, the N by N leading block QTA is an upper triangular matrix
R� with a nonzero main diagonal at the completion of the first for  loop in procedure q_en_q. Con-
sider now any call to hshldr(rows) in the second for  loop in procedure q_en_q. Then x = M(rows,
CS(j)) consists of the vector given in (38). Thus R�(j, j) is the element at the top of vector x which is
nonzero since R� has a nonzero main diagonal. This means that the top element in the vector
(1 – 2vvT/vTv)x is also nonzero. But by the construction of the vector x, R(j, j) is the element at the
top of the vector (1 – 2vvT/vTv)x. Hence, the upper triangular matrix R has a nonzero main diagonal
at the completion of the second for  loop in procedure q_en_q. This completes the proof.

By Lemma 2, the condition normx > 0 is satisfied at each call to hshldr, and so for the case where
the leading block A is nonsingular, the line “if  normx > 0 then” in procedure houshldr can be
deleted.

5.2  COMPUTING A LEAST SQUARES SOLUTION OF �Z = H

Choosing a method for computing a least squares solution of the sparse nonsquare system Mx = b
strongly depends on the rank of the matrix M. If M has full rank, then the block � has full rank, and
so one can obtain a least squares solution of the nonsquare system �z = h either by QR factorization
or by Cholesky factorization of the system of normal equations

(39)(�T
�)z� (�Th) . 

Thus, if z* is the solution of the triangular system resulting from the QR factorization or the solution
of the normal equation (39), then the n vector x* defined in Theorem 1 is a least squares solution of
the original nonsquare system of equations Mx = b.

In the bistatic target scattering application, the overdeterined matrix M is rank deficient and so the
block � is rank deficient too. Therefore, the solution of the system of equations �z = h by QR factor-
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ization will break down since a diagonal element in the triangular system will be zero. Similarly, the
use of the system of normal equation (39) will fail since the matrix �T� is singular which means that
the Cholesky factorization will break down.

In sharp contrast to the QR factorization, normal equations and other linear least squares methods,
the singular value decomposition (SVD) is applicable to full rank as well as rank deficient matrices.
In view of this practical consideration, the SVD is our choice for the solution of the nonsquare sys-
tem �z = h.

Given any m by n nonsquare matrix M with rank r, there exists an m by m orthogonal matrix U
and an n by n orthogonal matrix V so that UTMV is a diagonal matrix � with r positive diagonal ele-
ments in decreasing order and n – r zeros (Forsyth & Moler, 1967). Thus, if �1 through �n denote the
diagonal elements of �, then we have

�1� �2��� � �r � �r�1� ��� � �n� 0 . 

The numbers �1 through �n are called the singular values of M.

Now let U and V be orthogonal matrices so that UTDV is a diagonal matrix �. Also, let r denote
the rank of �. Then the nonsquare system of equations �z = h can be written in the following equiv-
alent form

(40)(U�VT)z� h . 

Now since the block � is a matrix with rank r, the leading r diagonal elements of  are nonzero
whereas the remaining n – r elements are zero. This means that the system of equations (40) can be
written as

U(:, 1 : r)�(1 : r, 1 : r)VT(1 : r, :)z� h . (41)

Thus, if z* denotes the solution of this system of equations, then we obtain

z *� (:, 1 : r)�(1 : r, 1 : r)�1U(:, 1 : r)Th . (42)

The vector z* is a least squares solution of the nonsquare system �z = h.

With these results, the implementation of the decomposition in Theorem 1 takes the following
algorithmic form when the leading block A in PMS is nonsingular.

procedure  ls_dec:
begin

use SVD to compute � � U * � * V T;
r � rank( �);

z* � V(:, 1 : r) * �(1 : r, 1 : r)�1 * U(:, 1 : r)T * h;

y* � R�1 * (f � X * z *) ;
x* � S * [y *; z *] ;

end

5.3  LEADING BLOCK A IS SINGULAR

For the case in which the block upper triangular matrix A is singular, our primary objective is to
use the orthogonal matrix Q1 to detect the columns that are linearly independent in each of the diago-
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nal blocks of A. This information is then used to update arrays RS and CS so that the premultiplica-
tion of matrix M(RS, CS) by the transpose of the orthogonal matrix Q1 gives rise to the 2 by 2 block
matrix given in (24) in which the leading block R� is an upper triangular matrix with nonzero diago-
nal entries.

For the detection of linearly independent columns, we use a Boolean array VC (Visited Columns)
setting VC(j) = 1 if and only if the column of block A is a linearly independent column in a diagonal
block of A. The entire algorithm called uls_dec (Unrestricted Least Squares Decomposition) is pres-
ented below.

procedure  uls_dec:
begin

VC � zeros(1, N);
q_and_q;

use SVD to compute � � U * � * V T;
r � rank( �);

z* �  V(:, 1 : r) * �(1 : r, 1 : r)�1 * U(:, 1 : r)T * h;

y* � R�1 * (f � X * z *) ;
x* � S * [y *; z *] ;

end

Comparison of procedures ls_dec and uls_dec shows that the key difference between the two proce-
dures is the replacement of procedure q_en_q by q_and_q and the introduction of array VC. The pro-
cedure q_and_q is given below.

procedure  q_and_q:
begin

comment  compute Q (and so Q 1)
for  i � 1 until  p do

begin
a � IA(i);
z � IA(i+1) – 1
root � a;
for  j � a until  z do

  hshldra(RS(root: z))
end  ;

comment  update arrays RS and CS;
LI � find(VC == 1);
NN � |LI|;
if  NN < N then

begin
LD � find(VC == 0);
RS � [RS(LI), RS(N+1: m), RS(LS)];
CS(1:N) � [CS(LI), CS(LD)];
N � NN

end
comment  compute Q 2;
for  j � 1 until  N do

hshldrc([RS(j), RS(N+find(M(RS(N+1: m), CS(j))  0))])
end

There are three distinct parts in procedure q_and_q (highlighted by the comment lines). The first
and third parts (which compute the orthogonal matrices Q1 and Q2 respectively) are derived from
procedure q_en_q, whereas the second part in procedure q_and_q concerns the update of the arrays
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CS and RS using array VC. The computation of the array VC is carried out in procedure hshldra
called in the first part of q_and_q. This procedure is given below.

procedure  hshldra(rows):
begin

x � M(rows, CS(j));
normx � ||x || 2;
if  normx > 0 then

begin
VC(j) � 1;
root � root + 1;
� � x(1) + sign(x(1))*normx;;
v � [1; x(2:| x |)/ �];
w � –(2/(v T*v))*v T*M(rows, CS(j:n+1));
M(rows, CS(j:n+1)) � M(rows, CS(j:n+1) + v*w

if  NN < N then
begin

LD � find(VC == 0);
RS � [RS(LI), RS(N+1: m), RS(LS)];
CS(1:N) � [CS(LI), CS(LD)];

end
end

Each time the condition normx > 0 is satisfied, the vector x is nonzero, which means that the jth
column of the ith diagonal block of the block upper triangular matrix A is linearly independent. Con-
sequently, VC(j) is set to 1 and the integer root is incremented by 1. The purpose of the integer root
is to insure that the triangularization of each diagonal block of A is properly done. Note that proce-
dures hshlkdra and hshldr are the same if the first two lines in the begin block of procedure hshldra
are deleted.

At the completion of the orthogonal matrix Q1, the computation of the array VC in procedure
q_and_q is complete. Subsequently procedure q_and_q begins with its next task which is to update
arrays RS and CS so that the matrix Q1M(RS,CS) has the 2 by 2 block form given in (24). To do the
update, we construct an array ILIC of pointers to the linearly independent columns detected in proce-
dure hshldra, and let NN = | LI |. Thus, if NN = N, then we conclude that the leading block A in PMS
is nonsingular, and so we skip the part in procedure q_and_q that involves the update of the arrays
RS and CS.

Suppose NN < N. Then, the leading block A in PMS is singular, and so we proceed with the
update of the arrays RS and CS in procedure q_and_q. To begin with, we construct an array LD of
pointers to the columns of A that have not been marked as linearly independent. Now, by the
construction of procedure hshldra, the NN by NN submatrix M(RS(LI), CS(LI) in M is an upper
triangular matrix with nonzero diagonal entries at the completion of the first part in procedure
q_and_q. Thus, to obtain the 2 by 2 block form in (24), we update arrays RS and CS so that rows
RS(LI) and columns CS(LI) are moved to the front of arrays RS and CS respectively. As for the
remaining rows and columns of block A, these are moved to the rear of array RS and sub-array
CS(1:N) respectively so that the matrix M(RS, CS) has the 2 by 2 block form shown in figure 1 at
the completion of the update. It should be noted however that the blank parts (zero submatrices) in
blocks C� and D� shown in figure 1 may contain nonzero entries in this case since the triangulariza-
tion in procedure hshldra is confined to the diagonal blocks of the block triangular matrix A. The
advantages for executing hshldra in this way will be apparent when we discuss parallel implementa-
tions of the decomposition in Theorem 1 later on.
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The purpose of the orthogonal matrix Q2 computed in the third part of procedure q_and_q is to
zero the block C� given in (24). Procedure q_and_q accomplishes this task by calling procedure
hshldrc given below.

procedure  hshldrc(rows):
begin

x � M(rows, CS(j));
normx � ||x || 2;
� � x(1) + sign(x(1))*normx;
v � [1;x(2:\ x |)/ �];
w � –(2/(v T*v))*v T*M(rows, CS(j:n+1));
M(rows, CS(j:n+1)) � M(rows, CS(j:n+1) + v*w

end

6.  SOLVING THE LINEAR LEAST SQUARES PROBLEM
USING MATLAB

The Matlab linear algebra package (Mathworks, 1990) provides an excellent computational plat-
form for numerical comparisons. There are at least four distinct methods to compute a least squares
solution of a nonsquare system of equations Mx = b in Matlab. These are the following:

1. Normal Equations Method. The sparse Matlab implementation of the normal equations method
is identical to the algorithm covered earlier in section 2. For the bistatic target scattering prob-
lem, the m by n matrix M is rank deficient, which means that the n by n matrix MTM is singu-
lar and so the Cholesky factorization will break down. Also, MTM is a full matrix and so the
use of sparsity data structure for solving the bistatic target scattering problem by the normal
equations method will be disasterous since a sparse data structure will be used to handle a
large full matrix.

2. Augmentation Method. If we split the system of normal equations (3) into the following two
systems

r�Mx � b
MTr � 0  , 

then we arrive at the following 2 by 2 block matrix system

(43)� I    M

MT    o��rx� � �b0� , 
proposed in Hachtel (1974) for solving the sparse linear least squares problem. If the identity
matrix I and the vector r in (43) are replaced by �I and (�-1r) respectively, where � is some
nonzero constant, then we have the form used in Bjorck (1967) for computing linear least
squares solution iteratively. In Matlab, the 2 by 2 block matrix in (43) is ordered by the mini-
mum degree algorithm and then the system is solved by elimination. The augmented method is
a complicated way of forming the system of normal equations, and so this algorithm will break
down in the process of solving the bistatic target scattering problem since M is a rank deficient
matrix.

3. QR Factorization. Since the overdetermined matrix M in the bistatic target scattering problem
is rank deficient, the upper triangular matrix produced by the QR factorization of matrix M
will have a zero on the main diagonal, and so this method will also break down in solving the
upper triangular system.
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4. Singular Value Decomposition. The singular value decomposition has been the only means in
Matlab to produce reliable least squares solutions of the overdetermined system of equations in
the bistatic target scattering application. For this important practical consideration, we have
opted to avoid sparse data structures here to have a meaningful comparison basis for algo-
rithms ls_dec, uls_dec, and method (IV) in Matlab.

7.  COMPUTING PERMUTATION MATRICES P AND S

To promote the use of the bistatic target scattering overdetermined system of equations (35) for
comparison purposes, we present a procedure called simsys(p, q) that simulates the overdetermined
system (35) for any positive integers p and q. This simulated version of the bistatic target scattering
problem retains all structural and numerical properties of the original problem. This procedure is as
follows.

procedure  simsys(p, q):
begin

comment  generate m by n zero matrix;
m � p*(p+1)/2;
n � p*q;
M � zeros(m, n);
comment  compute first p rows of 0–1 matrix M;
for  i � 1 until  p do

M(i, 1+ (i – 1)*q: i*q) � ones(1, q);
comment  compute remaining rows of 0–1 matrix M;
for  i � 1 until  p do

begin
α � (i–1)*(2*p–i)/2;
β � 1+(i–2)*q:(i–1)*q;
for  j � 1 until  p do

begin
M(j + α, α) � ones(1, q);
M(j, 1+(j – 1)*q: j*q) � ones(1, q);

end
end

comment  compute single arrays RS and CS;
p_and_s;
comment  select nonzero entries of matrix M and vector b;
recast

end

For the case p = 37 and q = 16, the procedure simsys (excluding procedures p_and_s and recast)
generates the 703 by 592 overdetermined matrix M shown in figure 3.

The procedure p_and_s called in simsys computes row and column sequences RS and CS so that

M(RS, CS)� [PMSPb] . 

Procedure p_and_s also computes the single array IA used in procedures q_en_q and q_and_q for
allocating the blocks in PMS and the subvectors in Pb. The entire procedure is given below.
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procedure  p_and_s:
begin

comment  initialize arrays RS, CS and IS and markers VR, VC;
RS � zeros(1, m);
CS � 1:n+1;
IA � [];
VR � zeros(1, m);
VC � zeros(1, n+1);
comment  compute parts of RS and CS needed to construct A;
� � p;
� � 1;
k � 0;
a � 1;
for  i � 1 until  p do

begin
IA(i) � a;
� � � + �;
p � min( �, q)–1;
z � a + p;
RS(a:z) � [i, �: � + p – 1];
if  � < q then  CS(a:z) � k+1 : k+ �;
k � i*q;
� � �–1;
a � z+1;

end
comment  compute remaining parts of RS and CS;

IA(p+1) � a;
N � z;
VR(RS(1:N)) � ones(1:N);
VC(RS(1:N)) � ones(1:N);
RS(N+1:m) � find(VR==0);
CS(N+1:n+1) � find(VC==0);

end

For the case p = 37 and q = 16, the application of procedure p_and_s to the 703 by 592 overdeter-
mined matrix in figure 3 produces the block bordered triangular matrix shown in figure 4.

The procedure recast called the completion of procedure p_and_s in simsys accomplishes four dis-
tinct tasks. These are as follows:

a. Fixing rank of leading block A. For any application of ls_dec, procedure recast modifies the
main diagonal of A so that rank(A) = N. Procedure recast does this as follows. Since
m = p(p–1)/2, n = pq and m > n, we have

(44)p� 2q� 1 . 

Also, by the construction of the 0–1 matrix M in simsys, each row in the first p rows of M has
exactly q 1s while each of the remaining m–p rows has exactly 2q 1s, and so by (44) we obtain

p��
i�j

|M(i, j)| ,                     i� 1, ���, m . 
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Thus, if the main diagonal of A is modified so that each diagonal entry is set to p, then A
becomes a positive definite matrix with rank(A) = N. Procedure recast accomplishes this task
by using the relation

M(RS(i), CS(i))� p ,                     i� 1, ���, N , 

since A = M(RS(1:N),CS(1:N)). For applications requiring a singular leading block in PMS,
we modify A so that each of the p–q—1 diagonal blocks of A has exactly one linearly depen-
dent column. All remaining q–1 diagonal blocks of A are converted to positive definite
matrices by setting all diagonal elements of these diagonal blocks to p.

b. Modifying block D. We compute in the bipartite graph of block D a maximal matching, and
subsequently we set the locations in M corresponding to the elements of the maximal matching
to p. This task creates in D a positive definite matrix of size equal to the computed maximal
matching.

c. Converting M to a complete matrix. In the original bistatic target scattering application, the
matrix is complex and, so to create a similar environment in our numerical tests, we convert M
to a complex matrix using the relation

M � M � 0.2 * (  � � 1) * M . 

d. Choosing right-hand side vector b. We choose b so that component i of vector b is equal to the
sum of the absolute values of the nonzero entries in row i of matrix M. For the case where A is
nonsingular (applications of procedure ls_dec), this task combined with task (b) in procedure
recast produces a least squares solution x in which each component is equal to 1.

7.1  COMPUTING P AND S FOR THE GENERAL CASE

Given an arbitrary nonsquare sparse matrix M, the finding of permutation matrices P and S such
that PMS is block bordered triangular matrix is a computationally very difficult problem especially
when certain constraints are imposed on the size of the leading block A in PMS. In the special case
where M is a square matrix, the permutation of M to block bordered triangular form is closely related
to the NP-complete problem of finding a minimum feedback vertex set in the directed graph of M.

In this section we give a simple greedy-type linear algorithm to put a nonsquare sparse matrix M
into the block bordered triangular form PMS. The method proceeds as follows. First, compute in the
bipartite graph of matrix M a maximal matching H. Let k = |H| and assume without any loss of gen-
erality that k < min(m,n). Then the maximal matching H gives rise to a permutation matrix P� so that
P�M is a 2 by 2 block matrix in which the leading block is a k by k matrix with nonzero main diago-
nal. Let G = (V, E) be the directed graph of the leading block in P�M. Second, use depth-first seach
(Aho, Hopcroft & Ullman, 1976) to compute the strongly connected components of G in topologi-
cally sorted order. Let p be the number of strongly connected components in G. Then at the comple-
tion of the second step we have permutation matrices P�� and S such that the matrix P��(P�M)S is a
2 by 2 block matrix in which the leading block is a p by p block triangular matrix of size k. This
completes the construction of the block bordered triangular matrix PMS, where P = P��P�.

The parameters k and p dictate the usefulness of the block bordered triangular matrix PMS in
Theorem 1. If the maximal matching H computed in the first step has a small cardinality, then the
block triangular part in PMS will be small, and the advantages of the decomposition in Theorem 1
will be limited. Thus, to make the greedy algorithm more effective, one may require algorithms that
produce large maximal matchings. Similarly, if G is a strongly connected graph or with few strongly
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connected components, then the leading block A in PMS will not have an interesting structure for the
decomposition in Theorem 1 since the parameter p will be small.

For the case where G contains few strongly connected components, we suggest the following step.
In the depth-first search tree of the directed graph G, there are three types of edges (Aho, Hopcroft &
Ullman, 1976). These are forward edges, back edges, and cross edges. By construction, each back
edge in the depth-first search tree gives rise to a cycle in G, and so the vertex incident with the larg-
est number of back edges is common to a large number of cycles in G. Thus, if we remove such ver-
tices from G, then the resulting graph may have much greater number of strongly connected compo-
nents. This means that the leading block triangular matrix A in PMS may have a large number of
diagonal blocks. This approach for increasing the size of the parameter p was an essential step into
the block bordered triangular form shown in figure 4.

For a more rigorous treatment of this problem, more research effort is needed. We hope that the
successful application of Theorem 1 to a real practical problem may be the stimulus for further
research in this important area.

8.  NUMERICAL RESULTS AND COMPARISONS

The linear least squares algorithms ls_dec and uls_dec are well-suited for parallel architecture
machines. For example, the computation of the orthogonal matrix Q1 in procedurs q_en_q and
q_and_q can be readily done on a parallel machine as each of the p passes of the for  loop (used for
computing Q1) is independent of the other p-1 passes. Also, the computation of the orthogonal
matrix Q2 can be done in such a way that the parallel architecture of a machine is fully explored. The
parallel features of algorithms ls_dec and uls_dec will be the topic of further work in this area. Here,
we present numerical results and comparisons to demonstrate the effectiveness and accuracy of these
two algorithms on conventional machines.

Tables 1 and 2 summarize the results obtained from the application of algorithms ls_dec, uls_dec
and the singular value decomposition in Matlab to five instances of the bistatic target scattering prob-
lem. Column 1 in these tables gives the parameters p and q used in procedure simsys to generate the
m by n overdetermined matrix M. Column 2 includes the size of matrix M in each of the five exam-
ples while column 3 gives the size N of the nonsingular leading block A in the structured matrix
PMS. Columns 4 and 5 give the number of floating-point operations (flops) required to compute a
least squares solution while columns 6 and 7 give a measure of the accuracy of the computed results.

The results in tables 1 and 2 reflect the effectiveness of the decomposition result in Theorem 1 to
compute a least squares solution of an overdetermined rank deficient system using singular value
decomposition. The improvements on a parallel architecture machine are expected to be more sub-
stantial.
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Table 1 .  Applications of ls_dec and Matlab to the bistatic target scattering problem.

Table 2 .  Applications of uls_dec and Matlab to the bistatic target scattering problem.
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