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SUMMARY

OBJECTIVE

The study was conceived 1o resolve three prob-
lems raised by previous Naval Ocean Systems
Center (NOSC)* studies on ceramic housings for
deep submergence vehicles:

a.

Is it feasible to significantly extend the cyclic
fatigue life of 20-inch OD by 30-inch L by
0.685-inch t monocoque 94-percent alumina-
ceramic cylinders serving as external pressure
housings beyond 100 pressure cycles to
9,000 psi design pressure?

Can the 20-inch OD by 30-inch L by 0.685-inch
t monocogue 94-percent alumina-ceramic cyl-
inders tolerate surface and subsurface
imperfections in the shape of chips, surface
separations, and inclusions without initiation of
cracks when pressurized to 9,000 psi design

pressure?

Can the 0.5 weight-to-displacement (W/D)
ratio of 0.685-inch-thick by 20-inch OD mono-
coque cylinders from 94-percent alumina
ceramic be reduced significantly by decreasing
the wall thickness without a corresponding
reduction in cyclic fatigue life?

APPROACH

The objectives of the study were met by selecting
the following experimental approaches to the prob-
lem:

a.

A new end cap, NOSC Type Mod 1 (hereafter
called Mod 1), was designed, fabricated, and
installed on the ends of a 20-inch OD by
30-inch L by 0.685-inch t monocoque
94-percent alumina-ceramic cylinder. This cyl-
inder was, after proof testing to 10,000 psi,
pressure cycled to 9,000 psi until implosion.
The ends of cylinder were radially supported
by titanium hemispheres.

*NOSC 1s now Naval Command, Control and Ocean
Surveillance Center (NCCOSC), RDT&E Division
{(NRaD).

A monocogue 94-percent alumina-ceramic cyl-
inder with 20-inch OD by 30-inch L by
0.685-inch t dimensions that included
imperfections in the shape of chips, surface
separations, and internal inclusions was, after
proof testing to 10,000 psi, pressure cycled
100 times to 9,000 psi.

The wall thickness of two 20-inch OD by
0.685-inch t monocogque cylinders was
reduced by grinding one to 0.586 of an inch
and the other 1o 0.455 of an inch thickness,
except for a distance of 2 inches at both ends.
These cylinders were, after proof testing to
10,000 psi, pressure cycled to 9,000 psi until
failure.

TEST RESULTS

The testing of the 20-inch OD monocoque
94-percent alumina-ceramic cylinders under
external pressure generated the following results:

a.

The 20-inch OD by 30-inch L by 0.685-inch t
cylinder equipped with Mod 1 aluminum end

caps failed after two proof tests to 10,000 psi
and 453 pressure cycles to 9,000 psi.

The 20-inch OD by 30-inch L by 0.685-inch t
cylinder with imperfections in the shape of
chips, surface separations, and internal inclu-
sions did not crack after two proof tests fo
10,000 psi and 100 pressure cycles to

9,000 psi. The ends of the cylinder were
equipped with Mod 1 aluminum end caps.

The 20-inch OD by 30-inch L by 0.685-inch t
cylinder with its wall thickness reduced to
0.455 of an inch along a 13-inch-wide span
centered at midbay withstood two proof tests
to 10,000 psi and 50 cycles 1o 9,000 psi prior
to initiation of spalling at the ends. The ends of
the cylinder were equipped with Mod 1 alumi-
num end caps.

The 20-inch OD by 30-inch L by 0.685-inch t
cylinder with its wall thickness reduced to
0.585 of an inch along a 26-inch-wide span
centered at midbay failed by buckling during
the first proof test at 9,700 psi. The ends of
the cylinder were equipped with Mod 1 alumi-
num end caps.
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FINDINGS

The following conclusions about 20-inch OD mono-
coque 94-percent alumina-ceramic cylinders have
been formed on the basis of the above test results:

a. The cyclic fatigue life of bearing surfaces on
26-inch OD by 30-inch L by 0.685-inch t cyiin-
ders have been extended from 100 to 453
cycles at 9,000 psi by replacing the Mod 0 end

caps with the redesigned Mod 1 end caps.

The 20-inch OD by 30-inch L by 0.685-inch t
cylinders can tolerate serious surface and sub-
surface imperfections, provided that the nomi-
nal membrane stresses in hoop and axial
direction do not exceed —136,000 and —68,000
psi, respectively, at design depth.

The cyclic fatigue life at 9,000 psi design pres-
sure of 20-inch OD cylinders with 0.450-inch
wall thickness ts 90-percent shorter than the
cyclic fatigue life of 20-inch OD cylinders with
0.685-inch wall thickness when both are
equipped with Mod 1 end caps.

The critical pressure of the 20-inch OD by
30-inch L by 0.585-inch t cylinder when sup-
ported by hemispherical bulkheads does not
meet the 10,000 psi proof pressure require-
ment of ceramic housings with 9,000 psi
design depth. It imploded at 9,700 psi due to
buckling.

CONCLUSIONS

Ceramic with 94-percent alumina composition has
been shown to be a structurally reliable, corrosion-
resistant, and cost-effective material for construc-
tion of large pressure housings for unmanned
diving systems. When the nominal membrane
design stress is kept below —136,000 psi, the

ceramic components can tolerate large surface
and subsurface imperfections without initiation of
cracking, provided that they are not located on the
bearing surfaces.

The 20-inch OD by 30-inch L by 0.685-inch t
monocoque cylinders equipped with Mod 1 end
caps and mated to titanium hemispheres, or
skirted ceramic hemispheres with Mod 1 end caps,
have a proven cyclic fatigue life in excess of

400 cycles at 9,000 psi design pressure, provided
that an epoxy layer of 0.01- fo 0.015-inch thick-
ness separates the mating bearing surfaces of
ceramic components and metallic end caps. The
0.5 W/D ratio of the 94-percent alumina-ceramic
cylinders with t/Dg = 0.034 provides them with a
payload-carrying ability that is approximately four
times larger than that of rib-stiffened titanium cylin-
ders with the same pressure rating.

RECOMMENDATIONS

1. The external pressure housings assembled
from 20-inch OD by 30-inch L by 0.685-inch t
monocoque 94-percent aiumina-ceramic cylin-
ders and mating-skirted hemispherical bulk-
heads equipped with Mod 1 metallic end caps
should be replaced during underwater vehicle
overhauls scheduled after 200 dive intervals io
a 20,000-foot design depth. Such an arrange-
ment will provide a 100-percent safety margin
against potential catastrophic failure initiated
by cyclic fatigue of the bearing surfaces on the
ceramic components.

The Mod 1 end caps can be fabricated from
steel, titanium, or aluminum, with a compres-
sive yield of >65,000 psi. The titanium
Ti-6Al-4V alloy appears to be the best choice
for this application.
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INTRODUCTION

The Navy, among other organizations and institu-
tions, is vitally interested in acquiring the most
operationally effective and cost-efficient vehicles
for deep submergence operations. Three factors
determine if such vehicles meet mission standards:
payload, operational range, and speed. Each of
these factors is a direct function of the buoyancy
provided by the pressure hull. Clearly, buoyancy of
the pressure hull is the critical issue. Maximum
buoyancy is provided by a competent design of the
pressure hull and the application of premium struc-
fural material to its construction. When both are
present, it is feasible to attain a pressure hull with
a low weight-to-displacement (W/D) ratio. The rea-
son for seeking the low W/D ratio is to maximize
payload, while minimizing the size of the hull. This,
in turn, reduces the hydrodynamic drag, and, thus,
permits the vehicle to achieve maximum range and
speed.

A W/D ratio less than, or equal to, 0.5 has been
found by operational experience to be desirable for
the pressure housing assembly. A 0.5 W/D ratio
provides the vehicle, in most cases, with adequate
buoyancy for its propulsion, guidance, and work
subsystems. Ceramics not only possess the
required structural properties for construction of
external pressure housings with <0.5 W/D ratio
for service to 20,000 feet (table 1, figure 1), but
also are impermeable, corrosion resistant, and
good conductors of heat. Their sole shoricoming in
comparison to titanium is low fracture toughness,
which may cause improperly designed pressure
housings to fail unexpectedly in service (table 2).

To arrive at an operationally usable external pres-
sure housing of ceramic material, several fabrica-
tion and design problems need to be solved that
have, in the past, worked against the acceptance
of such housings by the ocean engineering com-
munity. These problems were economical fabrica-
tion of large ceramic cylinders, reliable mechanical
joining of several ceramic cylinders into a
cylindrical pressure housing of desired length,

1.  Figures and tables are placed at the end of the text.

elimination of stress risers on the ceramic bearing
surfaces between individual housing assembly
components, secure mounting of payload compo-
nents inside the ceramic housing, and protection
against impact.

Since the potential payoffs for deep-submergence
unmanned vehicles in terms of size reduction and
drag decrease are very substantial, the Navy has a
keen interest in developing this technology for
application to its vehicles. As a result of the Navy's
interest in more efficient pressure hulls for deep
submergence vehicies, the Naval Command, Con-
trol and Ocean Surveillance Center (NCCOSC)
RDT&E Division (NRaD)? has set out o demon-
strate that the problems can be addressed and
solved to a degree that will make the ceramic
housings acceptable for practical applications.

As a result of NRaD engineering efforts, it was
shown conclusively that cylindrical external pres-
sure housings of up to 20 inches in diameter can
be economically fabricated from 94-percent alu-
mina ceramic for a 20,000-foot design depth. The
0.5 W/D ratio of these cylinders represents a sig-
nificant improvement in weight over titanium hous-
ings of identical size with only a 0.87 W/D ratio.
Because of the significantly lower W/D ratio, the
ceramic housings provide more than three times
the buoyancy of titanium housings with the same
design depth.

This report describes additional work performed by
NRaD since the completion in 1990 of the 20-inch-
diameter ceramic housing exploratory development
program (reference 1). The objectives of this work
were to provide further improvement in payload
capability and cyclic fatigue life of the 20-inch-
diameter cylindrical alumina-ceramic housings with
a design depth of 20,000 feet. This work resuited
in increasing by 300 percent the cyclic fatigue life
of alumina-ceramic cylinders with 0.5 W/D ratio. It
also demonstrated that the W/D ratio of alumina-
ceramic cylinders can be decreased from 0.5 to
0.4, provided that the underwater vehicle can toler-
ate a decrease in fatigue life from 450 to less than
50 dives to 2,000 psi design depth.

2  NRaD was previously Naval Ocean Systems Center
(NOSC).
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SUMMARY OF PAST INVESTIGATIONS
ON 20-INCH HOUSINGS

OBJECTIVE

The objective of the NRaD pressure housing
development program was to develop a design for
a 20-inch-diameter cylindrical ceramic housing with
a low W/D ratio for operational service to a depth
of 20,000 feet. The housing was to consist of an
assembly of cylindrical and spherical ceramic sec-
tions secured together by mechanical joints that
provide for rapid disassembly and access to their
interiors for servicing of the payload.

APPROACH

The external pressure housing was designed (ref-
erence 1) o be assembied from one or more
20-inch OD by 0.685-inch-thick by 30-inch-long
ceramic monocoque cylindrical sections, capped at
their ends with titanium rings that facilitated mating
them with similar ring caps bonded to ceramic
hemispheres (figures 2, 3, 4, and 5).

If the payload requirement could not be satisfied
with a single cylindrical section radially supported
by titanium or ceramic hemispherical bulkheads
(figure 6), two cylinders could be joined by a tita-
nium ring stiffener to provide greater payload capa-
bility (figure 7). The titanium ring stiffener, besides
serving to align the two cylindrical sections, pro-
vided additional radial support against buckling of
the cylindrical sections.

The ceramic hemispheres were provided with cir-
cular penetrations into which metallic penetrators
with electrical connectors could be threaded (figure
8). The penetrators rested on glass fiber-reinforced
plastic pads to eliminate any point loading between
the penetrator and the ceramic hemisphere (fig-
ure 9).

FABRICATION

A total of three 20-inch OD by 18.64-inch iD by
30-inch L cylinders (figure 2) and two 19.66-inch
OD by 18.98-inch ID hemispheres (figure 4) were
fabricated by Coors Ceramics. The associated
metallic components including joint rings, stiffen-

ers, and penetration inserts were machined from
Ti-6Al-4V alloy. In addition, a series of handling
and test fixtures were fabricated in aluminum for
the handling of the individual ceramic components
and the assembled housings during pressure test-
ing. Polyurethane jackets protected the ceramic
components of the housings against point impacts
during assembly and handling.

TESTING

The testing of the 20-inch housings took place in
the 30-inch-diameter by 120-inch-long pressure
vesse! of the Southwest Research institute. Test-
ing was first performed on individual cylinders
capped with hemispheres (figure 6) and, subse-
quently, on assemblies made up of two cylinders
joined by a ring stiffener and closed off at the ends
with hemispheres (figure 7). Testing consisted of
pressurizing each individual cylinder test assembly
once to the proof-test pressure of 10,000 psi, fol-
jowed by 10 pressurizations to design pressure of
9,000 psi. The two-cylinder test assembly was
subjected once 1o test pressure, followed by 100
pressurizations to design pressure. Strains were
recorded during ihe testing.

TEST RESULTS

The 94-percent alumina, 20-inch-diameter ceramic
pressure housings performed structurally under
external pressure in the same manner as the 4-,
6-, and 12-inch pressure housings tested at NRaD
in prior years (references 2 and 3). At 9,000 psi
hydrostatic pressure loading, the maximum
recorded stress at midbay on the internal surface
of the cylinders was —136,000 psi in hoop and
—68,000 psi axial directions. In the hemisphere,
both hoop and meridional stresses were —134,000
psi on the internal surface. The axial bearing stress
on plane ends of the cylinders was —68,000 psi
and on hemispheres, —134,700 psi. This indicates
that small alumina-ceramic housings can be
scaled-up to large dimensions without a noticeable
decrease in physical properties. Based on this find-
ing, one can expect that even a very large alumi-
na-ceramic pressure housing will provide
unmanned vehicles with a 0.5 W/D ratio.

The titanium NOSC Type Mod 0 (hereafter called
Mod 0) end caps on 20-inch-diameter ceramic
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housing components, using 0.010-inch-thick epoxy
adhesive as a bearing gasket, withstood success-
fully two tests 1o 10,000 psi, and 100 pressure
cycles to 9,000 psi. Implosion occurred after the
assembly was subjected to an additionai 10 cycles
1o 8,000 psi.

The implosion of the housing was Initiated by the
cracking of ceramic material on the plane-bearing
surfaces of the cylinders and hemispheres. At
those locations, residual microcracks from grinding
grew progressively with each pressurization under
the action of local tensile radial stress component
into large, circumferentially oriented vertical-frac-
ture planes that ultimately weakened the walls of
the ceramic housing components to such a degree
that catastrophic failure took place. The cracks
appeared first on the plane-bearing surfaces of the
ceramic hemispheres and were the source of
severe spalling that resulted in catastrophic failure
of the housing assembly after only 109 pressure
cycles to 9,000 psi. The cracking on bearing sur-
faces occurred first on hemispheres due to the fact
that the bearing-stress exerted by the thin hemi-
spherical shell on a metallic end cap is twice as
high as of the 100-percent-thicker cylindrical shell.

CONCLUSION

The pressure housing development program con-
ducted by NRaD during FY 90 has conclusively
shown that 20-inch diameter externai pressure
housings with a 0.5 W/D ratio, providing payload
capability in the range of 237 to 375 pounds, can
be successfully fabricated from 94-percent alumina
ceramic for operational service to a depth of
20,000 feet.

The cyclic fatigue life of these housings equipped
with Mod 0 end caps was shown to be in excess of
100, but less than 150, dives to the design depth
of 20,000 feet. For repeated dives o lesser
depths, the fatigue life in all probability exceeds
several hundred dives.

Since the cyclic fatigue life of ceramic housings is
governed by the formation of cracks on the plane-
bearing surfaces, steps had to be taken to elimi-
nate, or at least retard, the initiation and
propagation of these cracks. This could be

accomplished by reducing the bearing stress on
hemispheres by increasing wall thickness, rede-
signing the metallic end caps for both cylinders
and spheres, selecting different bearing gasket
material, and improving grinding techniques for
bearing surfaces.

The redesign of metallic end caps for cylinders
was chosen as the first phase for improving the
cyclic fatigue life of ceramic pressure housings.
The other parameters controlling the fatigue life
of housings will be studied and may be modified in
following phases of the ceramic housing program.
In particular, the shape of the hemisphere will be
modified to increase the plane-bearing surface
area to match that of cylinders without increasing
the thickness of the hemisphere. This will be
achieved by having the hemisphere terminate at
the equator in a cylindrical skirt of which the thick-
ness matches that of the mating cylinder.

PROGRAM FOR MODIFICATIONS OF
20-INCH HOUSINGS

OBJECTIVE

The modification program for improving 20-inch
alumina-ceramic housings developed in prior years
by Dr. Stachiw (reference 1) focused on two areas:

1. Cyclic fatigue life of ceramic housing compo-
nents.

2. Payload capability of the housing assembly.
APPROACH

The first objective, improving cyclic fatigue life,

was to be achieved by redesigning metallic end
cap rings for the ceramic bearing surfaces on cylin-
ders and hemispheres, rather than modifying the
composition of the ceramic or its fabrication pro-
cess. This course of action was chosen because
budget restrictions did not permit pursuing the
other more promising, but more costly,
approaches.

The second objective, improving payload capabil-
ity, was to be achieved by raising the magnitude of
design stress, rather than changing the ceramic
composition (i.e., selecting ceramic compositions
with lower density, like beryllium oxide, silicon
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carbide, or boron carbide). This course of action
also was chosen for economic reasons, as it would
require an extensive development program to fab-
ricate successfully 20-inch cylinders and hemi-
spheres from ceramic compositions with higher
strength/weight ratios.

SCOPE

The scope of the program encompassed the
design, fabrication, and experimental evaluation of
three 20-inch-diameter 94-percent alumina-
ceramic (table 2) cylinders designed 1o different
sets of criteria (table 3), and a single 20-inch-
diameter 94-percent alumina-ceramic cylinder with
severe defects including surface separation, inter-
nal inclusion, and chipped chamfers on bearing
surfaces.

DESIGN CRITERIA

Test Cylinder A

The 20-inch OD by 30-inch L by 0.685-inch t
dimensions of test cylinder A (figure 10) were
identical o those of the 20-inch-diameter alumina-
ceramic cylinders fabricated and tested during the
development program of fourth-generation NOSC
ceramic housings (reference 1). During that devel-
opment program, the cylinders (PN 55510—
0121758) and associated hemispheres (PN
55910-0121705 and PN 55910-0121954)
imploded during pressure cycling to 9,000 psi
design pressure on the 109th cycle, even though
their design was considered to be fairly conserva-
tive (i.e., 1.5 stress factor [S.F.] for buckling and
2.2 S.F. for material failure).

The most direct and sure way of extending the
cyclic fatigue life of these components would have
been to lower the compressive axial-design stress
by increasing the thickness of the ceramic compo-
nents, as it has been experimentally shown that
the magnitude of radial tensile stress on the bear-
ing surface and the cracks that it initiates with
repeated pressurization are directly related to the
compressive loading on the bearing surface (refer-
ence 3). Since the bearing stresses on the edge of

the sphere are twice as high as they are on the
end of the cylinder, the proper course of action
would be to double the sphere’s shell thickness so
that its fatigue life matches that of the cylinder.
This approach, unfortunately, would (1) increase
the mismaich in radial displacement between the
cylinder and hemisphere resulting in higher bend-
ing stresses at the joint, and (2) raise the W/D ratio
of the housing beyond the 0.5 limit considered
acceptable for high-performance pressure hulls on
undersea vehicles with 9,000 psi design pressure.

A unique approach to matching the bearing
stresses on the hemisphere’s equator to those on
cylinder ends without a significant increase in
housing weight is to provide the hemisphere with a
short cylindrical rim of the same wall thickness as
the cylinder. One further advantage of this design
modification to the classical hemisphere shape is
that the metal end cap would fit both the hemi-
sphere and the cylinder.

It was decided to focus this study on end cap
design in view of the fact that after the proposed
approach to reduction-in-bearing stresses on the
edges of hemispheres there still remained the
question of whether the existing Mod 0 end caps
for 20-inch cylinders and hemispheres provided an
optimized design for reduction of tensile radial
stresses on the plane-bearing surfaces. The rea-
sons for choosing end caps for cylinders as the
primary objective of investigation were of an eco-
nomic nature; cylinders and their end caps were
cheaper to manufacture than hemispheres and
their end caps.

Since it was known from other studies on ceramic
external pressure housings (reference 3) that the
magnitude of maximum radial stress on the plane-
bearing surface of a ceramic cylinder with a given
wall thickness is an inverse function of the flange
height on the metaliic end cap enclosing the ends
of the cylinder, a decision was made to increase
significantly the height of the flanges on the end
cap ring. This approach would result in an insignifi-
cant increase of cylinder assembly weight, but a
significant reduction in tensile radial stress on the
plane-bearing surfaces of the cylinder.
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The height of the flanges on the Mod 0 end cap
rings used in the fourth-generation 20-inch ceramic
housing development program (reference 1) was
1.45 inches on the interior, and 0.65 of an inch on
the exterior of the cap (figures 11 and 12). Since
the finite-element calculations showed a potential
decrease in tensile stresses on the ceramic bear-
ing surfaces only if the height of both flanges was
increased beyond 0.65 of an inch, the end cap ring
was redesigned to accept longer flanges.

The new height selected for end cap flanges was
1.9 inches (figure 13). This dimension was verified
by pressure cycling 12-inch OD by 18-inch L by
0.412-inch-thick 94-percent alumina-ceramic cylin-
ders in an independent exploratory development
(IED) ceramic housing program at NRaD (refer-
ence 3). In that program, 12-inch OD ceramic cyl-
inders equipped with 1.05-inch-deep end caps
successfully withstood 500 pressure cycles to
9,000 psi without visible spalling of bearing sur-
faces. The 1.8-inch overall height of flanges on
NOSC type Mod 1 (hereafter called Mod 1) end
caps for 20-inch OD cylinders was obtained by
multiplying the 1.05-inch net height of the flange
(1.3-inch overall height minus the 0.250-inch seal
bevel) on the 12-inch cylinder by a 20/12 scaling
ratio of diameters. The resulting value of 1.75
inches for net height was then increased by the
depth of the seal bevel to 2.07 inches for overall
height. Since significant cost savings can be real-
ized by machining the end caps from standard
2-inch plate, the overall height of the flange was
reduced to 1.9 inches.

The new Mod 1 end cap ring for 20-inch ceramic
cylinders (figures 13 and 14) has integral 1.9-inch-
high flanges on both the exterior and interior sur-
faces of the ring, except that a 0.320-inch-deep
bevel is incorporated into the exterior flange to
serve as the seat for an elastomeric seal. The end
cap ring for the hemispheres was redesigned in a
similar manner.

Test cylinder A (figure 10) with two redesigned
titanium Mod 1 end cap rings (figure 15) was cal-
culated to weigh 176 pounds and provide 176
pounds of [ift (positive buoyancy), giving this hous-
ing component a 0.5 W/D ratio. Because of its
conservative structural characteristics, this cylindri-

cal housing section with Mod 1 end cap rings is
considered to be the standard of comparison for all
other large-diameter alumina-ceramic cylindrical
pressure housing designs under design for 9,000
psi operational pressure.

To reduce cost of the test program, all 20-inch cyl-
inders were equipped for test purposes with Mod 1
end caps machined from 2-inch plates of 7075-T6
aluminum alloy instead of Ti-6Al-4V alloy, although
it was known that the magnitude of tensile radial
stress in ceramic cylinder ends is higher when sup-
ported by aluminum, rather than titanium end caps.
This was not considered a disadvantage in the test
program, as the cyclic fatigue-life data generated
by a cylinder equipped with aluminum end caps
would be considered conservative for future opera-
tional units equipped with fitanium end caps of the
same dimensions.

Test Cylinder B

The dimensions of test cylinder B (figure 16) were
identical to test cylinder A, except for the reduced
wall thickness at midbay (figure 10}. The thickness
was reduced from 0.685 to 0.585 inch to increase
the nominal hoop stress level from —136,000 1o
—158,600 psi, thus reducing the material failure
safety factor from 2.2 1o 1.9. The ends of the cylin-
der retained the same thickness as test cylinder A
to keep the magnitude of axial bearing stresses on
all cylinders the same.

Because of the reduced wall thickness, test cylin-
der B weighs less (157 versus 176 pounds) and,
therefore, provides more positive lift (185 versus
176 pounds) than standard test cylinder A. The
W/D ratio of the cylinder B assembly is 0.45.

The reduced wall thickness causes the critical
buckling pressure of test cylinder B, when tested
with hemispherical bulkheads, to decrease from
13,500 to 9,600 psi, resulting in a safety factor of
only 1.07. A low safety factor like this is not
acceptable for operational housings, because of
uncertainties where computational methods are
used for prediction of critical pressures by buck-
ling. In this case, however, it would serve as a test
specimen for experimental verification of the
BOSOR4 computer program utilized for pregicting
buckling. If the experimental critical pressure of
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test cylinder B validates the critical pressure calcu-
lated by BOSORA4, it will be used to size the length
of the cylinder needed to provide a 1.5 safety fac-
tor for 9,000 psi design pressure against buckling
when the wall thickness is reduced to 0.585 inch o
provide 24-percent more lift than cylinder A (figure
10) with 0.685-inch wall thickness.

Test Cylinder C

Test cylinder C was conceived to represent the
lightest design feasible for 20-inch OD cylinders of
94-percent alumina ceramic for 9,000-psi design
pressure (figure 19). lts design was based on an
S.F. of 1.5 for both material strength of 300,000 psi
and elastic instability at 13,500 psi. To achieve
these objectives, the thickness at midbay was
reduced to 0.455 inch and the length of the cyiin-
der reduced to 17 inches. The ends of the cylinder
(similar to cylinder B) were provided with internal
stiffeners of 2-inch width and 0.685-inch thickness.
With this arrangement, the compressive loading on
the plane-ceramic surfaces was only —68,000 psi
at 9,000 psi design pressure even though the hoop
membrane stress at midbay was 202,500 psi.
Thus, the compressive loading on the plane-bear-
ing surfaces on the ends of cylinder C was identi-
cal to the compressive loadings found on cylinders
A and B. Because of the reduced wall thickness at
midbay, the W/D ratio for cylinder C is only 0.41.

Test Cylinder D

The 20-inch OD by 30-inch L by 0.686-inch t
dimensions of test cylinder D (figure 18) were iden-
tical to those of test cylinder A. The only differ-
ences were a large-surface discontinuity on the
internal surface at midbay, several large chips on
the bearing surfaces, and an internal void of

< 0.05-inch magnitude.

The surface discontinuity was originally in the
shape of an oblong cylindrical void (0.187 inch long
by 0.062 inch in diameter) of which the major axis
was oriented in the hoop direction of the cylinder.
During grinding of the interior surface of the cylin-
der, sufficient material was removed to expose the
0.03-inch-deep by 0.150-inch-long by 0.02-inch-
wide cross section of the void (figure 19).

One of the chips was located on end A, and
another on end B. The largest chip was on end B.
Its dimensions were 0.375-inch long by 0.187-inch
wide by 0.25-inch deep (figure 20). The chip on
end A was only 0.2-inch long by 0.06-inch wide by
0.187-inch deep. Both chips were the result of
carelessness during handling by the fabricator (i.e.,
placing the cylinder on edge during handling).

The objective of testing test cylinder D was to
determine experimentally whether the presence of
{1) a large discontinuity on the interior surface,

(2) a void in the shell wall, and (3) chips on the
edges of bearing surfaces of the alumina-ceramic
cylinder would initiate a crack when the surface is
stressed to —151,000 psi in the hoop and

—~76,000 psi in the axial direction at 10,000 psi
proof loading. Following the proof test, the cylinder
would be cycled 100 times to 9,000-psi design
pressure which generates a stress field with
—136,000 psi in hoop and —68,000 psi in axial
orientation. If the cylinder successfully withstands
such testing, this will indicate that ceramic housing
components (cylinders and hemispheres) can tol-
erate large surface and internal discontinuities,
provided they are located in areas of compressive
stress.

FABRICATION

All test cylinders (figures 10, 16, 17, and 18) were
fabricated for this program by Coors Ceramics
from AD 94 composition containing 94-percent alu-
minum oxide. Mod 1 end cap rings for test cyiin-
ders (figure 15) were machined from 7075-T6
aluminum instead of titanium for two reasons. Dur-
ing testing, they would not be exposed to seawa-
ter, and the compressive bearing stresses at the
ioint were below the yield strength of this aluminum
alloy.

In addition to end cap rings, a set of titanium and
steel hemispheres and aluminum wedge clamps
were machined to mate with the end cap rings on
20-inch ceramic cylinders (figures 21, 22, and 23).
The titanium and steel bulkheads of identical
dimensions were designed to serve as bulkheads
for the ceramic test cylinders during pressure test-
ing. To preclude failure during pressure testing, the
hemisphere wall thickness was sized for design
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pressure of 9,000 psi with a 1.5 safety factor on
plastic buckling. A single penetration was dimen-
sioned in the hemisphere to receive either
threaded instrumentation cable bulkhead penetra-
tors, or plugs (figure 24).

An aluminum ring also was machined 1o serve as a
spacer (figure 25) between the titanium hemi-
spheres when they were assembled and proof
tested to 10,000 psi prior to mating them with the
test cylinder for cyclic testing.

NON-DESTRUCTIVE TESTING

After fabrication, all ceramic cylinders were
inspected visually by dye penetrant and ultrasonic
methods for the presence of inclusions and cracks.
Prior to inspections, a grid was penciled on the
exterior of each cylinder to aid in the location of
structural anomalies detected by these nonde-
structive evaluation (NDE) inspection techniques
(figure 26).

The A, B, C, and D test cylinders were first
inspected by the dye penetrant method at Coors
Ceramics, followed by ultrasonic NDE methods at
Martin Marietta Laboratories (MML). These meth-
ods included ultrasonic C Scans for rapid evalua-
tion and defect mapping of the entire cylinder, and
Scanning Acoustic Microscopy (SAM) to determine
size and shape of some individual flaws detected
by the C Scans. The Advanced Ultrasonic Test
Bed (AUTB) at MML, employing an automated
scanning procedure, was used to produce the C
Scans. [t can accommodate both planar and cylin-
drical samples. For cylindrical shapes like the
NOSC cylinders, the test article was centered on a
30-inch-diameter turntable. The test parameters
were optimized to provide high-enough resolution
to detect void size SD >0.010 with a scan time
that was not excessively iong.

The procedure selected to provide this high-resolu-
tion screening is based on through-transmission,
i.e., a transducer on one side of the cylinder trans-
mits an ultrasonic signal and one on the other side
recelves it. A patented Martin Marietta design
water-jet probe was used to house the unfocused
10 MHz transmit and receive transducers and pro-
vide a quiet and uniform 0.187-inch-diameter water

column to couple the ultrasound to the ceramic
cylinders. The through transmission approach,
when implemented with an unfocused transducer,
provides sensitivity to defects through the entire
wall thickness.

Single-sided pulse-echo methods suffer from a
near “dead zone” where defects cannot be readily
detected. If focused transducers are used, detec-
tion can be improved somewhat, but sensitivity to
deeper defects suffers considerably. The main
advantages of using a water jet rather than con-
ventional full immersion are (1) more-rapid scan-
ning speeds, and (2) a small aperture which can
only receive transmitted sound from a small region
on the surface, thereby reducing the effective
probe diameter and increasing lateral resolution.

A test frequency of 10 MHz was the highest fre-
quency that could provide penetration and ade-
quate signal ievels. A scan is created from
individual pixels which represent the amplitude of
the signal transmitted through the cylinder at a par-
ficular location. Each pixel represented an area
measuring 0.020 inch by 0.020 inch or 0.010 inch
by 0.010 inch and an amplitude value anywhere
within 256 discrete levels. This scanning procedure
was previously developed and proven on 1- and
2-inch-thick ceramic blocks of similar composition.
In that study, simulated cylindrical (1-dimensional)
voids on the order of 100 micron (0.004 inch) in
diameter were detected in the 1-inch-thick block. In
addition, both horizontally and vertically oriented
cracks were imaged in the 2-inch-thick block. With
this technique, defects measuring smaller than the
0.187-inch probe size can be detected, but will not
be sized accurately.

SAM is a high-resolution, defect-imaging technique
based on higher frequencies than those used for
conventional ultrasonics. The correlation between
the size and shape predicted by SAM to the actual
size and shape is excellent. For the inspection of
20-inch-diameter cylinders, a 30-MHz frequency
was selected to provide the desired resolution and
was able to penetrate most of the 0.45- to
0.68-inch-thick walls of the cylinders. The probe
used had a spherical focus, with a focal length of
1.25 inches from the probe end when measured

in water. Since the speed of sound in alumina is
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almost six times greater than it is in water, the
actual focal distance in the cylinder is greatly fore-
shortened. As a general procedure, a first scan
covering a 0.4-inch by 0.4-inch square was per-
formed at 0.0015-inch pixel resolution in a suspect
area and was followed up by a 0.0005-inch “zoom”
scan (0.2-inch by 0.2-inch square) if a void was
detected. After the SAM analysis was performed,
the cylinders were returned to NRaD for mating
with titanium end cap rings.

Neither the dye penetrant, nor the sonic NDE
detected any internal inclusion larger than

0.010 inchin A, B, and C cylinders. In cylinder D,
a single inclustion with a 0.06-inch diameter was
detected inside the wall at midbay. In addition, a
large surface separation on cylinder D was
detected and classified by the dye penetrant
method. Prior to the bonding of the titanium end
cap rings to the ends of the cylinders, their bearing
surfaces were measured with a laser profilometer
for surface roughness (figure 27). The surface
roughness measurements fell into a range of val-
ues from +4 to —8 micrometers (+160 to —320
microinches). This range of roughness values was
exceeded at many locations by narrow valieys with
a depth of —16 micrometers (—640 microinches),
and at few locations with a depth of =30 microme-
ters (1,200 microinches).

PRESSURE TESTING

Test Arrangements

Testing of all four cylinders was performed in the
30-inch by 120-inch pressure vessel with a 10,000
psi pressure rating at Southwest Research Insti-
tute. Each test assembly (figure 28) consisted of a
cylinder mated at both ends to titanium hemi-
spheres (figure 22) that were secured with wedge
bands (figure 23).

Before assembling the cylindrical housings, how-
ever, the structural integrity of the titanium hemi-
spherical bulkheads (figure 22) was experimentally
validated by joining them with a spacer (figure 25)
and a wedge band (figure 29) into a sphere and
prooftesting this assembly to 10,000 psi pressure.

The housings were assembied in this series of
steps:

a. BRemove cylinder from shipping case
(figure 30).

b. Instrument the interior surface with strain
gages.

¢. Bond acoustic transducer to the interior sur-
face of the cylinder at midbay (for cylinder D,
the transducer was bonded to the exterior of
the pressure vessel).

d. Mate the cylinder to a hemispherical bulkhead
(figure 30).

e. Insert a wood block for shock mitigation
(figure 32).

f.  Close off the other end of cylinder with hemi-
spherical bulkhead (figure 33).

g. Fasten the hemispheres to ends of cylinders
with wedge bands (figure 34).

After assembly was completed, the housing was
lowered vertically into the pressure vessel for test-
ing (figure 35).

Pressure Testing Procedure

Pressure testing was performed with tap water at a
pressurization rate of approximately 1,000 psi a
minute. Strains were recorded at 1,000-psi inter-
vals and acoustic emissions were recorded contin-
uously. Depressurization also took place at 1,000
psi a minute.

The test procedure had two phases:

Proof testing—pressurize the cylinder to
10,000 psi, maintain pressure for 60 minutes,
depressurize to O psi, pressure again to
10,000 psi, pressure hold for a minute, and
relax to O psi.

Cyclic testing—pressurize the cylinder to
9,000 psi, maintain pressure for one minute,
depressurize to 0 psi, and allow to relax at

0 psi for one minute. Continue cycling until
spalling of ceramic at cylinder ends is
observed, or catastrophic failure takes place.
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TEST RESULTS

Cylinder A

The test assembly (figure 35), consisting of a
ceramic cylinder (figure 10) capped at both ends
with steel hemispherical bulkheads the same
dimensions as the titanium hemisphere (figure 22),
successfully withstood the proof test to 10,000 psi,
followed by 400 pressure cycles to 9,000 psi with-
out any visible cracking or spalling on the cylin-
der’s exterior and interior surfaces.

When, after inspection at 400 cycles, the pressure
cycling of the test assembly was resumed to
9,000 psi, catastrophic failure took place on the
453rd cycle (figure 36). Inspection of ceramic frag-
ments inside the metaliic end caps disclosed
extensive internal spalling, the result of progres-
sive delamination due to repeated pressure cycl-
ing.

The strains on the interior surface of the cylinder
were linear from 0 to 10,000 psi. The difference
between the magnitudes of hoop strains at midbay
and ends ranged from 5 to 7 percent (figure 37),
indicating that the radial compliance of the steel
hemispheres was well matched to the radial com-
pliance of the ceramic cylinder.

The maximum hoop and axial stresses on the inte-
rior midbay surface at 9,000 psi design pressure
were calculated to be —136,000 psi in hoop and
—68,000 psi in axial orientation (figures 38 and 39).
The maximum hoop siress represented only

45 percent of the ceramic’s uniaxial compressive
strength, providing the cylinder with a 2.2 S.F.
based on the matenal’s sirength.

The acoustic emissions recorded during the proof
test and subsequent pressure cycling of the test
assembly displayed a moderate Kaiser effect,
masked 1o a large degree by leakage of the pres-
sure vessel at Southwest Research Institute in
which the assembly was tested (figure 40).

Cylinder B

The test assembly (figure 41a), consisting of cylin-
der B (figure 16) capped at both ends with titanium
hemispherical bulkheads of the dimensions shown

in figure 22, imploded during the first proof test at
9,700 psi (figure 41b).

The strains recorded during the test were linear to
the moment of implosion (figure 42). There was a
20-percent difference between hoop strains at
midbay and at the ends, indicating that the radial
compliance of the cylinder ends was significantly
less than the radial compliance of the 0.585-inch-
thick ceramic cylinder at midbay.

The maximum compressive stresses were found
on the interior surface at midbay (figure 43) and
their magnitude at 9,000 psi was caiculated to be
-158,000 psi in hoop direction. The highest com-
pressive stress on the interior surface in axial
direction was found at the wall-thickness transition
zone, and its magnitude ranged from —90,000 to
~97,000 psi. The 30-percent difference between
axial siresses at the transition zone and the
71,000 psi at midbay indicates significant bending
at the ends (figure 44).

The total number of acoustic events detected by
two transducers bonded to the interior of the cylin-
der was 9,800 psi just prior to implosion. Since the
signal generated by the two transducers were
added together, the actual number of events was
only 4,900. The total number of events increased
linearly with pressure to the moment of implosion,
indicating that the failure was not initiated by mate-
rial failure, but by elastic instability {figure 45).

Cylinder C

The test assembly (figure 46), consisting of cylin-
der C (figure 17) capped at both ends with steel
hemispherical bulkheads of the same dimensions
as the titanium hemispherical bulkheads (figure
22), successfully withstood two proof tests to
10,000 psi, followed by 50 pressure cycles to
9,000 psi. Visual inspection did not discover any
cracking or spalling on internal or external surfaces
of the cylinder at the end of 50 pressure cycles.

During subsequent pressure cycling, severe spal-
ling occurred on the 53rd cycle (figures 47 and 48)
and the cylinder began o leak. All the spalling took
place in one location on the end of the cylinder at
both internal and external surfaces. It is not known
how many more pressure cycles would have to be
applied before catastrophic failure would occur.
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The strains on the interior surface of the cylinder
were linear from 0 to 10,000 psi. The difference
between the magnifudes of hoop strains (figure 49)
at midbay and ends was in the 25-percent range,
indicating that the radial compliance of the steel
hemispheres was significantly less than the radial
compliance of the 0.450-inch-thick ceramic cylin-
der.

The maximum compressive stresses were found
on the interior surface at midbay (figures 50 and
51), and their magnitude at 9,000 psi loading was
calculated to be —202,500 psi in the hoop direction.
The hoop stresses at the ends were only
—164,000 psi. The highest compressive stress in
axial direction was observed (figures 50 and 51) at
the end of the cylinder on the transition zone
between the wall thicknesses, and its magnitude
was —149,000 psi. The 50-percent difference in
magnitude between —99,000 psi axial siresses at
midbay and the axial stress in the transition zone
at the ends, as well as the 25-percent difference in
hoop stresses at those locations, indicates a very
severe mismaich in radial compiiance beiween the
steel hemispheres and the cylinder.

The acoustic emissions recorded during the pres-
surizations exhibited a classic Kaiser effect (figure
52). The number of events decreased from 1,400
during the first pressurization to 85 during the
second and 20 during the third. The number of
events generated dunng subsequent pressure
cycles remained constant to the 20th cycle, during
which a sudden increase of 320 events occurred.
After this sudden jump in number of events, the
emissions returned to the previous rate of

20 events per cycle to the 30th cycle, when a
second sudden increase of 320 events took place.
The emission rate settled down again to 20 events
per cycle to the 44th cycle, when a sudden
increase of 800 events took place. After this, the
emission rate settled down to about 30 events per
cycle to the 53rd cycle, when a sudden increase of
2,000 events took place and the vessel began to
leak.

The acoustic emission record seems to indicate
that the crack initiated during the 20th cycle and
increased in size stepwise during the 30th, 44th,
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and 53rd cycles (i.e., it required approximately

10 cycles to build up sufficient residual tensile
stress at the crack tip to propagate it further). The
crack’s growth was slow and hidden inside the end
cap until the 53rd cycle, so it was not detected dur-
ing the visual inspection after the 50th cycle.

Cylinder D

The test assembly (figure 53), consisting of cylin-
der D (figure 18) capped at both ends with sieel
hemispherical bulkheads successfully withstood
two proof tests to 10,000 psi, followed by 100 pres-
sure cycles to 9,000 psi. Visual inspection of the
cylinder surfaces after pressure testing did not
reveal any cracks or spalling. The original surface
separation (figure 19) did not enlarge, or show any
cracks originating at the edges of the separation.

The magnitude of strains on the interior surface
away from the separation was identical to those
observed at 9,000 psi pressure loading on cylinder
A with the same dimensions. The strains recorded
around the separation differed only a small amount
from those recorded at the location away from the
separation. The hoop strains were approximately
three-percent higher, and the axial strains were
approximately 18-percent lower. No significant dif-
ference was found between sirains at the tip of the
separation and at a location away from the separa-
tion. Since the size of strain gages was 0.125 of an
inch, the values of strains recorded by these gages
represent an average of strains at a distance of
0.125 10 0.375 of an inch from the edge of the sep-
aration. Thus, in reality, the strains along the iong
edge are estimated to be 100-percent lower in
axial, and 10-percent higher in hoop direction.

The maximum stresses calculated on the interior
surface, away from the separation, were
—136,000 psi in hoop, and —68,000 psi in axial
direction. These values of stresses are the same
as on test cylinder A of the same dimension, indi-
cating that both cylinder A and D are of identical
dimensions and material composition. The
stresses measured by strain gages 0.25 of an inch
away from the separation were only 3-percent
higher in hoop and 10-percent less in axial direc-
tion.
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The acoustic emissions recorded during pressur-
ization exhibited the classic Kaiser effect: a total of
2,800 events during the first pressurization,
decreasing stepwise to 20 events during the 20th
cycle, and remaining constant at 20 events per
cycle thereafier to the 100th cycle. The absence of
increases in the event count during pressure cycl-
ing indicated that cracking was not initiated any-
where on the cylinder during the first 100 pressure
cycles to 9,000 psi.

DISCUSSION

End Cap Design

The significant improvement in fatigue life (453
versus 108 cycles) of 20-inch OD by 30-inch L by
0.685-inch t 94-percent alumina-ceramic cylinders
under identical pressure cycling conditions to
9,000 psi after replacement of Mod 0 with Mod 1
end caps serves as experimental validation of the
new end cap design for 20-inch cylinders.

The Mod 1 end cap design was conceived and first
applied to 12-inch OD by 18-inch L by 0.412-inch 1
alumina-ceramic cylinders by Dr. Stachiw in a pre-
vious NRaD Independent Experimental Develop-
ment program (reference 3) where it successiully
withstood 500 cycles to 9,000 psi without visible
spalling or cracking. By comparison, the same
12-inch cylinders, when equipped with Mod 0 end
caps exhibited spalling at the ends after only about
100 cycles. Still, catastrophic failure did not take
place even after 150 cycles, although spalling after
that was exiensive on the exterior surface. In the
same program, 6-inch OD by 9-inch L by
0.206-inch-thick 94-percent alumina-ceramic cylin-
ders equipped with Mod 1 end caps successfully
withstood 2,000 pressure cycles to 9,000 psi with-
out catastrophic failure.

In all Mod 1 end cap designs for the different cylin-
der diameters, the height of both flanges on the
end cap was equal io or exceeded 2.75 t, where

t is the thickness of the ceramic shell. By
comparison, in Mod 0 end caps, the height of the
exterior flange was only 0.8 t. In all cases, the cyl-
inders were bonded into the end caps with epoxy
adhesive compound made up of 100-percent CIBA
Geigy 6010 resin and 70-percent CIBA Geigy 283
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hardener. The thickness of the adhesive bonds
between concave and convex cylinder surfaces
and the end cap flanges varied from 0.01 to 0.03
of an inch, while the bond between the plane-bear-
ing surfaces was kept constant at 0.01 inch by
means of epoxy-soaked cardboard spacers cover-
ing less than 50 percent of the bearing surface.

Based on the data generated by this and previous
studies, a conservative postulate can be formu-
lated that the Mod 1 end cap design will provide
alumina-ceramic cylinders of any size with a guar-
anteed cyclic fatigue life in excess of 200 pressur-
izations generating —136,000 psi maximum hoop
stress at midbay. At 90-percent confidence ievel,
the cyclic fatigue life at the same hoop stress level
exceeds 400 cycles.

Design Stress Level

The testing of cylinders A, B, and C has shown
that the 94-percent alumina ceramic will reliably
carry compressive membrane stress of up to
200,000 psi magnitude, and thus provide a very
attractive W/D ratio of 0.36 for 9,000-psi design
depth. Because of the short ring stiffeners at the
ends of the cylinders, spalling occurs much sooner,
however (cylinder C-51 versus 453 cycies for cylin-
der A), even though the compressive bearing
stress is the same for all three cylinders.

if the length of these ring stiffeners on the cylinder
ends were increased from the present 2 inches to
4 or 5 inches, the fatigue life of the cylinders could,
probably, be extended by at least 100 percent at
the expense of additional weight of ceramic, thus
increasing the W/D ratio. But even with this
arrangement, the local high-compressive bending
stresses generated by the transition zone from
thick- to thin-shell sections will resuit in high shear
stresses inside the shell thickness at this location.
These shear stresses also may originate spalling
at that location, reducing the fatigue life of the cyl-
inder.

The most direct approach to eliminating the prob-
iems generated by the thickness transition zone
would be to eliminate the ring stiffeners at the ends
of the cylinders. Unfortunately, this would increase
the bearing stresses for the 0.455-inch-thick cylin-
der from —64,000 to —101,000 psi, which, in turn,
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would cause cracking to originate on the bearing
surfaces after only a few cycles.

Based on these considerations, it appears that the
hoop design stress of —136,000 psi, providing cyl-
inder A with a fatigue life In excess of 400 cycles,
represents a good trade-off between weight, initial
fabrication cost, and life cost (fatigue life) for a
94-percent alumina-ceramic cylinder serving as a
component in an exiernal pressure housing with a
9,000-psi design depth. At a design stress of
—136,000 psi, the ceramic cylinder is 43-percent
lighter and carries at least a three-times larger pay-
load than a titanium cylinder with —80,000-psi
design stress for a 9,000-psi depth. Furthermore,
the monocoque shell of the ceramic cylinder
makes its fabrication significantly less expensive
than the titanium sheli of identical dimensions
incorporating integral ribs.

Surface Discontinuities

The test results generated by cyiinder D indicate
that the presence of large chips on the edges of
the cylinder’s bearing surfaces does not lead to
initiation of spalling on the external surfaces of the
cylinder even after 100 pressure cycles to design
pressure.

Similarly, the large surface separation on the inter-
nal surface at midbay did not initiate cracks on that
surface even though the membrane stress fietd
around the discontinuity consisted of —136,000 psi
hoop and —68,000 psi axial stresses at design
depth.

These findings have been found very useful in
helping to define the magritude of acceptable sur-
face and internal defects on ceramic components
selected for external pressure service that will gen-
erate a compressive membrane stress of

< 136,000 psi magnitude at design depth. Thus, it
appears that chips on the edges of plane-bearing
surfaces of cylinders may extend to 0.5 t in length
and 0.3 tin width without making the cylinder
unacceptable for service as a pressure housing
component. Surface separations and internal inclu-
sions do not make the cylinder unacceptable
unless their length/width aspect ratio > 10, length
>0.15 inch, and depth >0.051.
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Acoustic emissions followed the classic Kaiser
effects for all four test cylinders, i.e., the number of
acoustic events significantly decreases with each
following pressure cycle until a minimum is
reached after about 20 cycles. After this, the num-
ber of events generated during each cycle
remained approximately constant until a fracture
was initiated. At that instant, the number of events
would significantly increase for that cycle, but the
following cycle would exhibit, again, the same low
number of events that preceded the crack initia-
tion.

During following cycles, the low number of events
would be repeated until either a new crack was
inihated, or the prior crack propagated itself step-
wise. The jumps in number of events would
increase in magnitude, until one of them exceeded
1,000 events. At this instant, a fracture plane,
probably, reached sufficient dimensions to result in
physical spalling of the external surface. The sfruc-
tural integrity of the cylinder can be considered at
this point to have been compromised to such an
extent that it should be removed from further ser-
vice as a pressure housing, although experimental
data from the prior test program with 12-inch OD
by 18-inch L by 0.412-inch t cylinders has shown
that the catastrophic failure of a spalled cylinder is
probably still 50 cycles away.

CONCLUSIONS

1. Manufacturing technology for 84-percent alu-
mina ceramic has been found to be mature
enough and manufacturing equipment large
enough to produce cylinders and hemispheres
up to 50 inches in diameter on custom, and
20 inches on a mass-production basis. Both
Coors Ceramics and WESGO, Inc. have a
proven capability to produce large cylinders
and hemispheres from alumina ceramic.

Monocogue cylinders fabricated from
94-percent alumina ceramic with 20-inch OD
by 30-inch L by 0.685-inch t and 0.48 W/D
ratio (0.5 for cylinders equipped with end
caps) can serve as reliable components of
exiernal pressure housings with guaranteed
200 cycles fatigue life to a 20,000 feet
design depth, provided that their ends are
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encapsulated in Mod 1 metallic end caps that
are radially supported by metallic or ceramic
hemispherical bulkheads whose critical pres-
sure exceeds 13,500 psi. If, during lifetime
service, the majority of dives does not exceed
a depth of 15,000 feet, the guaranteed cyclic
fatigue life of the cylinders will exceed 400
cycles.

The cyclic fatigue life of the 20-inch OD by
30-inch L by 0.685-inch t 94-percent alumina-
ceramic cylinders has been experimentally
shown to exceed 400 pressure cycles to
9,000 psi design pressure when their ends are
bonded to Mod 1 end caps that also serve as
supports for equipment inside the cylinder,
and as joints for attachment of hemispherical
bulkheads, or additional cylinders with inter-
mediate stiffener rings.

The 94-percent alumina ceramic under maxi-
mum membrane hoop stress of —136,000 psi
and —68,000 axial stress in the 0.685-inch-
thick cylinders can tolerate chips on the edges
of cylinders, surface separations, and internal
voids provided their magnitude does not
exceed the following limits based on the
experimental data from this and other test
programs, and their extrapolation by analytical
processes:

Chips on Edges:

Length: <0.5t
Width: <0.3t

Surface Separations (Crevasses)

Length: 0.187 inch

Width: 0.03 inch

Depth: 0.03 inch

Location: >6 inches from edge

Inclusions:

Oblong:
Length: 0.187 inch
Diameter: 0.06 inch
Spherical:
Diameter: 0.06 inch
Location: > 3 inches from edge
Depth: >0.1 inch below surface
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The satisfactory performance of the bearing
surfaces on ceramic cylinders during 400
pressure cycles to 9,000 psi design pressure
is the result of the following parameters:

Bearing pressure: <68,000 psi

End cap design: Mod 1 with A, B, or C sealing
options

Radial clearances: 0.01-0.03 inch
Flange height: 1.9 inches

Material, listed in order of preference:

Ti-6Al-4V titanium
7178-T6 aluminum
7075-T6 aluminum

Bearing support:

Radial: epoxy compound filling the annular
clearances 0.01 to 0.03 inch thick

Axial: epoxy compound of 0.01 inch thick-
ness. Thickness is controlied by segments of
0.01 inch thick cardboard gasket acting as
spacers. Thickness of epoxy layer is con-
frolled by one inch long segments of 0.01 inch
thick manila stock placed at uniform intervals
around the seat in the end cap. Spacing
between segments is not to exceed

0.25 inches.

Material: 100 parts of resin CIBA Geigy 610,
70 parts of hardener CIBA Geigy 283

Monocogque 94-percent alumina-ceramic cylin-
ders with 20-inch OD by 30-inch L by
0.685-inch 1, when equipped with Mod 1 end
caps can be joined with ring stiffeners (appen-
dix A) to form long cylindrical housings of up
to 120 inches in length and 500 pounds of
positive lift, when capped with titanium or
ceramic hemispherical bulkheads (refer-

ence 1).
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GLOSSARY

AUTB Advanced Ultrasonic Test Bed
FEA finite element analysis

FEM finite element model

GFRP  graphite fiber-reinforced peek
ID inner diameter

IED independent exploratory development
Kpsi one thousand psi

L length

L/D iength/diameter

MEK methyl ethyl ketone

MOR Modulus of rupture
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ND
NDE
NDT
NOSC

oD
PEEK
rms

SAM
S.F.

D
{Ro

W/D

nondestructive
nondestructive evaluation
nondestructive test

Naval Ocean Systems Center

outside diameter
poly-ether-ether-ketone
root mean square

Scanning Acoustic Microscopy
stress factor

ceramic shell thickness
thickness diameter
thickness external radius

width
weight-to-displacement
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Figure 1. W/D of external pressure housings fabricated from different materials.
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Figure 2. Typical 20-inch OD alumina-ceramic cylinder used in
the fourth generation of the Navy's ceramic pressure housings.
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Figure 3. Internal mounts for payload platform inside the
20-inch OD alumina-ceramic cylinders.
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Figure 4. Typical 20-inch alumina-ceramic hemisphere used in the fourth generation
of the Navy's ceramic pressure housings prior to bonding with the titanium end cap
ring and mounting of the penetration insert.
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Figure 5. Hemispherical bulkhead assembiy for 20-inch OD ceramic pressure
housings.
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Figure 6. 20-inch OD external pressure housing assembled from a single ceramic
cylinder capped at both ends with ceramic hemispheres. Payload rating: 220
pounds at 9,000 psi.
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Figure 7. Assembly of a 20-inch OD exteral pressure housing from two 30-inch-long
ceramic cylinders, two ceramic hemispheres, and a single, central joint stiffener.
Payload rating: 350 pounds at 9,000 psi.
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Figure 8. Inserts for penetrations in ceramic hemispheres.
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Figure 9. Penetration insert in ceramic hemisphere.
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Figure 11. Mod 0 end caps on the ceramic cylinder and hemisphere.
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Figure 12. Mod 0 end caps on the ceramic cylinders at hausing midbay

stiffener.
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Figure 13. Comparison of Mod 0 and Mod 1 end cap designs.
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Figure 14. Optimized Mod 1 end caps on cylinder ends at midbay ring stiffener.
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Figure 19. Cross-section of a void on the interior surface of cylinder D. The inclusion
is approximately 0.03 of an inch deep.

Figure 20. One of the larger chips on the plane-bearing surface of cylinder D.
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Figure 21. Cylinder with Mod 1 end cap at the interface with the titanium hemisphere.
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Figure 26. Cylinder A with Mod 1 aluminum end cap tings marked
up for ultrasonic NDT.
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Figure 27. Surface roughness profile for the ground plane-bearing surfaces on cylinder A.
a. One-inch profile of bearing surface.
b. Enlargement of profile "a" in the K space.
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Figure 31. Mounting of the ceramic cylinder to the
hemispherical bulkhead.
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Figure 32. Insertion of wood block inside the test
cylinder for mitigation of implosion shock.

Figure 33. Placement of the other bulkhead on the
ceramic test cylinder.
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Figure 34. Fastening of the bulkheads to the ceramic test cylinder with wedge bana

clamps.
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Figure 35. Placement of the 20-inch OD ceramic hous-
ing test assembly into the 30-inch ID pressure vessel at

the Southwest Research Institute.
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Figure 36. Imploded cylinder A with 20-inch OD by
30-inch L by 0.685-inch dimensions. The test assem-
bly withstood sequentially a proof test to 10,000 psi
and 452 pressure cycles to 9,000 psi prior io
implosion.
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Figure 37. Average strains on the interior surface of cylinder A supported at ends by steel

hemispheres.
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Figure 38. Average stresses on the interior surface of cylinder A supported at the ends by steel
hemispheres.
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Figure 39. Stress distribution on the interior surface of cylinder A supported at the ends by steel
hemispheres.
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Figure 40. Acoustic emissions generated by cylinder A during pressure testing.

Figure 41a. Cylinder B before pressure testing to 9,700 pst.
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Figure 41b. Cylinder B after pressure testing to 9,700 psi.
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Figure 42. Average strains on the interior surface of cylinder B supported at ends by titanium
hemispheres.
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Figure 43. Average stresses on the interior surface of cylinder B supported at ends by titanium
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Figure 44. Stress distribution on the interior surface of cylinder B supported at ends by
titanium hemispheres.
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HYDROSTATIC PRESSURE. PSI
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Figure 45. Acoustic emissions generated by cylinder B during pressure testing.

Figure 46. Cylinder C before pressure testing.
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External spalling on cylinder C observed
after 53 pressure cycles to 9,000 ps

Figure 47.
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Figure 48. Internal spalling on cylinder C observed after
53 pressure cycles to 9,000 psi.
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Figure 49. Average strains on the interior surface of cylinder C supported at ends by steel
hemispheres.
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Figure 50. Average stresses on the interior surface of cylinder C supported at ends by stee
hemispheres.
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Figure 51. Stress distribution on the interior surface of cylinder C supported at ends by steel
hemispheres.
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Figure 52. Acoustic emissions generated by cylinder C during pressure testing.
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Figure 53. Cylinder D prior fo pressure testing.
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Figure 54. Hoop strains on the interior surface of cylinder D at midbay around surface

discontinuity.
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Figure 55. Axial strains on the interior surface of cylinder D at midbay around surface
discontinuity.
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Figure 56. Stresses on the interior surface of cylinder D at midbay around surface discontinuity.
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Figure 57. Acoustic emissions generated by cylinder D during pressure testing.
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Table 2. Comparison of alumina ceramic to titanium alloy.
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Table 3. Design data for test cylinders.

Test Cylinders

A B C D
Material* AD 94 AD 94 AD 94 AD 94

Hoop design stress, 135,000 156,000 200,000 135,000
psi
Critical pressure,** 13,500 9,650 12,000 13,500
psig
Outside diameter, in 20 20 20 20
Inside diameter, in 18.630 18.830 19.090 18.630
Wall thickness, in 0.685 0.585 0.455 0685
Overall length, in 30 30 17 30
Length of ceramic N/A 2 2 N/A
flanges, in
po 0.034 0.029 0.023 0.034
Lpo 1.5 1.5 0.85 1.5
Weight of 2 titanium 9 9 9 ]
end caps, Ib
Weight of ceramic 167 148 70 167
cylinder without end
caps, Ibs
Weight to displace- 0.48 0.42 0.36 0.48
ment without end
caps
Weight to displace- 0.50 0.45 0.41 0.50
ment with end caps

*AD94 is COORS Ceramics ceramic with 94% alumina composition.
**When radially supported at the ends by titanium hemispheres with >13,500 psi critical pressure.
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APPENDIX A: TEST DATA FROM

TESTING PROGRAM
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FIGURES

A-

—

. Strain on cylinder A, end A.

A-2. Strain on cylinder A, midbay.

A-3. Strain on cylinder A, end B.

A-4. Compressive stress on cylinder A, end A.
A-5. Compressive siress on cylinder A, midbay.
A-6. Compressive stress on cylinder A, end B.
A-7. Strain on cylinder B, end A.

A-8. Strain on cylinder B, midbay.

A-9. Strain on cylinder B, end B.

A-10. Compressive stress on cylinder B, end A.
A-11. Compressive stress on cylinder B, midbay.
A-12. Compressive stress on cylinder B, end B.
A-13. Sirain on cylinder C, end A.

A-14. Strain on cylinder C, midbay.

A-15, Strain on cylinder C, axial.

A-18. Strain on cylinder C, haop.

A-17. Compressive stress on cylinder C, end A.
A-18. Compressive stress on cylinder C, midbay.
A-19. Compressive stress on cylinder C, axial.
A-20. Compressive stress on cylinder C, hoop.

TABLES

A-1. Properties of alumina ceramics.
A-2. Strains on cylinder A, Sheet 1.
A-2. Strains on cylinder A, Sheet 2.
A-3. Stresses on cylinder A, Sheet 1.
A-3. Stresses on cylinder A, Sheet 2.
A-4. Strains on cylinder B, Sheet 1.
A-4. Strains on cylinder B, Sheet 2.
A-5. Stresses on cylinder B, Sheet 1.
A-5, Stresses on cylinder B, Sheet 2.
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A-6. Strains on cylinder C, Sheet 1.
A-6. Strains on cylinder C, Sheet 2.
A-7. Stresses on cylinder C, Sheet 1.
A-7. Stresses on cylinder C, Sheet 2.
A-8. Strains on cylinder D.

A-9. Stresses on cylinder D.

A-10. Acoustic emissions during hydrostatic testing of 20-inch ceramic cylinder with surface defects.
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APPENDIX A: TEST DATA FROM
TESTING PROGRAM

Appendix A contains all the data generated during
external pressure testing of 20-inch OD ceramic
cylinders A, B, C, and D. The magnitudes of
strains shown on tables and graphs are as
recorded by 0.124-inch strain gages bonded to the
interior surfaces of ceramic cylinders at locations
shown. The stresses shown were calculated on the
basis of above sirains using a very conservative
book value of E = 41 x 106 psi for 94-percent alu-
mina ceramic.

Subsequent tests performed on material coupons
cut from fragments of failed cylinders have shown
that the actual value of E in the 20-inch OD test

cylinders was in the range of 44 to 45.5 x 108 psi.

For this reason, the magnitude of stresses shown
in tables and graphs in this report should be multi-
plied by a factor of 1.1 to bring them in iine with the
actual physical properties of 94-percent alumina-
ceramic cylinders fabricated by COORS Ceramics.

Average values of strains and stresses shown on
some of the graphs have been arrived at by aver-
aging the strain readings from all of the electric
resistance strain gages located at different loca-
tions around the circumference of the cylinder, but
at the same distance from its end. The individual
strain readings from such gages may differ from
the calculated average value by as much as five
percent. This difference in strain readings between
individual gages in equivalent stress field locations
is considered to be small. It is probably the resuit
of minor deviations in gage axis onentations for the
principal stress directions.
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Figure A-1. Strain on cylinder A, end A
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Figure A-2. Strain-on cylinder A, midbay.
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Figure A-3. Strain on cylinder A, end B.
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Figure A-4. Compressive stress on cylinder A, end A.
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Figure A-5. Compressive stress on cylinder A, midbay.
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Figure A-6. Compressive stress on cylinder A, end B.
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Figure A-7. Strain on cylinder B, end A.
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Figure A-8. Strain on cylinder B, midbay.
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Figure A-S. Strain on cylinder B, end B.
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Figure A-10. Compressive stress on cylinder B, end A.
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PRESSURE, PSI

PRESSURE, PSI
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Figure A-11. Compressive stress on cylinder B, midbay.
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Figure A-12 Compressive stress on cylinder B, end B.
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Figure A-13. Strain on cylinder C, end A.
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Figure A-14. Strain on cylinder C, midbay.
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Figure A-15. Strain on cylinder C, axial.
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Figure A-16. Strain on cylinder C, hoop.
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Figure A-17. Compressive stress on cylinder C, end A.
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Figure A-18. Compressive stress on cylinder C, midbay.
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Figure A-19. Compressive stress on cylinder C, axial.
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Figure A-20. Compressive stress on cylinder C, hoop.
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Table A-1. Properties of alumina ceramics.
. ALUMINA
PROPERTIES UNITS TEST AD-85 AD-80 AD-94 AD-86 AD-935 AD-89.9%
Nom B5% A0,  Nom 90% AlLO,  Nom 94% AL,O;  Nom 96% ALO, Nom 995% ALO, Nom 939% AlLC,
DENSITY a'cc (#/cu i} | ASTM C20-83 | 341{012) 360 (0 13) 370 (€ 13) 3721013) 389 (0 14) 395 (014)
ASFRED MICROMETRES 16(63) 76 (63) 16(63) 16163) 09 (35) 05 20)
SURFACE GRoUND | (MICROINGHES) | SFa e B | 10(39) 05 Q0 13(51) 13(5) 0500 03(33)
POLISHED A 02(80) 0139 0302 03412 01(39) <003 (<1)
CRYSTAL RAWGE MICROMETRES THil 212{19.473] | 210(79-394) | 225 (79.985) | 2-20(79-788) J 5-50 (197-1970) | 16 (35 236}
SIZE AVERAGE IMICRONCHES) | SECTION 5 (236) 4158 12 (473) 11 (433) 17 (670) 3(1g
WATER
ABSORETIER % ASTM 37372 0 o 0 ¢ o )
GAS PERM — ~ 0 0 0 0 0 o
COLOR — — WHITE WHITE WHITE WHITE VORY ORY
FLEXURAL o ?
STRENGR toR 2 MPa (psix 103 | ASTM F417.78 317 145 338 (49 352 (51} 358(52) 379(55) 552 (80)
ELASTIC MODULUS 20 GPa (pst < 109 321 (32 776 (40) 796 (43} 303 (44) 372(50) 386 (36)
SHEAR MODULUS GPa (psi » 108) 86 (14) 17017 117017} 124(18) 152422} 158(23)
BULK MODULUS GPa (s x 105) | ASTM C848-78 138 (20) *58 (23) 165 {24) 172(25) 228(33) 228(33)
TRANS. SONIC VEL mise. (fusec) 8207 x103 | ss(g)x1os | as@x103 | 91300100 } 983X | 9332 x102
POISSON'S RATIO — 022 022 021 02! 022 022
STIFFNESSWEIGHT  20°C GPaigice — %5 77 &0 81 % 57
COMPRESSIWE 20¢ MPa fkps) ) ASTM C773-82 | 1930 (280) 2482 (360) 2703 (305) 2068 (300} 2620 {380) 3792 (550)
HARDNESS GPa (kg/mm2) - 8 (350) 10 (1058) 121175) 11 (1088) 14 (1440 15(1551)
TENSILE 25 : ) 721 (30) 193 (28) 183 (28) 262 (38) 310 451
STRENGTH 1000 ¢ MPa (kpsi) | ACMATEST #4 ) 103 (15) 103{15) 36 (14) — ) 22132
FRACTURE NOTCHED
TOUGHNESS " MParm s BEAM TEST 34 34 3-4 34 34 3-4
THERMAL WirK - . - -
CONDLERMA 20°C o oy | AsTMcag B2 | 16001 167{116) 224(153) 2870172) 356(247) 389 (270)
COEFFICIENT
OF THERMAL 25-1000C | 106°C (10 67F) | ASTM (372-81 7240 8145 8248 82146 80(a6) 80(45)
EXPANSION
SPECIFIC MEAT 100°C Vhg K (aigrO) | ASTMC35182 | 92000 22) 92002 880 {0 21) B8O (0 21) 880 {0 21) 880 (0 21)
THERMAL SHOCK e
oK A% C CF) - 300 (570} 300 (570) 300 (570) 250 (480) 200 (392) 200 (392
ﬁgﬁ%%ﬂ;g C PR No-ioad conds § 1400 {2552) 1500 {2732) *700 (3092) 1700 (3092) 1750 (3182) *900 (3452)
© 35mm g2 920 870701 83210 87020 3c0)
3 18mm ) a 1 18¢300) 108 (27 114 (290 128325
2%5552}'5 1 27mm SPEC. (aifvg’t’;‘m,) ASTM-D116-76 | 17 3 (ad0) 177 (a50) 16 7 (425} 146 (370) 16 9 (430) 18 1(460)
0 6amm THICK 216 (550) 2281580) 216 (550 177 (450} 22 8 (580) 23 2(590)
0 25mm 283 (720) 299 (760) 28 3 {720} 22 8 (580) 331 (aa0) 315 (200)
DIELECTRIC | <& ASTM D150-81 82 88 a1 90 a8 9
1 MHz 25 ; 82 88 91 90 37 38
CONSTANT | Mo ASTM D2520-81 82 44 i 20 3 98
Tk STV D150+ 00014 0006 00007 5001 T 0002 00020
DISSIPATION FACTOR 1 Mz 25°¢C ool 00004 00004 00001 00003 00002
3\ GHz 00014 00007 0000 00002 00002 —
ki ) oo 3005 0007 010 0002 0020
LOSS INDEX 1 MHz wc | SMOE | oo 0004 0004 000¢ 0003 0002
3 GHz 0010 0005 0009 0002 0002 —
5C 1014 Bt e 1014 >10% >104
30CC 46100 14 %100 12x 1@ 31x10" — >1014
VOLUME RESISTIVITY 500°C onm-ecmiem | ASTM D1829-66 40108 28+<108 48,108 40109 _ 33x1012
700°C 70x108 70x 106 21x107 1Q¥> 108 - 90x10%
LOOL"{ -_— 86x 108 50a10° 10x106 — 11x107
TEMP AY WHICR
e VALUE () RESSTIVITY IS | 850(1562) 960 (1760) 950 (1742) 1000 (1832) - 1170 (2138)
1 MEGOHM-Civ
35% H,50s 004 003 - - o 001
ey weiaktwoss | mgjemarday | $30E-NOTES
@100°C-NOTE 3 1o 05 - - 01 ot
IMPINGEMENT — NOTE & 100 a5 U2 063 047 014
RUBBING — NQOTE 4 100 036 - 075 — 053




Pressure
(Pal)

o
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
10000
il

NOTES: BSpecimen imploded after 453 cycles to 3000 ps

Table A-2. Strains on cylinder A, Sheet 1.

Strains on Ceramic Cylinder 20 in OD x 30 in L x 0.685 in T
under Short Term Pressurization

Gage Locations

|¢=mm-——m-=-emo Interior End A >|< Interior Midbay >|
1 2 3 4 5

Hoop axaal Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial
=11 [} o} 4] o [} 11 -11 o] [+] [+ 0
-215 -43 ~-251 -22 ~314 -43 ~302 ~87 ~282 -65 ~303 -65
-506 -129 ~545 ~l08 -607 -129 ~-625 ~162 ~585 ~183 -607 -153
=797 ~-225 ~850 ~194 ~888 -214 ~305 ~303 -877 -261 -899 -251
-1099 ~279 -1133 -280 -1192 ~-300 -1217 -379 -1170 ~359 -1213 ~359
~1390 ~364 ~1449 ~-356 -1473 ~396 -1519 ~487 -1452 ~447 ~1506 -447
-1670 ~439 -1721 ~-442 -1766 ~471 =-1B21 ~563 -175% ~545 -1809%9 -523
-1950 ~493 -2004 ~506 ~2037 -546 -2132 -582 -2047 -632 ~2112 -621
-2282 ~579 -2298 ~571 ~2329 -654 -2402 ~769 ~-2329 -730 -2416 -708
-2532 ~643 ~2571 ~646 -2611 ~718 ~-2704 -856 -2622 -828 -2708 -79s
-2812 -707 ~2854 ~722 -2903 -B814 ~2973 ~953 -2903 -937 ~3012 -B893
~-2812 ~696 -2865 ~711 -2903 -814 -2995 -964 ~-2882 -915 ~2990 -861
22 21 22 11 0 21 22 o 87 87 65 76

P>

All strains are in microinches per inch

Electric resistance strain gages are CEA-06-125WT-350, Gage Factor 2.09
Ceramic Composition: 94 percent Alumina Ceramic

End Closures: Steel Hemimpheres

Table A-2. Strains on cylinder A, Sheet 2.

Strains on Ceramic Cylinder 20 1n OD x 30 in L x 0.685 in T
under Short Term Pressurization

Gage Locations

|€==-==—==-=w-s—- Interior End B >|
Pressure 7 8 2

(Pai) Hoop Axial Hoop Axial Hoop Axial
o] o ) 11 o] -13 -11
1000 -251 -33 -240 =22 -316 -87
2000 -545 -120 -534 -120 -610 -173
3000 -828 =207 -817 =196 -893 ~282
4000 -1122 -283 -1111 -294 ~11%98 ~379
5000 -1405 -359 -1373 -370 -1492 -477
6000 -1699 -436 -1687 -468 -1786 ~574
7000 -1983 -512 ~1928 -556 -2070 -661
8000 -2266 ~588 -2222 ~-643 -2364 -737
9000 -2549 -664 ~2495 ~730 ~2647 -823
10000 -2B32 -341 -27718 -828 -29841 -899
10000 -2B10 -708 =-2756 =795 -2541 ~856
o 76 87 16 87 ~22 11

NOTES: Specimen imploded after 453 cycles to 9000 psi
All strains are in microinches per inch
Electric resistance strain gages are CER-06-125Wr-35Q,
Gage Factor 2.09
Ceramic Composition: 94 percent Alumina Ceramic
End Closures: Steel Hemispheres
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Table A-3. Stresses on cylinder A, Sheet 1.

Streeses on Ceramic Cylinder 20 1n OD x 30 in L x 0.685 in T
under Short Term Pressurization

Gage Locations

e e Interior End A >|< Interior Midbay ==—==—-——~~———mm——- >
Pressure 1 2 3 4 5 6
{Pai} Hoop Axial Hoop Rx:ial Hoop Axial Hoop Axial Hoop Axial Hoop Axial
0 -472 =99 [¢] [} 0 0 373 -373 [+] ¢} 4] e}
1000 -9609 -3781 ~10964 -3204 ~13855 -4673 -13737 -6452 -12681 -5328 -13582 -5517
2000 -22865 ~10091 -24349 -9541 ~27197 -11001 -28267 ~12578 -26470 -11832 -27414 =12030

3000 -36212 -16830 -38206 -15977 -40016 -17177 -41546 -21148  ~39967 «19094 -40821 -18863
4000 ~49651 -21866 -51119 ~2221% ~53829 -23604 =55613 -27218 -53417 -25937 -55262 -26324
5000 -62899 -28133 -65357 -28321 -66747 -30253 -69540 -34571 -66305 -32251 -68622 -32738
6000 -75584 ~33872 =77798 -34460 =79990 -3610% -B3177 -40551 -B0184 -39184 -82302 -38727
7000 -B8080 -38710 =90513 -39754 ~92283 -41767 -96731 -48276 -93493 -45546 -96181  -45659
8000 -101808 -45119 -103709 -45190 -105786 -49029 ~109953 -54620 -106471 -52289 -110004 -52125
9000 ~1143%4 ~50386 -1160%4 -50866 -118458 ~54315 ~123690 -61071 -119921 -59132 -123312 -58482
10000 -126980 -55653 -128917 -56675 ~131B47 ~£1062 =~136102 -67655 -132855 ~66338 -137234 -65433
10000 ~126881 ~55181 =129290 -56302 -131847 -61062 =-137145 ~68325 =131856 -65205 =136002 =63862

2} 1133 1099 1043 670 189 901 944 198 4515 4515 3473 3845

NOTES: Specimen imploded after 453 cycles to 9000 psi
All stresses are 1n pounds per sgquare inch
Ceramic Composition: 94 percent Alumina Ceramic

Material Properties: Poisson’s Ratic 0.21, Modulus of Elasticity 41,000,000
End Closures: Steel Hemispheres

Table A-3. Stresses on cylinder A, Sheet 2

Stresses on Ceramic Cylinder 20 in OD x 30 in L x 0.685 in T
under Short Term Pressurization

Gage Locations

D — Interior End B >|

Pressure 7 8 9
(Psi) Hoop Axial Hoop Axial Hoop Axial

0 o] o] ¢} o 0 o]
1000 ~11063 -3676 ~-10492 -3105 -14338 ~6578
2000 -24457 ~10056 -23985 -9957 -27722 ~12918%
3000 =37379 -16337 -36808 -15766 -40843 -20139
4000 ~50674 —-22245 ~50301 ~22617 -54798 -27047
5000 -63437 -28054 -62223 -28237 ~68291 -33898
6000 -76801 -34004 -75716 -35089 -81775 -40707
7000 -89667 -35822 -87704 -41214 -94740 -469%7
8000 -~102490 -45631 -101098 —-47594 -108035 ~-52905
9000 -115313 51440 -~113581 -53784 -120948 -59142

10000 -128145 -57292 -126612 -60537 ~=134243 -65050
10000 -126904 -55678 -125371 -58923 -133856 -63206
o} 4043 4416 4043 4416 -845 274

NOTES: Specimen imploded after 453 cycles to 9000 psi
All stresses are in pounds per sguare inch
Ceramic Composition: 94 percent Alumina Ceramic
Material Properties: Poisson’s Ratio 0.21,
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Table A-4 Strains on cylinder B, Sheet 1.

Strains on Ceramic Cylinder 2¢ in OD x 30 in L x 0.585 in T

under Short Term Pressurization

Gage Locations

Hoop

aQ
=359
-709
-1064
-1416
=-1773
-2123
-2480
-2841
-3241

R Interior End A >|< Interior Midbay
Pressure 1 2 3 4 s
(Ps1) Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial
o] Q Q Q Q [+] Q o} 0 0 Q
1000 ~294 =172 ~343 -189 -324 ~202 -329 -117 -391 =122
2000 -590 ~381 -645 -392 -627 =391 -677 ~227 ~746 -~227
3000 =890 ~591 =349 -594 -933 -580 -1027 ~339 -1103 -333
4000 -1190 =799 -1252 =794 -1234 =766 -1375 -451 ~1458 ~438
5000 -1493 -907 -1558 -1006 ~1560 -B832 «1727 -566 -1820 -544
6000 -1B01 -1088 -1874 -1077 ~1862 -1000 -2071 -578 -2174 ~647
7000 -2101 -1271 -2179 ~1263 -2166 -1174 -2420 -793 ~2536 =748
8000 -2404 ~1448 ~2430 -14246 -2475 -1345 ~2771 -30% -2903 -851
9000 ~-2714 -1631 -2824 -1625 -2806 -~1512 =3155 -1028 -3313 -948
10000
NOTES: Specimen amploded at 9700 pei
All strains are in microinches per inch
Electric reeistance strain gages are CEA-06-125WT-350, Gage Factor 2.09
Ceramic Composition: $4 percent Alumina Ceramuic
End Closures: Titanium Hemispheraes
Table A-4. Strains on cylinder B, Sheet 2.
Strains on Ceramic Cylinder 20 in OD x 30 in L x 0.585 an T
under Short Term Pressurization
Gage Locations
Aluminum
|<—-————-—-——-—-— Interior End B --—---————--——-->|<-—-— End Cap --->|
Pressure 7 8 9 0
(Psi) Hoop Axial Hoop Axial Hoop Axial Hoop Axial
o] [¢] 4] o] (o} 0 Q o] [¢]
1000 -316 -192 -336 -160 -322 -218 ~262 35
2000 ~-614 -397 -635 -363 -622 ~414 -563 58
3000 -914 -600 -937 -566 -924 -608 -B65S &9
4000 -1214 ~805 -1242 ~778 -1225 -806 -1164 74
5000 -1516 -1018 -1555 -840 -1541 -892 ~1472 506
6000 -1821 ~1096 -1853 -1019 -1845 -1074 -1771 608
7000 -2122 -1282 -2157 -1197 -2150 -1267 ~2072 710
8000 -2440 -1503 -2471 -1475 -2462 -1512 -2361 803
9000 -2762 -1690 -2803 -1663 -2792 -1703 ~-2663 203
10000

NOTES: Specimen imploded at 8700 psi

All strains are in microinches per inch

Electric resistance strain gages are CEA-06-125WT-350, Gage Factor 2.09

Ceramic Composition: 94 percent Alumina Ceramic
End Closures: Titanium Hemispheres
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Table A-5. Stresses on cylinder B, Sheet 1.

Stresses on Ceramic Cylinder 20 in OD x 30 in L x 0.585 in T
under Short Term Pressurization

Gage Locations

}¢w—esee—e———— Interior End A >|< Interior Midbay >|
ressure 1 2 3 4 5 6
(Pai) Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial
o [+] 0 s} [} 0 [»] [+] 0 0 [¢] [} [¢]
1000 ~14160 -10026 -16414 -11196 ~15716 -11583 -15165 -7982 -17870 -8755 ~16488 ~8424

2000 -28738 ~-21656 -31196 ~22623  -30415 -22418 -31083 -15834 -34042 -16456 ~32464 -16166
3000 -43497 -33366 -460S5 -34026 -45242 =33281 -47104 -23791 -5030%9 -24218 ~-48673 -24038
4000 ~58238  —44989 -60853 ~-45333 -59828 -43970 -6303% -31729 -66482 -31919 ~64743 -31841
5000 ~72207 -52351 ~-75887 -57183 -74406  -49738 -79173 -39833 -82963 ~39727 -81038 -39732
6000 -87048 -62889 -30080 ~63074  -88872 -59664 -94936 -47735 -99075 -47333 -97014 ~47474
7000 -101564 -73440 -104838 -73800 -103479 -69865 ~110941 -55811 -115512 -54926 -113290 -55279
8000 -116155 ~83761 -119826 -B84450 -118273 -79983 -127041 -63%48 -132181 -62649 -129756 -63206
2000 -131100 -94403 ~135764 -95136 =-133974 ~90127 ~144584 -72511 -150640 -70503 -147867 -71386
10000

IOTES: Specimen imploded at 9700 psi
All st are in p de per square ainch
Ceramic Composition: 94 percent Alumina Ceramic
Materaal Properties: Poisson‘s Ratio 0.21, Modulus of Elasticaty 41,000,000
End Closures: Titanium Eem:spheres

Table A-5. Stresses on cylinder B, Sheet 2.

Stresses on Ceramic Cylinder 20 in OD x 30 in L x 0.585 in T
under Short Term Pressurization

Gage Locations

Aluminum
|<--—--——-—---—- Interior End B >|<-—-- End Cap -—->|

Pressure 7 8 e 10 -

(Psi) Hoop Axial Hoop Axial Hoop Axial Hoop Axial

[¢) [¢] L+] o) 4] 1] 0 Q [+]
1000 -15283 -11082 ~15853 -9889 ~15775 -12251 -2828 -611
2000 -29912 -22559 -30506 -21289 -30408 -23360 -6143 -1509
3000 -44608 -33968 -~45288 -32717 -45109 ~34401 -5515 -2545
4000 ~59322 -45463 -60280 -44557 -~-59803 -45605 -12877 -3638
5000 -74167 -57190 -74263 -50036 -74131 ~52140 -14699 62
6000 -87978 ~-63412 —-B88657 -60398 -88810 ~62685 -17687 66
7000 -102564 -74101 -=103300 -70771 -103630 ~73710 -20699 62
8000 -118194 -86445 -119272 ~-85523 +<119219 -87029 -23609 3
9000 -133690 ~97366 =135205 -96577 ~135094 -98194 -26639 =27

NOTES: Specimen imploded at 9700 psi

All stresses are in pounds per square inch

Ceramic Composition: 94 percent Alumina Ceramic

Material Properties: Ceramic: Poisson‘s Ratio 0.21,
Modulus of Elasticity 41,000,000

Aluminum Bearing Ring: Poisson’s Ratio 0.34,

Modulug of Elasticity 10,000,000

End Closures: Titanium Hemispheres

A-19
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Pressure
(Pei)

o]
1000
2000
3000
4000
5000
6000
7000
8000
8000
10000
o}
10000

[+

Gage Locataions
jemmm e ——- Interior End A >|< Interior Midba
D E F a B
Hoop Bxial Hoop Axial Hoop Axial Hoap Axial Hoaop Axial
4] o [s] 0 0 [s] o] 0 0 0
=337 -272 =344 -293 ~349 -622 -448 -1587 —482 -142
-656 ~564 -670 -569 -660 -866 -S02 -297 ~934 -280
-983 -847 ~1017 -857 -1014 ~1145 ~1360 ~438 ~1383 -421
=-1345 ~103¢6 -1336 -1121 =-1349 ~-1412 -1810 -583 ~1836 -562
-1685 ~1295 ~1698 ~1296 -1694 -1583 -2275 -726 -2287 -704
-2007 ~1540 -2032 <1543 -2032 -1833 -2712 ~-863 -2734 ~842
~2335 ~1789 -2350 -1769 -2355 -2077 -3156 ~1001 -3153 -980
-2656 -2032 -2671 -2006 -2677 -2315 -3595 ~1138B -3578 ~1114
-2979 -2214 -2994 -2213 ~-2994 -2548 =-4025 ~1277 ~4000 -1246
-3307 ~2517 =-3324 ~2432 ~3311 -2776 -4454 ~1416 -4424 -1387
37 14 33 15 41 -475 49 -1 66 -1
-3373 =2486 -3381 -2418 -3353 ~2793 ~4506 -~1425 ~4485 ~1396
-4 -3 -2 -4 0 =504 -4 -8 0 -6
NOTES: Specimen was subsequently cycled 50 tames to 9000 psi without initiation of cracks
All ptrains are in microinches per inch
Electric resistance strain gages are CEA-06~125WT-350, Gage Factor 2.12
Ceramic Compoaition: 9S4 percent Alumina Ceramic
End Closures: Steel Hemispheres
Table A-6. Strains on cylinder C, Sheet 2
Strains on Ceramic Cylinder 20 in OD x 17 in L x 0.450 in T
under Short Term Pressurization
Gage Locations
}<-——--—--———-—-—-— From Interior Midbay to End B >l
Pressure G " I J
{Psi) Hoop Axial Hoop Rxial Hoop Axial Hoop Axial
4] o] [+} [} o} o} 3] 0 o]
1000 -448 -144 -524 -623 -408 ~124 -338 -308
2000 -879 -267 ~956 =721 ~787 -229 -642 -608
3000 -1368 -411 -1436 ~-B43 -1245 -346 -1020 -903
4000 -1828 ~546 -1904 -850 -1667 -442 -1364 ~1154
5000 —-2298 -6B2 -2349 -1054 -2074 -542 -1705 -1440
6000 -2738 ~808 -2791 -1156 -2485 -642 -2025 -1710
7000 -3191 -~338 -3241 -1251 -2B84 -738 ~-2350 -1988
8000 -3635 -1066 -3661 ~1349 -3263 -828 -2671 -2259
S000 -4072 -1195 -4090 -1449 -3662 -923 -29981 -2520
10000 ~4503 ~-1327 -4517 -1553 -4064 -1020 -3321 -2779
[} 33 (o] -64 -501 39 -2 6 -7
10000 -4534 -1333 -4462 -1559 ~4105 -1010 -3322 -2719
[») -1 -5 -12 -506 -2 -7 -4 -6
NOTES: Specimen was subsequently cycled S0 times to 9000 psi without initiation of cracks

Table A-6. Strains on cylinder C, Sheet 1.

Strains on Ceramic Cylinder 20 in OD x 17 in L x 0.450 in T
under Short Term Pressurization

All strains are in microinches per inch
Electric resistance strain gages are CEA-06~125WT-350, Gage Factor 2.12
Ceramic Composition: 94 percent Alumina Ceramic

End Closures:

Steel Hemispheres

A-20

Hoop

[+]
-463
-916

-1371
-1829
-2279
-2711
<3148
-3570
-3990
~43985

a3
~4493

0

Axial

[+]
~142
-280
-420
-562
=706
-8B84S
-983

~1119
~1257
-1395
-9
-~1406
-12
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Table A-7. Stresses on cylinder C, Sheet 1.

Stresses on Ceramic Cylinder 20 in OD x 17 an L x D.450 in T
under Short Term Prassurization

Gage Locations

|¢=—=--—-——=————- Interior End A >|< Interior Midbay ~—~——-——~—m=-m-——->|

Pressure D E F a B c
(Psi) Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial Hoop Axial

o 0 0 0 0 [} Q 0 0 o o 0 o]
1000 -16905 ~14702 -17394 ~15666 -20572 -29822 -20630 -10769 -21983 ~10432 -21138 -10261
2000 -33217 -30100 -33863 -30440 -3610% -43083 -41364 -20864 ~42583 -20423 -41811 -20260
3000 -49792 ~45184 -51340  -45919 -53806 -5824% -62278 =-31037 -63112 —-30515 -62588 ~30364
4000 -67021 ~56551 -67401  -6011§ -70580 -72714 -82886 -41309 -83812 -40643 ~B83512 -40580
5000  -83937 ~70722 -84504  -70882 -86918 -83156 ~104119 -51631 -104435 -50796 -104110 -50809
6000  -99956 -84131 -101055 ~84485 -103667 ~96924 -124096 -61444 -124851 -60741 -123891 -60663
7000 -116267 ~97766 -116730 -97043 -119719 -110299 -144383 -71362 -144066 -70434 -143878 -70518
8000 -132224 -111080 -132633 -110100 ~-135674 ~-123408B -164447 -81192 ~-163502 =80010 -~163204 -80152
9000 -147717 -121786 -~148352 -1218B8 -151369 ~136257 -184143 -91028 -1B2791 -89473 -182461 -B9854

10000 -164515 -137746 -164479 -134254 -~157020 -148891 203795 -100854 -202247 -99340 -201076  -99422

o] 1713 934 1551 941 —-2520 -20004 2093 398 2822 852 3479 362
10000 -167067 -137011 ~166798 =-134167 -168974 ~149999 -206107 -101708 =204945 -100275 -205378 -100776
o] =199 -165 -122 =190 -4540 -21618 -244 =379 -54 -257 ~108 ~515

NOTES: Specimen was subseguently cycled 50 times to S000 psi without inatlation of cracks
All stresses are an pounds per square anch
Ceramic Composition: 94 percent Alumina Ceramic
Material Properties: Poisson’s Ratio 0.21, Modulus of Elasticity 41,000,000
End Closures: Steel Hemispheres

Table A-7. Stresses on cylinder C, Sheet 2.

Stresses on Ceramic Cylinder 20 in OD x 17 in L x 0.450 in T
under Short Term Pressurization

Gage Locations

|< From Interior Midbay to End B >

Pregsure G H I J
{Psi) Hoop Axial Hoop Axial Hoop Axial Hoop Axial

0 0 0 4] o] 0 o4 0 (1}
1000 ~20513 -10212 -23111 -30397 ~18617 -8994 -17272 -16285
2000 ~40107 -19370 -40250 -38014 -35819 -16911 -33013 -31861
3000 ~62378 -29951 -60994 ~47372 -56517 ~26055 -51883 -47919
4000 ~83325 ~39884 -80058 -55763 ~75482 -33973 -68899 -61783
5000 -104709 ~49951 -98452 ~-63889 -93840 -41929 -86101 -77122
6000 ~124716 -59319 -116999 ~-71966 ~112369 -49920 -102259 -91585
7000 -145317 -68975 -134969%9 ~79635 ~130348 -57631 -118703 -106436
8000 -165514 ~78464 -152107 ~87252 ~147415 -64905 ~134912 -120952
9000 -185420 -87934 -170122 -95135 ~165384 -72574 -150988 -135029

10000 -205095 -97478 -188301 -103217 -183501 -B0356 -167476 +149110

0 1415 297 ~2840 -21138 1655 266 1384 -246
10000 -20647S -98014 -190114 -103844 -185169 ~80296 -166978 -146546
o] -88 -223 -4643 -21721 -149 -318 ~-226 -293

NOTES: Specimen was subseguently cycled 50 times to 9000 pei without initiation of cracks
Ell stresses are in pounds per square inch
Ceramic Composition: 94 percent Alumina Ceramic
Material Properties: Poisson’s Ratio 0.21, Modulus of Elasticity 41,000,000
End Closures: Steel Hemispheres

A-21
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Pressure
(Pai)

0
1000
2000
3000
4000
5000
€000
7000
8000
9000

10000

0

10000

Table A-8. Strains on cylinder D.

Strains on Ceramic Cylinder 20 in OD x 30 in L x 0.685 in T
under Short Term Pressurization

Above
Separation
1

Hoop Axial

o] s}
-304 =70
-593 -142
-897 -222
-1203 -303
-1506 -384
-1807 -463
~2105 -53%
-2404 -613
~2706 -692
-3006 =772

7 10
-3003 -778

Gage Locations on Interior Surface

Edge of
Separation
2

Hoop Axial
o [+
-300 -87
-589 ~175
-893 ~274
-11%4 ~363
-1497 -468
-1795 -561
-2091 -654
~23886 ~746
~2685 ~-841
~2983 ~936
10 11
-2976 =945

Below
Separation
3
Hoop Axial
0 o]
-307 -66
-600 -135
~909 -212
-1215 ~286
-1524 -363
-1826 ~-438
-2126 -508
-2427 -578
-2731 -651
-3033 -725
6 -]
-3030 =730

NOTES: All strains are in macroinches per inch
Electric resistance strain gages are CEA-06-125WT-350, Gage Factor 2.09
Ceramic Composition: 94 percent Alumina Ceramic

End Closures:

Separation 0.150 in long x 0.02 in wide x 0.032 1n deep on interior surface

Pressure
(Psi)

¢}
1000
2000
3000
4000
5000
6000
7000
8co00
900¢
1000¢C
0
10000

NOTES: All stresses are in

Steel Hemispheres

Above
Separation

1
Hoop Axial
0 [+}
-13670 -5741
-26714 -11432
~40473 -17601
-54328 -23832
~6B053 ~30035
~81675 -36135
-95141 —-42079
-108633 -47546
-122297 -54054
—-135888 -60188
390 492
-135811 -60418

Edge of
Separation
4
Hoop Axial
0 0
~-301 -90
-585 -178
-887 -277
-1183 -372
-~1484 -471
-1778 -566
~2070 ~-658
-2363 =750
-2659 -846
-2953 -940
10 9
-2946 ~945

Table A-8. Stresses on cylinder D.

Stresses on Ceramic Cylinder 20 in OD x 30 in L x 0.685 in T

under Short Term Pressurization

Gage Locaticons on Interior Surface

Edge of
Separation
2

Hoop Axial
0 0
-13651 -6434
-26839 -12811
~-40770 -19796
~54536 -26582
-68424 ~33557
-82043  -40230
-95577 -46885
-109059 -53488
-122739 -60256
=-136376 -67015
528 562
-136157 -67338

pounds per square

Below
Separation
3

Hoop Axial
o} [a]
~13762 ~-5586
-26951 -11195%
-40898  =-17281
~54689 ~23211
-68636 -29297
-82265 -35234
~95763 -40938
~-109304 -46652
-123000 -525231
-136620 ~-5B41S
338 440
-136537 -58603

inch

Ceramic Composition: 94 percent Alumina Ceramic
Material Properties: Poisson’s Ratio 0.21, Modulus of Elasticity 41,000,000

End Closures:

Steel Hemispheres

A-22

Edge of
Separation
4
Heoop Axial
0 [s]
-13721 -6571
-26695 -12904
-40540 -~19870
~54091 -26611
~-67893 ~-33569
~81359 ~-40291
—-94712 -46868
-1l08108 -53453
-121669 -60236
-135125 -66916
510 476
-134870 -67068

Away From
Separation
5
Hoop Axial
s} 0
-264 -85
-548 -174
-848 =271
-1140 -368
-1437 ~4B5
-1732 -562
~2021 -656
-2313 =750
-2508 ~-849
-2899 -946
9 1o
-2922 -941
at midbay
Away From
Separation
5
Hoop Axial
o] Q
-12088 ~-6024
-25072 ~12399
-38813 -19262
-52211 ~26052
-65823 -32888
-79350 -39706
~g2592 -46340
-105963 -53002
-119508 -59906
-132863 -66687
476 510
-133805 -66680
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Table A-10. Acoustic emissions during hydrostatic testing of 20-inch ceramic cylinder with surface defects.

Cycles 1
Pressure

0000 0
1000 46-14
2000 82-95
3000 154-239
4000 399-469
5000 559-607
6000 640-1282

7000 1484-1811
8000 2077-2351
S000 2569-2835

10000 3057-3294

Notes: 1. Transducer:

2

14
14
15
33
42
63
150
301

468

17

30

77

364

2. Amplifier Setting:

Rate:

T

3. Recorder:
Channel "A" Events,
200 Full Range,
Channel "B" Rns,
50 MV Full Scale,
0.5 CM/Min Chart Speed

Gain:

A-23

17
25
50

135

AET AC175 SN# 7664
50 to 200 KHZ

60 DB
Threshold:
Function:
Scale: 1

5

11
28
64
97

Automatic

20

(V)] N [l

12
16

20
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APPENDIX B: DESIGN OF LARGE-
DIAMETER ALUMINA-CERAMIC
HOUSINGS-FOR 9,000 PSI SERVICE




FIGURES

B-1. Mod 1 ceramic hull cylinder assembly.

B-2. Ceramic hull cylinder.

B-3. Mod 1 ceramic hull cylinder end cap.

B-4. Ceramic hull rail (6061-T6 alloy).

B-5. Mod V ceramic hull 20-inch hemisphere.

B-6. Mod V 20-inch hemisphere end cap.

B-7. Mod 1 ceramic hull solid aluminum ring stiffener.

B-8. Ceramic hull solid titanium ring stiffener.

B-9. Ceramic hull perforated aluminum ring stifener.

B-10. Mod 1 ceramic hull perforated aluminum ring stiffener.

B-11. Mod 1 test assembly wedge clamp for fitanium stiffener.

B-12. Ceramic hull to ceramic hemisphere clamp.

B-13. Mod 1 ceramic hull wedge clamp for aluminum stiffener.

B-14. Mod 1 iest cylinder wedge clamp for metallic hemisphere.

B-15. Ceramic hull 3.25-inch connector insert for ceramic hemisphere.
B-16. Test cylinder titanium hemisphere.

B-17. Aluminum 20-inch test hemisphere.

B-18. Ceramic hull polyurethane jacket.

B-19. Typical housing assemblies with drawing numbers (single cylinder housing).

B-20. Typical housing assemblies with drawing numbers (multiple cylinder housing).
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APPENDIX B: DESIGN OF LARGE-
DIAMETER ALUMINA-CERAMIC
HOUSINGS FOR 9,000 PS| SERVICE 4

INTRODUCTION

This report has summarized the performance of
20-inch ceramic cylinders with different wall thick-
nesses, lengths, and types of defects. Based on
the experimental data generated by the testing of
the four cylinders with 20-inch OD in this program,
and 22.5- and 12-inch diameters in other pro-
grams, a set of recommendations has been drawn
up for the guidance of the engineer in designing
ceramic housings.

These recommendations, validated experimentally
on housings with 6-, 12-, and 20-inch diameters,

apply to any size that can be fabricated today by

the ceramic industry. The recommended designs
of components for 20-inch-diameter housings are
shown in appendix B, figures B-1 through B-10.

RECOMMENDATIONS

1.

Ceramic with 94-percent alumina composition
{table A-1) is well suited as a cost-effective
structural material for construction of monoco- g
que cylinders and hemispheres for external
pressure housings with guaranteed 200-cycle
fatigue life at design pressure, provided that

the maximum design membrane stress in the
ceramic component does not exceed

—136,000 psi, and the axial pressure on
plane-bearing surfaces does not exceed 7.
—68,000 psi. Increase of alumina content in

the ceramic from 94- to 96-percent will

increase the guaranteed cyclic fatigue life

beyond 200 cycles. To date, the magnitude of
improvement has not been quantified exper-
imentally.

Monocogue configuration is the preferred

shape for cylinders. it minimizes fabrication

cost and facilitates a uniform stress field along

the length of the cylinder. 9.

The hemispheres are to be provided at the

equator with a cylindrical nm and at the pole 10.

with a reinforcement around the penetration to

prevent maximum design stress from exceed-
ing —136,000 psi.

To achieve the guaranteed 200-cycles fatigue
life, the ends of the monocoque cylinders
must be bonded with epoxy to Mcd 1 end
caps, preferably fabricated from the corrosion-
resistant titanium alloy Ti-6Al-4V, or, as a
second choice, from high-strength aluminum
7178-T6 or 7075-T6 alloys. These aluminum
alloys perform well, but only in applications
where the housing 1s taken apart after each
dive and flushed with tap water. The thickness
of epoxy interlayer underneath the ceramic
plane-bearing surface must be controlied
within the 0.005- to 0.015-inch range. The
adhesive and its application is described in
appendix A, Bonding Procedure.

The Mod 1 end cap is defined by the height of
the twin circular flanges. In order to be effec-
five in reduction of tensile radial stress on the
ceramic plane-bearing surface and the
associated extension of its cyclic fatigue life,
the height (h) of the flange must be <2.7 %,
where t is the thickness of the ceramic cylin-
der.

The sealing of Mod 1 end caps can be
achieved in several ways. All of the methods
shown in figure 58 have been tried and were
found to be acceptable. The boot seal design
utilizes a lighter, less expensive configuration
of the Mod 1 end cap.

To provide ceramic hemispheres with the
same guaranteed fatigue life as the ceramic
cylinders, the thickness of their cylindrical rim
at the equator must match that of the cylinder
and also must be adhesive bonded to Mod 1
end caps.

The entire payload inside the cylinder must be
attached to a framework supported by, and
fastened to, the ears on Mod 1 end caps.

The preferred technique for fastening hemi-
spheres to cylinders is by spiit wedge bands.

All penetrations should be located in the hemi-
spheres.
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11.

12.

13.

The dimensions of the monocoque cylinder
for 9,000-psi design pressure with an S.F.
of 1.5 based on buckling and S.F. of 2.2 on
material strength are t/D, = 0.034 and

L/Dg = 1.5. The W/D of such a cylinder
equipped with Mod 1 end caps is 0.5.

The length of the cylindrical housing may be
extended by incorporating additional cylinder
sections that are supported and joined by
intermediate circular joint ring stiffeners fabri-
cated from titanium or aluminum.

The quality control (QC) for all ceramic com-
ponents must include, as a minimum:

a. Dimensional check
b. Dye penetrant inspection

¢. Ultrasonic NDT, consisting of a C scan per-
formed at a 0.01-inch index rate for detec-
tion and location of inclusions =0.030 inch.
Indications of =0.05 of an inch shall be
X-rayed. Presence of inclusions >0.03 inch
located within 0.1 of an inch of the plane-
bearing surface, or inclusions >0.1 of an
inch anywhere in the ceramic component
shall be the cause for its rejection.

Recommended Bonding Procedure:

1.

Sand interior of end cap flanges with 80 grit
paper.

Clean with methyl ethyl ketone, or equivalent
solvent.

Etch interior surface of titanium end cap for
30 minutes by brushing on: SEMCO PASA-
GEL 107 sand, or sandblast interior surface of
aluminum end cap.

Wash off etching compound with tap water
and arr dry (a forced-air heater is acceptable).

Turn the end cap upside down, place iton a
table, and spray all the exterior surfaces with
a mold release to make subseguent removal
of spilled epoxy easier (DEVCON Silicon Type
Liquid Release Agent does an excellent job).

Mix components of epoxy (100 parts resin
CIBA Ceigy 610 and 70 parts hardener CIBA

10.

11.

12.

13.

B-4

Geigy 283), degas by applying vacuum for
30 minutes, and pour the mixture into the end
cap space, filling it to a depth of approxi-
mately 0.25 of an inch.

Cut a cardboard gasket with same OD and ID
as cylinder from 0.01-inch-thick 125-pound-
weight cellulose file-folder material. Subse-
quently divide the gasket into approximately
1-inch-wide segments (instead of cutting the
gasket into segments, one may punch
0.25-inch-diameter holes into the gasket cent-
erline at 1-inch intervals).

Place gasket segments on top of the epoxy
layer inside the end cap on approximately
1.250-inch centers (i.e., width of space
between segments is equal to to approxi-
mately 0.25 inches).

Push the individual gasket segments into the
layer of epoxy with a pointed rod until they are
totally submerged and come 1o rest on the
bottom of the end cap.

Place pencil marks around the exterior sur-
face of the cylinder 2 inches away from its
end.

Pour additional epoxy mixture into the end
cap until the depth of epoxy reaches 0.5 of an
inch.

Insert the ceramic cylinder vertically into the
epoxy-filled end cap, gently forcing the cylin-
der downward until the pencil marks are
barely visible above the edge of the end cap.
In some cases, if the cylinder becomes
wedged in an inclined position, rock the upper
end of the cylinder from side to side while
applying over 100 pounds of downward force
to free the lower end of the cylinder.

After the seating is completed, immediately
inspect the condition of the end cap. If in
some places the epoxy level inside the annu-
lar spaces did not reach the top of the end
cap, additional epoxy should be injected at
those locations into the annular space with a
syringe until the epoxy overflows.
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14. Place a 24-inch by 24-inch by 1-inch plywood
panel on top of the cylinder and load it with
weights totaling at least 100 pounds. Do not
disturb the setup for about 6 hours at 70°F
ambient temperature.

15. After 6 to 8 hours, remove the weight, turn the
cylinder over, and remove all the surplus
epoxy from the exterior surfaces of the end
cap while the epoxy is still soft and easy to
remove. Place the cylinder into its original
position and let the epoxy harden overnight in
the end cap.

16. Repeat the procedure on the other end of the
cylinder.

PROVEN DESIGN FOR 20-INCH-DIAMETER
HOUSING ASSEMBLIES

The extensive testing performed in the present and
preceding 20-inch-diameter ceramic housing pro-
grams, as well as on the early 12-inch-diameter
programs, generated sufficient test data to allow
the formuiation of designs for 20-inch-diameter
housing assemblies whose structural performance
can be considered qualified for service to 8,000 psi
with a guaranteed minimum 200-cycle fatigue life.

The recommended designs of components for the
20-inch housing assemblies allow the engineer to
configure the housing assembly to meet budgetary
and operational requirements. The engineer can
increase the buoyancy of the housing assembly by
increasing the number of cylindrical sections from
one to two-or-more sections, and by using ceramic
instead of titanium hemispherical butkheads. Some
minor increases in buoyancy and a major reduction
in cost also can be achieved by substituting alumi-
num for titanium in the end caps and joint stiffen-
ers.

In general, high-strength aluminum alloys may be
substituted in the fabrication of end caps, stiffen-
ers, and even hemispheres if the operational sce-
nario for the underwater vehicles calls for only brief
submersion (i.e., <24 hours) followed by disas-
sembly and thorough rinsing in tap water. In
applications where the submersion is iong, or brief,

but without subseguent rinsing, titanium must be
used.

The dimensions of end caps remain the same
regardless of whether they are to be fabricated
from aluminum or titanium (figures B-3 and B-6).
This is not the case with ring stiffeners (figures
B-7, B-8, B-9, and B-10) or hemispherical bulk-
heads (figure B-16). Their dimensions vary to com-
pensate for the difference in the modulus of
elasticity for these materials.

Maximum buoyancy of the cylindrical housing
assembly is achieved by using the lighter, but more
expensive, ceramic hemispherical bulkheads and
the lighter and cheaper, but less corrosion-resis-
tant, aluminum end caps and joint stiffeners.

Minimum acquisition cost of the housing assembly
is achieved by using the less corrosion resistant,
but less expensive, aluminum hemispherical bulk-
heads, end caps, and joint stiffeners.

Maximum buoyancy at lowest lifetime cost is
achieved by using the lighter, but more expensive,
ceramic hemispherical bulkheads and the heavier
and more expensive, but more corrosion-resistant,
titanium end caps and joint stiffeners.

Some further savings in weight can be achieved by
using joint stiffener rings with holes drilied through
their webs. These holes also are useful as con-
duits for electric cables and hydraulic lines con-
necting payload components situated in different
cylinder sections of the housing assembly.
Because the holes reduce the iocad-carrying ability
of joint stiffener rings, their use is not recom-
mended in housing assembilies with more than two
cylinder sections.

Further savings in weight can be generated by
reducing the wall thickness of the cylinder at
midbay. This, however, requires a reduction in
length of individual cylinder sections to maintain
the specified minimum S.F. of 1.5 based on buck-
ling. Thus, cylinders with t = 0.585 inch and

L = 22 inch equipped at ends with 2-inch-wide ring
stiffeners of 0.685-inch thickness provide a W/D of
0.43. Cylinders with t = 0.455 inch and L = 15 inch
equipped at ends with 2-inch-long ring stiffeners of
0.455-inch thickness provide a W/D of 0.36.
Because of significant reduction in cyclhic fatigue

B-5
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life associated with this type of cylinder design,
they are recommended only for applications where
the specified fatigue life is less than 10 cycles.

To aid the engineer in selecting components for the
20-inch-diameter housing assemblies, their

designs are shown in figures B-1 through B-18 and
their drawing number references shown in figures
B-19 and B-20. When properly assembled, these
housings have a guaranteed fatigue life in excess
of 200 dives to design depth.
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