Technical Report 1601
March 1993

Decomposition of Large Sparse
Symmetric Systems for
Parallel Computation

Part 2: Parallelization Tool Roadmap

A. K. Kevorkian

Approved for Public Release; Distribution is Unlimited

EXECUTIVE SUMMARY

OBJECTIVE

Given any linear system of equations Mx = b in which M is a large sparse
symmetric matrix, provide a fully automated computer program for generating
computational tasks that can be processed independently of each other by the
different processors of a parallel architecture computer. Such an automated
parallelization tool is essential for the effective applications of parallel architecture
computers.

RESULTS

We have presented a detailed computer implementation of a combinatorial
algorithm developed in part 1 (Kevorkian, 1993) for decomposing a large sparse
symmetric system of equations Mx = b into independently solvable smaller tasks
that can be executed in parallel on different processors of a parallel architecture
computer. Also, we have presented a procedure that uses the output of the
computer program to generate a block bordered diagonal form of matrix M that is
well-suited for sparse block factorizations.

CONTENTS

EXECUTIVE SUMMARY ...ttt sttt e se s s e es et ns i
1. INTRODUGTIONoieeeeerirereetreeeeei et ss s e snes st st ssssesssae st sesssssssnssesessasesesssasans 1
2. IMPLEMENTATION OF PARALLELIZATION TOOL ROADMAP..................... 1
3. BLOCK BORDERED DIAGONAL FORMS USING ROADMAP..........ccccecuu.... 3
4. FUTURE WORKS.......oort ittt eseestrasssessstssesssss s st sse s s essssstessssenssesnnsanns 14
5. CONCLUSION ..ottt st et ststss e e sn s st sse s s sn s s eseseseasasesesane 14
6. REFERENGCES ...ttt s n s s st 14
FIGURES

1. Procedure roadmapccccoveeerreerirrseee et s e steas e se st esesees s e e s e e 5
2. Procedure Sprodata.........cocceeiiiceciiceciecee et et er e er e s 6
3. Procedure search ... eteeteeeaeeteeterae et e e rea e srre e e e s en e e anaennans 7
4. Procedure dfS ...ttt 8
5. FUNCHION CMPONENL ...t er e st be s be e e enans 9
6. Procedure ClasSifyc.cocoecimmeeinennineeerteecrere st se s s sasns s nns 10
7. Proceaure CIQUES..........curueeerurrereeeeeee ettt e eaessae b e 11
8. Procedure MaxClQ........cccceeverinuerienieirrrer s et etet e e e et e s s enan 12
9. Procedure DDAco ettt et 13

1. INTRODUCTION
The solution of large sparse linear symmetric systems of equations of the type
Mx =b

forms the most compute-intensive part in several of the Navy's fundamental grand
challenge problems. These problems include ocean basin scale modeling, three-
dimensional modeling of ocean acoustic propagation, fluid flow simulations, tur-
bulent combustion, and structural design of navy vehicles, as well as linear and
nonlinear constrained optimization problems known as linear and nonlinear pro-
gramming. In most of these applications, there is significant parallelism hidden in
the structure of the original problem. Therefore, any progress toward the efficient
solution of a general grand challenge problem on a parallel architecture computer
will require advanced computational tools that can exploit all hidden parallelism.

In this work we give a complete computer implementation of an algorithmic tool
developed recently by Kevorkian (1993) for exploiting parallelism hidden in the
sparsity structure of large sparse symmetric matrices with regular and irregular
structures. The application of this automated parallelization tool to a general sparse
symmetric system of equations decomposes the original problem into inde-
pendently solvable smaller tasks for execution on different processors of a paraliel
architecture computer.

This report is organized as follows. In section 2, we present a computer imple-
mentation of the parallelization tool, called "roadmap" (Kevorkian, 1993), using the
linear algebra package Matiab (MathWorks, 1990). In section 3, we present a
procedure that uses the program roadmap to generate a permutation matrix P such
that PMPT is a block bordered diagonal matrix satisfying all three properties of the
vertex partition computed in roadmap. In section 4, we discuss future works
pertaining to experimental results obtained from the application of roadmap to a
collection of test problems. Also, we discuss the development of a recursive version
of roadmap that can exploit parallelism not only in the original problem, but also in
all subsequent parts (Schur complements) that usually result from the solution of a
sparse system of equations by Gaussian elimination.

2. IMPLEMENTATION OF PARALLELIZATION TOOL ROADMAP

In this section we present a complete computer implementation of roadmap by
using the widely available linear algebra package Matlab (MathWorks, 1990).

The input to roadmap is an n-by-n structurally symmetric sparse matrix M = [mij]
with the data structure described as follows.

Suppose G = (V, E) denotes the undirected graph of the n-by-n matrix M. Then
the set V consists of n vertices v4 through vy, with v; representing row i of matrix M.
For convenience, let vj=i, fori=1,...,n. Then we get adjgvi ={j | mij=0forallj=i},
and so the array ADJ(i) consists of the set of column indices of the nonzero off-
diagonal entries in row i of matrix M. Thus, the problem of representing the matrix M

by a sparse data structure is one of finding a compact way of storing and
referencing the n arrays ADJ(1) through ADJ(n). The sparse data structure we use
in roadmap was first introduced, implemented, and applied by Gustavson (1973).

Suppose we combine the n arrays ADJ(1) through ADJ(n) to form a single array
LADJ defined by

LADJ =[ADJ(1), ADJ(2), ... , ADJ(n)].
Also, let IADJ be an n+1 single array
IADJ = [IADJ(1), IADJ(2), ... , IADJ(n+1)]

with elements defined by
i-1
IADJ(i) =1+ z DEG()), i=1,..,n+1.
j=1

Since DEG(j) = JADJ(i)|, the integers IADJ(i) and IADJ(i+1) -1 are pointers to the first
and last vertices of ADJ(i) on array LADJ, respectively, and so using standard
Matlab notation (MathWorks, 1990) we obtain the following two equalities:

ADJ(i) = LADJ(IADJ(i):IADJ(i+1) - 1) ,
and
DEG(i) = IADJ(i+1) - IADJ(i), i=1,..,n

Thus the data structure for the zero-nonzero structure of matrix M is a pair of single
arrays (IADJ, LADJ), where IADJ consists of n+1 pointers and LADJ consists of 2|E]
column indices. George and Liu (1981) refer to the pair of arrays (IADJ, LADJ) as
the adjacency structure pair of matrix M.

The entire roadmap program is given in figures 1 through 8. In writing this pro-
gram, our main objective was to establish a concise one-to-one correspondence
between the implementation and the high-level language used in Kevorkian (1993)
so that all theoretical parts of the work can be conveniently traced and studied. All
parameters, variables and arrays used in the roadmap are described in detail in
Kevorkian (1993).

The procedure "sprsdata” called in roadmap queries the user for the dimension
n of matrix M and requires from the user the adjacency structure pair (IADJ, LADJ)
of M. Procedure sprsdata also computes the single array DEG and monitors the
integrity of the input data by checking the correctness of three relations. These are
as follows:

IADJ| = n+1,
ILADJ| = IADJ(|IADJ]) - 1,
DJ(i) <n, for all i < |LADJ.

If any of these three relations is violated, the program halts and prints the message
"check data." The program also halts if the following equality holds

[LADJ| =n x (n-1)
since G is a clique in this a case; and so no sparsity will exist in G.

Procedure "search" called in roadmap computes the set of vertices S. If the set
S is nonempty, then roadmap calls procedure "dfs" to compute the connected com-
ponents of the induced subgraph G(V-S). Otherwise, roadmap calls procedure
"cliques" to compute independent cliques in the original graph G.

The procedure "classify" called in roadmap categorizes the connected compo-
nents of G(V-S) into cliques and noncliques using parameters computed in dfs. If a
connected component G(U) is a clique, then procedure classify uses results estab-
lished in Kevorkian (1993) to classify G(U) into one of four distinct types of cliques.
If G(U) is not a clique, then procedure classify calls procedure cliques to compute
independent cliques in the nonclique connected component G(U).

The clique connected components of induced subgraph G(V-S) combined with
the independent cliques computed in each of the nonclique connected compo-
nents of G(V-S) form the independently solvable smaller tasks that can be exe-
cuted in parallel on different processors of a paralle! architecture computer.

3. BLOCK BORDERED DIAGONAL FORMS USING ROADMAP

Procedure bbdf given in figure 9 uses the program roadmap to generate a
permutation matrix P such that PMPT is a block bordered diagonal matrix satisfying
all three properties of the vertex partition r* = (V4, Vo, ..., Vi, S$*). These properties
are briefly stated in procedure roadmap shown in figure 1, and covered in more
depth in Kevorkian (1993). By the first two properties of the vertex partition, PMPT is
an (r+1)-by-(r+1) block bordered diagonal matrix such that each of the leading r
diagonal blocks is a full matrix. By the third property, every principal submatrix in M
that corresponds to an interior clique in the graph of M is a diagonal block in PMPT.
In part 1 of this work (Kevorkian, 1993), we have shown that the symbolic
factorization of a matrix corresponding to an interior clique does not produce any
fill-in. Block bordered diagonal forms computed by the program roadmap are thus
well-suited for sparse block factorizations.

The procedure bbdf consists of three distinct parts. The first part uses the
adjacency structure pair (IADJ, LADJ) to generate a Boolean form of matrix M. The
second part uses the array QUEUE and properties of arrays SN and VC to compute
the vertex ordering . Permuting the rows of M in the sequence given by ¢ produces
the block bordered diagonal form of matrix M. The third and last part of procedure
bbdf uses the signs of the elements placed on IQUEUE to generate an r+1 array
such that the ith element is a pointer to the first row of the ith diagonal block in
PMPT. While modifying the array IQUEUE in procedure bbdf, we make sure that the
pointers to the starting vertices of independent cliques computed in cliques retain
their original negative signs. This way we are able to use the array TYPE computed

in roadmap to relate each diagonal block in PMPT to the type of clique it is
associated with in G.

The first two parts of procedure bbdf are straightforward and easy to follow. The
third part is more complicated, requiring the following property of array IQUEUE for
correctness.

Lemma 1. Let S be the set of vertices computed in procedure search. Let i and j
be any two consecutive elements on the array IQUEUE at the completion of
roadmap. Then the set of vertices on QUEUE(|i|:|jl-1) is a subset of the vertex set
S*-Sifandonlyifi<0andj>0.

Proof. Let i and j be any two consecutive elements on array IQUEUE. Then one
of the following two cases must hold.

Case 1.i> 0. Then by the construction of procedure dfs, there is a connected
component G(U) of G(V-S) such that the vertex v = QUEUE(i) is the starting vertex
of the connected component G(U) computed in dfs. Suppose j > 0. Then by the last
statement in procedure maxclq, it follows that no call was made to procedure
cliques in classify at the completion of the connected component G(U). This means
that the connected component G(U) is a clique, and so no part of the set of vertices
on QUEUE(i;j-1) is in the set S*-S. Now suppose j < 0. Since i > 0, the integer j
must be the first element added to array IQUEUE in procedure maxclq at the
completion of connected component G(U). Thus G(U) is not a clique and,
furthermore, the vertices on QUEUE(i:[j|-1) comprise the vertex set in the first
independent clique computed by procedure cliques in G(U). As a result, no part of
the set of vertices on QUEUE(i:|j|-1) can be in the set S*-S. Hence for anyi> 0 and
j>0oranyi>0andj<0, no part of the set of vertices on QUEUE(i:|j|-1) is in the
set S*-S.

Case 2.i < 0. Assume j < 0. Then by the construction of procedure cliques, the
vertex v = QUEUE([i|) is the starting vertex of an independent clique computed by
cliques in some nonclique connected component G(U) of G(V-S), whereas the
vertex w = QUEUE(Jj]) is either the staring vertex of another independent clique in
G(U) or is the starting vertex of a separator computed by cliques in G(U). Therefore
for the case where j < 0, the vertices on QUEUE(Ji|:|jl-1) comprise the vertex set in
an independent clique computed by procedure cliques in G(U) and so no part of
the set of vertices on QUEUE(Ji|:]j]-1) can be in the set S*-S. Finally, suppose j > 0.
Then v is the starting vertex of the separator computed by cliques in G(U), which
means that the set of vertices on QUEUE(i|:j-1) is in the set S*-S.

This completes the proof.

% procedure roadmap
%

9/**i*********************************t***********************t**********************t******
(+]

% Given a sparse symmetric matrix M, roadmap computes in the undirected graph *
% G = (V, E) of M a vertex partition I1* = (V1, Vo, ..., V¢, S*) satisfying the following

% three properties:

% (a) for any two distinct elements V; and V; of the partition, no vertex in Vjis

% adjacent to a vertex in Vj,

% (b) every element V;jof the partition induces a clique,
% (c) interior of every clique in G is an element of the patrtition.

% Program roadmap computes the vertex partition 11* in linear time.

e/*******************************tt***t***t*****
(=]

%

global IADJ LADJ LEAF NGU RANKE SN TEST U VC

sprsdata

QUEUE =[J;

TYPE =];

LEAF = 0;

VC = zeros(1,n);

SN = zeros(1,n);

TEST = zeros(1,n);

search

if any(SN == 1)
dfs

else
ROOT =1;
LEAF = n,
QUEUE = [ROOT:LEAF];
IQUEUE = [ROOT];
cliques

end

IQUEUE = [IQUEUE, LEAF+1];

% user provided input (n, IADJ and LADJ)
% store connected components of G(V-S)
% pointers to "roots" and "end" of QUEUE
% classify "type" of connected component
% pointer to last vertex placed on QUEUE
% mark all vertices "new"

% initialize separator numbers to zero

% initialize Boolean array TEST to zero

% compute the set S ={ v | SN(v) = 1}

% if S is nonempty then

% compute connected components

% else

% pointer to root vertex of V

% pointer to end vertex of V

% place entire vertex set V on QUEUE
% pointer to root vertex on QUEUE

% G is a regular graph (& not a clique)
% compute independent cliques of G
% end

% pointer to end of QUEUE

Figure 1. Procedure roadmap.

*
*
*
*
%*
*

*

%
%
%
%
%
%
%
%

procedure sprsdata

This procedure performs the following four tasks:
(a) queries the user for size of matrix (n);
(b) requires from user the adjacency structure pair (IADJ, LADJ) of matrix;
(c) tests correctness of input data;
(d) computes the single array DEG (degrees of vertices).

LA A SRR R R Rttt ety Ryl Yy Yy Y Y Y R R R A R Ry

* * * % »*

°/ b R A A A L g Lt g Ly R Y 22 222 I I T
(<

%
%

%

query user for size of matrix (n)
n = input('Enter n (if n <= 1, program quits): ');
if n <= 1, break, end
end
provide adjacency structure pair (IADJ, LADJ)
if n == 21
% lllustrative example used in Kevorkian (1993)
IADJ =168 11 14 23 27 32 41 44 47 51 55 61 67 70 75 82 86 90 93 97];
LADJ=[5781617 1317 41420 31320 1678141617 18 19];
LADJ =[LADJ,5141819 1581617 1571112131617 21 10 15 20];
LADJ =[LADJ,9 1415 8121321 8111721 248 11 15 21];
LADJ = [LADJ,356101819 91013 1578 17];
LADJ = [LADJ,125781216 561419 561418 349 81112 13];
end

% test correctness of input data

RANKI = length(IADJ);

RANKL = length(LADJ);

if RANKI ~= n+1
disp(' IADJ does not have correct length. Check data.");
break, end

end

if RANKL ~= IADJ(RANKI)-1
disp(' LADJ does not have correct length. Check data.");
break, end

end

if any(LADJ > n)
disp(' LADJ contains a column index > n. Check data.");
break, end

end

if RANKL == n*(n-1)
disp(' Off-diagonal part of M is full and so G is a clique.');
break, end

end

% compute degrees of vertices

DEG = IADJ(2:n+1)-IADJ(1:n);

Figure 2. Procedure sprsdata.

% procedure search
%
96****************************i*********t***********t**t********t*********t**************t
% This procedure computes in G = (V, E) a set of vertices S defined by

%

% S = { v | there exists in E an edge (v, w) with DEG(v) > DEG(w)} .

%

% The set S has the property that every interior clique in G is a connected

% component of induced subgraph G(V-S); Corollary 3.1 in Kevorkian (1993).

e/***************t***t************************
©

* * * ¥ % *

%
forv=1:n-1 % for each vertex vin V - {n} do
VC(v) =1; % mark vertex v "old"
for w = LADJ(IADJ(v):IADJ(v+1)-1) % for all w adjacent to v do
if VC(w) ==0 % if wis marked "new" then
if DEG(v) ~= DEG(w) % if DEG(v) # DEG(w) then
if DEG(v) < DEG(w) % if DEG(v) < DEG(w) then
SN(w) = 1; % wisin S
else % else
SN(v) = 1; % visinS
end % end
end % : end
end % end
end % end
end % end
VC = zeros(1,n); % mark all vertices "new"

Figure 3. Procedure search.

% procedure dfs

%
o/o*i***********t******t*******************t*********i*t*************************************
% This procedure computes all connected components of induced subgraph *
% G(V-S). We use G(U) to denote a connected component computed in dfs. *
%**********t******t*************t**t*****ti*************'k*******t*tt**********************t
%
forv=1:n % forall vin V do
if SN(v) == % if vis in V-S then
if VC(v) == % if v is marked "new" then
VC(v) =1 % mark v "old"
QUEUE = [QUEUE,v]; % v is the root vertex of G(U)
LEAF = LEAF+1; % pointer to end vertex
ROOT = LEAF; % pointer to root vertex
IQUEUE = [IQUEUE, ROOT]; % add root pointer to IQUEUE
RANKE = 0; % count edges visited in dfs
NGU =[]; % neighborhood of U in G
cmponent(v) % compute G(U)
RANKU = LEAF-ROOT+1; % compute size of U
RANKN = length(NGU); % compute size of NGU
TEST(NGU) = zeros(1,RANKN); % update Boolean array TEST
classify % identify "type" of component
end % end
end % end
end % end

Figure 4. Procedure dfs.

% function cmponent(v)

e/**t************************************t**
(<]

% This function computes neighborhood NGU of U while computing G(U) *
96************i*****t*******t******************t****t****************t********************
%
function cmponent(v) % declare cmponent(v) as function file
for w = LADJ(IADJ(v):IADJ(v+1)-1) % for all w adjacent to v do
if SN(w) ==0 % if wis in V-S then
RANKE = RANKE+1; % account for visited edge (v,w)
if VC(w) == 0 % if wis marked "new" then
VC(w) =1; % mark w "old"
QUEUE = [QUEUE, w] ; % add w to QUEUE
LEAF = LEAF+1; % update pointer to end vertex
cmponent(w) % call cmponent(w)
end % end
else % else
it TEST(W) == % - if wis not on NGU then
NGU = [NGU, w}; % add wto NGU
TEST(w) =1; % mark w as vertex on NGU
end % end
end % end
end % end

Figure 5. Function cmponent.

% procedure classify

%
96*********************i*************t******t**************************t**t***i*****t*******
% This procedure categorizes the connected components of G(V-S) into cliques *
% and noncliques using the algebraic relation RANKE = RANKU*(RANKU-1). *
% Subsequently, all clique connected components in G(V-S) are classified into *
% the four types of cliques C through C4 using Corollaries 4.2 and 4.3 in *
% Kevorkian (1993). *

e/***t**
(o]

%
if RANKE == RANKU*(RANKU-1) % if G(U) is a clique then
if RANKN == 1 % if Cor. 4.2 holds then
TYPE =[TYPE, 1]; % G(U) is an interior clique
else % else
R = RANKN+RANKU-1; % compute integer R
if any(DEG(QUEUE(ROOT:LEAF)) ~=R) % if Cor. 4.3 does not hold
TYPE =[TYPE, 3]; % G(U) is not an si clique
else % else
TYPE =[TYPE, -2j; : % G(U) is an si clique
end % end
end % end
else % else
TYPE =[TYPE, 0]; % G(U) is not a clique
VC(QUEUE(ROOT:LEAF))=zeros(1,RANKU); % mark vertices in G(U) "new"
cliques % compute ind. cliques in G(U)
end % end

Figure 6. Procedure classify.

10

% procedure cliques

%
96**********************t*************************t***t********************t*********t****
% This procedure computes in G(U) independent cliques G(U1), G(U2) , ... ,and *
% their neighborhoods N(U4), N(U2) , ..., in G(U) such that *
% G(U4) is maximal in G(U), *
% G(Uz) is maximal in G(U - U1 - N(Uy)), *
% G(U3) is maximal in G(U - Uy - Uz - N(Uq) - N(U2)), *
% and so forth. The sets U1, Uy, ... , are placed on array CLQS in that order, *
% while all neighborhoods are placed on array NBRS. At the completion of *
% cliques the vertex set U on QUEUE is replaced by the array [CLQS,NBRS]. *

9/************************************t***
(]

%
CLQS =[]; % stores independent cliques
NBRS =]; % stores neighborhoods of ind. cliques
CLQROOQT = ROOT; % pointers to ind. cliques on CLQS
TAIL = 0; % pointer to last vertex on CLQS
for v= QUEUE(ROOT:LEAF) % for each vertex v in G(U) do
if VC(v)==0 % if vis marked "new" then
VC(v) =1; % mark v "old"
ADJCNT =[J; % adj(v) in G(U-CLQS-NBRS)
maxclq % compute a maximal clique
end % end
end % end

QUEUE(ROOT:LEAF) = [CLQS, NBRS]; % replace U on QUEUE by [CLQS,NBRS]

Figure 7. Procedure cliques.

11

% procedure maxclq
%

9{***************i*************t************i**********t*************************************
(o]

% This procedure computes in induced subgraph G(U-CLQS-NBRS) a maximal *

% cligue G(C) with starting vertex v (occasionally called the root vertex). *
96******t*****************t************t********t***************t**t*************************
%
for w = LADJ(IADJ(v):IADJ(v+1)-1) % tfor all w adjacent to v do
if SN(w) == % if wis on U but not on NBRS then
if VC(w) == % if wis marked "new" then
ADJCNT = [ADJCNT, wi; % add w to ADJCNT
else % else
NBRS = [NBRS, v]; % reject v as starting vertex
SN(v) = 1; % avoid duplicates of v
return % return to cliques
end % end
end % end
end % end
CLQS = [CLQS, v]; % C = [v]; (v is starting vertex of G(C))
TEST(v) = 1; % set TEST(v) = 1
RANKC = 1; % RANKC = |C]|
for u = ADJCNT % for each vertex u on ADJCNT do
VC(u) = 1; % mark u "old"

w = LADJ(IADJ(u):IADJ(u+1)-1);
COUNT = length(find(TEST(w) == 1));
if COUNT == RANKC
CLQS =[CLQS, u];
TEST(u) = 1;
RANKC = RANKC+1;
else
NBRS = [NBRS, u];
SN(u) = 1;
end
end
HEAD = TAIL+1;
TAIL = TAIL+RANKC;

TEST(CLQS(HEAD:TAIL))=zeros(1,RANKC);

CLQROOT = CLQROOT+RANKC;
IQUEUE = [IQUEUE, -CLQROOT];

% w=ADJ(u)
% COUNT = |ADJ(u) ~ C|

% if u is adjacent to all w in C then
% C= [C, U]

% set TEST(u) = 1

% update size of C

% else

% u is in neighborhood of C

% avoid duplicates of u

% end

% end

% pointer to C(1) on CLQS

% pointer to C(|C|) on CLQS

% reset TEST to zero

% pointer to next starting vertex

% add pointer (negated) to IQUEUE

Figure 8. Procedure maxclq.

12

% procedure bbdf

%

cy LA A s S s R R R sttt Rt R T L LI L LT R TRTE LR LL LT L L PR PR PR LR 2P
(=4

% This procedure uses the output of program roadmap to generate a permutation *
% matrix P such that PMPT is a block bordered diagonal matrix satisfying all three *
% properties of vertex partition r* = (V4, Vo, ..., Vy, S*). *

0/ LAEA R AR AR SRR sl e s R R Ryt Y R R R Y Y 2 R 2]
(~]

%

M = zeros(n,n);
forv=1:n

end
%

M(v,

W=

M(v,

=1,
BADJ(IADJ(V):IADJ(VH)-1);
w)=1;

S = QUEUE(find(SN(QUEUE) == 1);

QUEUE = QUEUE(find(SN(QUEUE) ==0));
QUEUE = [QUEUE,S, find(SN==1 & VC==0)];

M = M(QUEUE, QUEUE);

%

if length(S) > 0
k=2;
i = IQUEUE(2);

end

for j

end

= IQUEUE(3:length(IQUEUE))
ifi<0&j>0
SUM = SUM+i+j;
else
IQUEUE(K) = i-sign(i)*SUM,;
k=k+1;
end
i=j;

% use (IADJ, LADJ) to compute M

% create an n by n zero matrix M

% forallvin V do

% set M(v,v) =1

% w = vertices adjacent to v

% set M(v,w) = 1

% end

% use array QUEUE to compute P

% compute bordered part on QUEUE
% compute block diagonal part

% vertex ordering o (placed on QUEUE)
% block bordered diagonal form of M
% modify array IQUEUE

% if |S| > 0 then

% sum sizes of bordered parts

% pointer for elements on IQUEUE
% second element on IQUEUE

% forj=IQUEUE(3:IQUEUE|) do

% ifi<0andj>0then

% update SUM

% else

% update IQUEUE

% increment k

% end

% i = jth element on IQUEUE
% end

% end

Figure 9. Procedure bbdf.

13

4. FUTURE WORKS

Experimental results obtained from the application of roadmap to a standard set
of test problems including the Harwell-Boeing collection and a set of matrices
arising from linear and nonlinear programming optimization problems will be
reported in Kevorkian (in preparation-b).

Also, we are currently working on an extension of roadmap (Kevorkian, in
preparation-a) that exploits parallelism in the original problem as well as sub-
sequent Schur complements until no further parallelism remains to exploit. Such a
recursive version of roadmap will be ideally suited for problems in which the
original matrix and the Schur complement of the pivot block selected by roadmap
are very large sparse matrices. Large sparse problems with large Schur com-
plements are frequently encountered in linear and nonlinear programming opti-
mization problems (Kevorkian, 1993).

5. CONCLUSION

We have presented a detailed computer implementation of a linear-time paral-
lelization tool that automatically decomposes a large arbitrary sparse symmetric
system of equations into independently solvable smaller tasks for execution on
different processors of a parallel architecture computer.

6. REFERENCES

George, A., and J. W-H Liu. 1981. Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Gustavson, F. G. 1973. "Some basic techniques for solving sparse systems of
linear equations," in Sparse Matrices and Their Applications, D. Rose and
R. Willoughby, Eds., Plenum Press, NY, pp. 41-52.

Kevorkian, A. K. 1993 (Mar). "Decomposition of large sparse symmetric systems for
parallel computation. Part 1. Theoretical Foundations,” NCCOSC/NRaD Technical
Report TR1572.

Kevorkian, A. K. (In preparation-a). "Decomposition of large sparse symmetric
systems for parallel computation. Part 3. Recursive Version of Parallelization Tool
Roadmap," NCCOSC/NRaD Technical Report in preparation.

Kevorkian, A. K. (In preparation-b). "Decomposition of large sparse symmetric
systems for parallel computation. Part 4. Experimental Results Using Parallelization
Tool Roadmap,” NCCOSC/NRaD Technical Report in preparation.

The MathWorks. 1990. Pro-Matlab User's Guide, South Natick, MA.

14

	distribution: Approved for Public Release; Distribution is Unlimited

