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SUMMARY

REQUIREMENT

There is a continuous need for deep-submergence

unmanned underwater vehicles (UUVs) in the
search, salvage, exploration, and surveillance of
the ocean floor. These vehicles require pressure-
resistant housings, or complete pressure-resistant
hulls to provide a dry, one-atmosphere environ-
ment to onboard equipment such as electronics
and batteries. To maintain neutral buoyancy while
submerged, the pressure-resistant hulis must be
light enough to provide excess positive buoyancy
that will compensate for the in-water weight of
vehicle hardware. Maximum pressure hull buoy-
ancy is achieved by fabricating the hulls with struc-
tural materials that have high values of specific
compressive strength and specific elastic modulus
(reference 7).

APPROACH

Of the available structural materials for pressure
hull fabrication, ceramic materials possess the
highest values of specific strength and modulus.
A study of commercially available ceramic com-
positions reveals that 96-percent aluminum oxide
ceramic (alumina) is currently the best candidate
for the design of UUV pressure-resistant enclo-
sures. Alumina has excellent structural prop-
erties, its raw material costs are low, and its
fabrication technology has been adequately devel-
oped to allow manufacture of large cylindrical and

hemispherical hull components with minimum risk.
To demonstrate the capability of alumina ceramic
for pressure hull applications, a 26-inch outer
diameter (OD) by 91-inch-fong cylindrical pressure
housing assembly was designed for a service
depth of 20,000 feet (9,000 psi), assembled, and
subjected to a rigorous pressure-testing program.
Testing of the 26-inch-OD housing was to include
a proof test to an external pressure of 10,000 psi
(1.1 times the design operating pressure) and

500 external pressure cycles to 9,000 psi.

RESULTS

All three major alumina ceramic subassemblies
{the cylindrical hull and its forward and aft hemi-
spherical end closures) survived proof tests to
10,000-psi external pressure. The alumina hemi-
spherical end closures designed for the 26-inch-
OD pressure housing also have demonstrated the
capability to survive 500 external pressure cycles
to design depth without catastrophic failure. Suc-
cessful completion of such a high number of dive
cycles ensures that large ceramic housings can be
constructed which provide an adequate safety
margin against failure by fatigue. The 26-inch-OD
housing assembiy has a dry weight of 876 pounds
while displacing 1,496 pounds of seawater when
submerged, resulting in a net lift of 620 pounds
(weight/displacement=.585). This represents a
three-fold increase in lift over a titanium rib-
stiffened pressure housing designed to the same
operational requirements (identical external dimen-
sions and design depth).
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INTRODUCTION

This report documents the fabrication, inspection,
assembly, and pressure testing performed in sup-
port of a 26-inch outer diameter (OD) by 91-inch-
long ceramic pressure housing designed at the
Naval Command, Control and Ocean Surveillance
Center (NCCOSC), RDT&E Division (NRaD). The
26-inch-OD housing is one of two large housings
1o be designed and tested by NRaD. The second
pressure housing will be a 33-inch-OD by 113-inch-
long assembly.

This is the fifth of six reports documenting NRaD’s
investigation into using alumina ceramic hulls for
large external pressure housings on unmanned
underwater vehicles (UUVs). Two of these reports
explore metallic joint ring design and bonding tech-
niques for ceramic external pressure housings (ref-
erences 2 and 3). Documentation of the design
and structural analysis performed for the 26-inch-
OD and 33-inch-OD housings along with engineer-
ing drawings for each of the housing components
is covered in a third report (reference 1). A fourth
report presents findings of external pressure tests
performed on a half-scale model of the 26-inch-OD
housing (reference 16). The final report of this
series covers results of pressure testing of the
33-inch~-0OD alumina-ceramic pressure housing
assembly (reference 5).

The outstanding benefit of using ceramic mate-
rials fike alumina in the construction of pressure-
resistant hulls for UUVs lies in the low housing
weight-to-displacement (W/D) ratios that can be
obtained. A lower W/D ratio implies that the pres-
sure housing will provide increased buoyancy to
the vehicle assembly, allowing the system to be
designed for optimal performance. Lower W/D
ratios are achievable with ceramic materials
because of their excellent specific compressive
strengths and specific elastic modulus when
compared to other hull material candidates such as
fitanium. The calculated W/D ratic of the 26-inch
housing is 0.585, based on a dry structural weight
of 876 pounds and a displacement in seawater of
1,496 pounds. Thus, the ceramic 26-inch housing
provides a net lift of 620 pounds to a UUV system,

which is approximately three times the lift obtained
from an equivalent rib-stiffened titanium 26-inch
housing designed to the same operational require-
ments (reference 1).

The 26-inch-OD housing represents part of the fifth
generation of ceramic housings designed and
tested at NRaD to demonstrate the feasibility of
constructing pressure-resistant housings for deep-
submergence applications with alumina ceramic as
the primary structural material. Each generation of
housings has evolved by fabricating progressively
larger ceramic hull components (references 12
through 16). The 26-inch-OD and 33-inch-OD
housings represent the largest ceramic underwater

~housings that have been assembled and pressure
tested to date. Each housing is capable of acting
as a dry one-atmosphere enclosure for batteries
and electronics for UUVs with depth capabilities to
20,000 feet.

The objective of the development of the 26-inch-
OD housing was to show that large alumina-
ceramic housings will perform safely and reliably
while exceeding the performance of traditional
metallic enclosures. The foliowing issues had to
be addressed to demonstrate the feasibility of
large ceramic external pressure housings:

+ Fabricate large alumina hull components
that possessed the structural integrity
required for UUV pressure housings

¢ Qualify methods of assuring quality control
of large alumina hull components using non-
destructive evaluation (NDE) techniques

e Establish acceptability criteria for defects in
alumina pressure hull components

» Incorporate design concepts from earlier-
generation prototype housings into full-scale
housings

« Develop procedures for assembling a large
ceramic housing with adhesively bonded
metallic joint rings

These issues, as well as the results of the pres-
sure tests and post service inspection performed
on the 26-inch-OD ceramic housing assembly are
addressed in the various sections of this report.
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FABRICATION

ALUMINA-CERAMIC COMPONENTS

The ceramic cylinders and hemispheres used as
the main hull components of the 26-inch housings
were fabricated by WESGO, Inc. of Beimont, CA,
using their alumina-ceramic composition AL-600.
AL-600 consists of 96-percent alumina (aluminum
oxide) crystals with an average grain size of

8 microns. The remaining 4 percent of the ceramic
body consists of additives that aid in bonding the
aluminum oxide crystals together. These binders
are primarily oxides of silicon, calcium, and mag-
nesium. AL-600 was selected over other alumina
compositions because it offered the best tradeoff
between mechanical properties and the capacity to
be economically fabricated into large hull shapes.
Table 11 compares the properties of AL-600 with
other alumina compositions available from
WESGO. Figure 1 shows manufacturing methods
that have been developed for fabricating parts from
alumina ceramic. The path indicated by the dashed
line outlines the steps used to fabricate the alu-
mina components for the 26-inch housing.

The 26-inch housing consisted of two alumina cyi-
inders for the cylindrical portion of the hull with alu-
mina hemispherical bulkheads as aft and forward
end closures. Both cylinders had a 25-inch OD,
0.90-inch-thick walls, and a 31.90-inch length (per
drawing 55910-0127544 shown in figure 2). The
Type 4 and Type 6 alumina hemispheres used as
end closures also had 25-inch ODs at their equato-
rial skirts (per drawings 55910-0127649 and
55910-0127755 shown in figures 3 and 4). All four
of these components were fabricated by isostatic
pressing. The first step of this process is the alu-
mina powder preparation where alumina particles,
binders, and water are milled together to create a
well-blended slurry. A spray dryer is used to atom-
ize the slurry to create uniform, free-flowing pow-
der agglomerates consisting of spherical particles
of alumina and binders. This agglomerate is
screened for the desired particle size, and the

1Figures and tables are placed at the end of the text.

resulting material is referred to as processed alu-
mina powder.

The next step in fabricating alumina hull compo-
nents is to transform the processed alumina pow-
der into a green body {green compact) by forming
the powder into shapes using isostatic pressing.
Isostatic pressing involves filling a mold (as shown
in figure 5 for the 25-inch-OD cylinders) with pro-
cessed alumina powder and applying uniform
external pressure to the mold in a hydrostatic pres-
sure chamber. The isostatic pressing mold has a
lubricated internal steel mandrel and an outer flex-
ible elastomeric bag (isobag) with accessory hard-
ware for sealing and handling the mold during
pressing. Figure 6 shows the mold with alumina
powder encased as it is being lowered into a
hydrostatic pressure chamber for isostatic
pressing. The isostatic pressing was performed at
the Arctic Submarine Laboratory (ASL) of the
Naval Undersea Warfare Center Division, Keyport,
WA. This ASL pressure chamber is routinely used
by the industry for isostatic pressing of large
ceramic components.

Once inside the chamber, the mold assembly is
slowly pressurized to a maximum pressure of
10,000 psi, held for a period of 10 to 20 minutes,
and then gradually decompressed. The isostatic
pressing process was selected over other forming
methods to compact alumina powder. Other
methods such as slip casting and extrusion were
inappropriate because of their size and thickness
limitations. Additionally, the uniform compaction
associated with isostatic pressing resuits in fin-
ished parts that have more reliable material prop-
erties than obtainable from these alternative
forming techniques. After the isostatic pressing is
completed, the mold is taken from the pressure
chamber, the isobag is removed, and the green
body is slid off the lubricated steel mandrel
(figures 7 and 8). At this point, the green body is
ready 1o be transported for green machining
(fig-ure 8). Figure 10 shows the mold used to form
25-inch-OD hemispheres used for the 26-inch
housing, while figure 11 shows a green body for a
25-inch-OD hemisphere after isostatic pressing
has been completed. Both the forward and aft
head hemisphere designs were fabricated using
the same isostatic pressing mold.
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Green machining is performed on each of the
green bodies after pressing to remove excess
material or to create design features that could not
be introduced during the forming process. Material
removal is more easily accomplished when the
ceramic body is in the green state than after it has
been fired. After each part is green machined, it is
then ready to be fired (sintered) in a kiln. Sintering
the green body results in consolidation of the
ceramic body to achieve the physical and mechan-
ical properties of the finished part. This consolida-
tion process results in net shrinkage of the ceramic
body by between 15 and 20 percent requiring spe-
cial care in handling the ceramic component during
firing to minimize distortion.

After the parts have been fired, machining to fin-
ished dimensions is performed by diamond grind-
ing. A diamond grinding wheel is metallic with
diamond grit embedded on its surface, with a soft
metal or organic resin matrix. The parameters
involved in diamond grinding such as infeed rate,
wheel speed, coolant type, grit size, and con-
centration are critical to achieving the desired sur-
face finish with a minimum amount of subsurface
damage (reference 9). The following table lists the
grinding procedures used by WESGO to finish the
alumina components used in the 26-inch-housing
assembly:

were used to finish grind the axial bearing surfaces
of each of the alumina hull components.

Each step of fabrication has risks. Manufacture of
low quantities of unique ceramic parts, as used in
the 26-inch housing, typically requires that extra
parts be isostatically pressed to provide a safety
margin against problems that may arise during fab-
rication. Four cylinders were pressed io yield the
two finished parts required for the 26-inch-housing
assembly. Similarly, eight hemispheres were iso-
statically pressed to yield the two hemispherical
end closures needed.

Mechanical and physical properties for each of the
delivered 26-inch-housing alumina-ceramic AL-600
components were generated through tests per-
formed on material specimens taken from each
part, or from specimens co-processed with each
part, from the identical alumina powder lot. These
tests were used to measure compressive elastic
modulus, compressive strength, flexural strength,
Weibull Modulus, and density. A summary of the
average values for each of the parameters is pres-
ented below for the 25-inch-OD cylinders (part
numbers 544-3 and 544-4) and the 25-inch-OD
hemispheres (649-4 and 755-4). More detailed
results of these tests are presented in appendix A.

Cylinder Part 544-3 544-4
ltem Roughing Finishing Number
Parameters Parameters compressive 48.87 Mpsi 48.68 Mpsi
Material to 1.0inch 0.01 to 0.02 inch modulus
Removal compressive 387.3 kpsi 412.9 kpsi
Infeed Rate (in) 0.0005 - 0.001 0.0005 - 0.001 strength
Wheel Surface 4,000 fpm 4,000 fpm flexural strength 43.5 kpsi 43.6 kpsi
Speed Weibull Modulus 29 28
Coolant Water-base Water-base : —3 —3
lubricant, lubricant, density 0.136 Ib/in 0.136 Ib/in
sprayed, filtered | sprayed, filtered Hemisphere 649-4 755-4
Wheel Type metal bonded resin bonded Part Number
diamond diamond compressive 45.41 Mpsi 48.26 Mpsi
Grit Size 100 180 - 320 modulus _ ' _
Concentration 75-100 75 -100 gfr?.f rgf sive 409.3 kpsi 359.7 kpsi
(%) S
fiexural strength 50.3 kpsi 50.3 kpsi
. - . \ Weibuli Modulfus 18 19
Wheels of 180 grit were used to finish grind all cir- . — —
cumferential surfaces, while wheels of 320 grit density 0.135 Ibfin 0.136 Ibfin
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Compressive elastic modulus was determined
using pulse-echo techniques on eight specimens
for each part. Uniaxial compressive strength mea-
surements were performed using ten 1/4-inch-
diameter by 1/2-inch-long cylindrical specimens for
each part. Flexural strength measurements were
performed by subjecting twenty 2-inch-long by 1/4-
inch-wide by 1/8-inch-deep chamfered specimens
for each part to four-point bending. Weibull Modu-
lus was based on flexural strength specimen data.
The density of AL-600 ceramic was determined
acoustically with the same eight specimens for
each part used to determine the compressive
modulus.

METALLIC COMPONENTS

In addition to the 96-percent alumina-ceramic
hulls, the other primary structural components
used in the assembly of the 26-inch housing were
the titanium end-cap joint rings and the fitanium
central-stiffener joint ring used at the interface
between adjacent ceramic sections. Engineering
drawings of each of the three joint rings used in the
26-inch-housing assembly are shown in figures 12,
13, and 14. Figure 15 shows the titanium alloy
Ti-B6Al-4V rolled ring forgings from which the end
caps and central stiffener for the 26-inch housing
were machined. Typical values of 167,000 psi and
158,000 psi for the ultimate tensile strength and
yield strength were reported for these forgings.
Figure 16 shows a single rolled ring forging being
rough machined into an end-cap joint ring for one
of the 26-inch-housing alumina hemispherical end
closures.

Prior to joint ring finish machining, fixtures were
used to weld ears to the inner flange of each cylin-
der end-cap joint ring (figure 17). Electron beam
welding was used where possible to minimize dis-
tortion in the finished rings. The ears provided a
means of mounting internal hardware such as pre-
tensioned tie rods and payload rails. Figure 18
shows a cylinder end-cap joint ring after final
machining. Figure 19 shows the central stiffener
used to join the two 25-inch-OD alumina cylinders
together to construct the cylindrical hull portion of
the 26-inch housing.

In order that each of the major subassemblies of
the 26-inch housing (cylindrical hull section and
two hemispherical end closures) could be proof
tested separately, two steel alloy hemispheres
were designed to be interchangeable with the
alumina-ceramic hemispherical end closures.
These hemispheres were fabricated from the 4340
steel alloy billets shown in figure 20. The hemi-
spheres were rough machined prior to welding a
liting lug into place. After welding, each hemi-
sphere was heat treated to achieve a minimum
ultimate tensile strength of 180,000 psi and then
was finished machined. A completed steel hemi-
spherical end closure is shown in figure 21.

The Type 6 alumina-ceramic hemispherical end
closure used as the forward head of the 26-inch
housing contains six ports, each consisting of a
through hole in the ceramic shell fitted with a tita-
nium insert. Inserts for two of these ports contain
military straight threads for pressure-relief valves.
The penetrations for the remaining four ports con-
tain 1.500-12UNF-2B threads for electrical connec-
tors or electrical feed-throughs. The pressure-
relief valve ports and elecirical connector ports
were achieved via assembly of the hardware as
shown in figures 22 and 23. The bottom row of
components in figure 22 shows the pressure-relief
valve insert piece parts both individually and
assembled together. The top row of figure 22
shows plugs that mate with the pressure-relief
valve ports that were used during pressure testing.
The bottom row of figure 23 shows the individual
components used to provide the threaded ports for
electrical connectors and feed-throughs in the for-
ward head end closure. The top row of figure 23
shows the assembled insert piece parts together,
along with both a plug and strain-gage-wire feed
through that mate with the electrical connector
insert assembly.

All titanium insert components were machined
from Ti-6Al-4V alloy bar stock, while mating plugs
and feed-throughs were machined from corrosion-
resistant steel alloys (type 303 or type 17-4PH).
The washer and spacer used to isolate the sur-
faces of the titanium insert from the alumina sheli
were machined from laminated sheets of cotton-
fabric reinforced phenolic.
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COMPOSITE COMPONENTS

In addition to using ceramic and metallic compo-
nents to construct the 26-inch-housing assemblies,
composite materials also were utilized to fabricate
an external fairing to protect the ceramic hull com-
ponents against impact and to fabricate bearing-
surface gaskets to protect the ends of the ceramic
hull sections. Figure 24 shows the fairing compo-
nents used to protect both the cylindrical section
and the forward and aft head end closures for the
26-inch-housing assembly. The fairing compo-
nents were fabricated from a prepreg cloth woven
with Spectra, an extended ultra-high molecular-
weight polyethylene fiber developed by Allied Sig-
nal, Inc. Fabrication was performed by Advanced
Composite Technologies of Sparks, Nevada via
hand lay up of prepreg cloth (Spectra 1000PT/
RS-1, fabric style 985) on a hard mold. The lay up
for each part was then vacuum bagged and cured
in an autoclave. Typical average mechanical prop-
erties for this material as determined from test
specimens co-processed with the fairing compo-
nents are as follows:

compressive strength: 8.1 kpsi
tensile strength: 60 kpsi
tensile moduius: 2.4 Mpsi
flexural strength: 21.3 kpsi
flexural modulus: 2.4 Mpsi

Annular gaskets machined from autoclave consoli-
dated panels of graphite fiber-reinforced (GFR)
poly-ether-ether-ketone (PEEK) matrix composite
were to serve as gaskets for protection of the axial
bearing surfaces of the 26-inch-housing alumina
hull components. Each consolidated pane! used to
fabricate the bearing-surface gaskets consisted of
eight plies (0/90) of prepreg cloth (APC-2/AS4
matrix and fiber) resulting in a 0.040-inch-thick
part.

PRE-SERVICE QUALITY CONTROL OF
ALUMINA-CERAMIC COMPONENTS

DIMENSIONAL INSPECTION

After fabrication of each of the 26-inch-OD housing
alumina hull components, a rigorous inspection

procedure was developed to ensure the quality.
This inspection involved a complete comparison of
each part against the dimensions and tolerances
specified on the engineering drawing. In addition,
both surface and volumetric inspection techniques
were employed to detect flaws or defects that
could affect the structural performance of the
26-inch-housing assembly.

The dimensional inspection data sheets for each of
the 26-inch-housing alumina hull components are
presented in appendix B. Of specific interest are
the very tight dimensional tolerances and excellent
surface finishes that can be achieved by diamond
grinding. The range in tolerance for the outer
diameter and wall thickness of each of the cylin-
ders ranged around plus or minus 0.002 inch which
exceeds the tolerances specified on the engineer-
ing drawing for these parts. Similar tolerances
were obtained for the alumina hemispherical com-
ponents used for the forward and aft head assem-
blies.

The surface finish called out on the engineering
drawing for the axial bearing surfaces of the cylin-
ders and hemispheres was specified as 16 micro-
inches. Inspection of the dimensional data sheets
for these parts reveals that the surface finish
ranged from 5 to 14 microinches as measured with
a diamond stylus indicator. In addition to the finish
inspection of each component, a visual inspection
using liquid dye penetrant was performed to
inspect the surface for defects such as cracks,
blister, holes, porous areas, or inclusions. The
alumina-ceramic components also were visually
inspected to ensure that the surface of each part
was uniform in color and texture, and was free of
any adherent foreign particles.

NONDESTRUCTIVE EVALUATION

In order to inspect each ceramic component for
internal flaws, a rigorous NDE plan was developed
using both ultrasonic and radiograph techniques.
Witness standards were used for calibrating ultra-
sonic equipment in order to inspect the 26-inch-
housing ceramic parts procured from WESGO.
The engineering drawing used to fabricate these
standards is shown in figure 25. Each standard

is fabricated from the same 96-percent alumina
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composition (AL-600) used for each of the ceramic
hull components. Controlied flaws were introduced
into these standards by placing pore-forming mate-
rials into the processed alumina powder prior to
isostatic pressing. Pore-forming materials such as
sugar, nylon, and polyethylene were selected that
would pyrolize during sintering and leave an inter-
nal cavity of known size, shape, and location.

These witness standards were mounted in a fixture
(figure 26) as shown in figure 27. This assembly
then could be used for calibrating the ultrasonic
equipment. A typical ultrasonic C-scan of a single
witness standard is shown in figure 28 for calibra-
tion standard SK9402-093-C2 (0.030 pores scat-
tered over approximately half the length of the
standard). The original procedures for NDE of the
26-inch-housing alumina components were as
follows:

1. Ultrasonic equipment shall be calibrated to
detect the inclusions present in the 0.030-inch
pore-calibration standard SK9402-093-C2
with & pulse-echo longitudinal wave C-scan.
Scanning of the 0.030-inch pore-calibration
standard shall be done at both a 0.010-inch
and a 0.030-inch index. If the 0.030-inch
index scan detects all 0.030-inch pores as
indicated by the 0.010-inch index scan, then
the 0.030-inch index shall be used for all sub-
sequent inspections of the 26-inch-housing
ceramic components. A pulse-echo longitudi-
nal wave C-scan recording of the 0.030-inch
pore-calibration standard with a description of
equipment and settings used shall be pro-
vided with the final NDE report for each part.
Using the settings and index determined
above, a pulse-echo longitudinal wave C-scan
inspection shall be performed on each of the
26-inch-housing ceramic components.

A-scan recordings of all internal indications on
the order of 0.030 inch or larger shall be pro-
vided. Any indications larger than 0.030 inch
shall be reinspected using either the 0.050-
inch pore-calibration standard SK9402-093-
E2 or the 0.100-inch pore-calibration standard
SK9402-093-F2 as required to determine the
approximate size of the flaw. The locations of
all indications on the order of 0.050 inch or

larger shall be marked on the exterior surface
of the ceramic part to aid all further NDE. Any
indications determined to be on the order of
0.050 inch or larger shall be subsequently
radiographed to further characterize the
shape and location of the flaw. All radiograph
film shall be included with A-scans and
C-scans in the final NDE report for each
ceramic part.

2. A +45 degree angle beam circumferential
shear wave C-scan inspection shall be per-
formed on each of the 26-inch-housing
ceramic components based on the index and
settings obtained from calibration with stan-
dard SK9402-093-C2. A shear wave C-scan
recording of the calibration standard
SK9402-093-C2 with equipment and settings
used shall be provided with the final NDE
report for each part. Any subsurface indica-
tion on the order of 0.050 inch or larger shall
be radiographed. A —45 degree angle-beam
circumferential shear wave C-scan shall be
performed on the 26-inch-housing ceramic
components. All new indications on the order
of 0.050 inch or larger shall be radiographed.
C-scans and radiographs, if required from
both shear wave inspections, shall be
included in the final NDE report for each part.

The intent of performing pulse-echo shear wave
C-scans in addition to the pulse-echo longitudinal
C-scan was to aid in detecting near-surface flaws
that might be missed by the longitudinal scan.
After inspection of the first 25-inch-OD ceramic
cylinder (part 544-3) it was determined that the
longitudinal C-scan was able to detect all internal
flaws that existed, including the near-surface flaws
that were present. In addition, it was decided that
subsequent inspection of parts would be per-
formed after each part had been rough finished
only. This would eliminate investing time and
resources in finish grinding a part that might later
be rejected because of internal defects. Inspecting
rough-ground parts eliminated the need for near-
surface flaw detection via shear wave C-scans
since the near surface was to be removed later in
final grinding. Consequently, the second
25-inch-0D cylinder (part 544-4) and both
25-inch-OD ceramic hemispheres used for end
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closures were ultrasonically inspected using a
pulse-echo longitudinal C-scan only.

Ultrasonic inspection of the first 25-inch-OD alu-
mina cylinder (part 544-3) detected the presence
of 13 internal pores on the order of 0.030 inch or
larger Three of these voids (UT-1, UT-3, UT-13)
were approximately 0.050 inch in size. The depths
of these three flaws varied as determined from
A-scans generated for each flaw. UT-1 occurred at
a depth of 0.130 inch from the part OD, UT-3
occurred at a depth of 0.750 inch from the part
OD, and UT-13 occurred at a depth of 0.335 inch
from the part OD. All of the ultrasonic inspections
were performed at Sonic Testing and Engineering,
Inc. of Southgate, California by immersing the
ceramic components individually in a large water-
filled tank.

Ultrasonic inspection of the second 25-inch-OD
alumina cylinder (part 544-4) detected four internal
voids on the order of 0.030 inch or larger. One of
these defects (UT-4) appeared to be slightly larger
than 0.050 inch and was located at a depth of
0.447 inch from the part OD.

Ultrasonic inspection of the Type 4 and Type 6
25-inch-OD hemispheres (parts 649-4 and 755-4)
did not reveal any internal discontinuities greater
than 0.030 inch, and, consequently, both parts
were accepted for assembly without subjecting
them to radiography. Radiographs taken of all
indications on the order of 0.050 inch in size found
in the two cylinders showed these flaws to be inter-
nal pores, and, as a result, both cylinders were
accepted. The internal pores found most likely
resulted from impurities that existed in the pro-
cessed alumina powder prior to isostatic pressing
of each part.

ASSEMBLY

CYLINDRICAL HULL. SECTION

The cylindrical hull section consists of two
25-inch-OD alumina cylinder bays joined by a tita-
nium central-stiffener joint ring. Remaining cylin-
der ends are encapsulated with titanium end-cap
joint rings. Eight tie rods and two payload rails are
mounted internally, and the exterior of the hull is

covered with a composite fairing for impact protec-
tion. The assembly drawing of the 26-inch-housing
cylindrical hull is shown in figure 29.

Various simple fixtures were designed to aid in the
assembly of the 26-inch-housing cylindrical hull as
shown in drawing SK9402-099 (figure 30). The
fixtures and cradles are shown in figures 31

and 32. The assembiy of the 26-inch-housing
cylindrical section was performed in six steps.

The first step involved bonding GFR PEEK com-
posite gaskets to the axial bearing surfaces of
each alumina cylinder. Prior to bonding, the sur-
faces of the composite gasket and the bearing
surfaces of the cylinder were cleaned with methyl
ethyl ketone (MEK). A composite gasket was then
centered on a cylinder end with the aid of the fix-
ture SK9402-099-10 (figure 30). The interface
between the gasket and the QD of the cylinder
was sealed with five-minute epoxy and allowed to
dry. Fixture S8K9402-099-10 was removed, and the
interface between the gasket and the ID of the
cylinder was sealed with five-minute epoxy. This
process was completed for both ends of each of
the two alumina cylinders.

The second step involved bonding the central-
stiffener joint ring to one end of the alumina cylin-
der used for the first bay. Figure 33 shows the first
cylinder being lowered into the U-shaped epoxy-
filled gland in the central-stiffener joint ring. The
other end of the cylinder was protected during this
step by a dry fit of one of the titanium end-cap joint
rings. The U-shaped gland of the central stiffener
was depassivated and cleaned with MEK before
assembly. Exterior surfaces of the central stiffener
then were coated with a layer of silicone-based
mold release to aid in the cleanup of excess epoxy
after bonding had been completed. A mixture of
100 parts CIBA GEIGY 6010 epoxy resin and 70
parts CIBA GEIGY 283 hardener was degassed in
a vacuum chamber. The U-shaped gland in the
central stiffener was partially filled with the epoxy
mixture and centered on an aluminum base plate,
SK8402-099-1 (figure 30), with the aid of a wooden
center, SK9402-099-4 (figure 30).

Once the first bay cylinder had been lowered into
the epoxy-filied gland of the central stiffener, an
aluminum plate, SK9402-098-2 (figure 30), with
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wooden center, SK8402-099-5 (figure 30), was
placed on top of the cylinder. This subassembly
was clamped together with four external tie rods,
SK9402-099-8 (figure 30), as shown in figure 34.
The clamping force applied to the fixtures assured
that the assembled cylinder was completely
aligned and seated in the central-stiffener joint ring
gland. Excess epoxy that extruded from the joint
ring during this step can be seen in figure 34. This
excess epoxy was easily cleaned from the exterior
surfaces of the joint ring once the epoxy had par-
tially cured over a period of 24 hours. After the
epoxy had fully cured, a bead of room-temperature
vulcanizing (RTV) sealant was applied to the
edges of the central stiffener to prevent water
intrusion into the cylinder/joint-ring bond during
pressure testing.

The third step involved bonding a titanium end-cap
joint ring to the remaining end of the alumina cylin-
der used for the first bay. Depassivation and
cleaning of the internal surfaces of the end-cap
joint ring and the application of mold release to
external surfaces of the end-cap joint ring pro-
ceeded as performed for the central stiffener in the
second step of the assembly process. The key for
the third step was to maintain correct alignment of
the end cap with the central stiffener for eventual
assembly of internal components (tie rods and
payload rails). Figure 35 shows the first bay of the
cylindrical hull section after completion of the
second and third steps of the assembly process.

The fourth step required bonding a titanium end-
cap joint ring to the cylinder used for the second
bay. Preparation of the joint surfaces and the
assembly technique for this joint ring paralleled the
steps described above for bonding joint rings to the
first cylinder.

The fifth step involved joining the two bays of the
cylindrical hull section together by bonding the
second cylinder to the centrai-stiffener joint ring
(figures 36 through 38). The first bay assembly
was covered externally and internally with plastic
sheeting to simpilify cieanup of excess epoxy. The
critical part of this step was alignment of the inter-
nal mounting points on the second cylinder end
cap with the mating hole patterns on the central
stiffener and end cap previously bonded to the first

cylinder. Longer tie rods, SK9402-099-9 (figure
30), were used to aid seating and alignment during
this step. Figure 39 shows the cylindrical hull sec-
tion after completion of epoxy bonding of the hull’s
major structural components.

The cylindrical hull was set on cradles with the
handling fixture as shown in figure 40. In this posi-
tion, the sixth and final assembly step for the hull
section, the attachment of internal tie rods and
rails and external fairing, was completed (figures
41 and 42). Figure 43 shows an internal view of
the completed hull section with four tie rods per
bay and two payload rails running the length of the
interior. To facilitate shipping of the cylindrical hull
-section of the 26-inch housing, the payload rails
were removed (figure 44) and the hull was pack-
aged (figure 45) for delivery to the pressure testing
facility at Southwest Research Institute (SRI), San
Antonio, Texas.

HEMISPHERICAL END CLOSURE SECTIONS

The assembly drawing for the 26-inch-housing aft
head end closure is shown in figure 46. The aft
head consists of a Type 4 alumina hemisphere
with an epoxy-bonded titanium end-cap joint ring
and a protective composite external fairing. The
26-inch-housing forward head end-closure assem-
bly drawing is shown in figure 47. The forward
head is a Type 6 alumina hemisphere with six
ports, a titanium end-cap joint ring, and an external
composite fairing. The fairing for each head is
retained in place with a split V-band clamp also
fabricated from composite materials. Bonding the
titanium end-cap joint rings to each alumina hemi-
sphere was performed with the fixtures shown in
figure 48 and a hydraulic lift truck.

During the time between the fabrication of the alu-
mina cylinders and the hemispheres for the
26-inch housing, a parallel study focused on the
cyclic fatigue life of alumina cylinders assembied
with metallic joint rings using various bonding tech-
niques (reference 3). Several assembly methods
that incorporate an inter-layer of a gasket material
as an axial bearing support between the alumina
hull and the metallic joint ring were evaluated. Two
of the methods compared were: the use of a thin
intermediate layer of epoxy between the bearing
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surfaces of the joint ring and the ceramic hull, and
the use of a GFR PEEK gasket placed adjacent to
the bearing surfaces of the ceramic component as
used with the 26-inch-housing cylindrical hull
assembly described above. GFR PEEK gaskets
had been used previously in the assembly of the
half-scale model of the 26-inch housing with good
results (reference 16).

In this study, the alumina 12-inch-OD cylinders
assembled with these two different axial bearing
surface supports were pressure cycled, disas-
sembled, and nondestructively evaluated to deter-
mine the exient of subcritical crack growth that had
occurred in the axial bearing surface region of the
cylinder ends during testing. 1t was concluded that
a thin intermediate layer of epoxy performed at
least as well as the GFR PEEK gaskets in terms of
minimizing subcritical crack growth. In addition,
the epoxy gasket had the benefit of lower cost and
easier assembly. Several methods of ensuring the
minimum thickness of the inter-layer of epoxy
between the bearing surfaces of the joint ring and
the ceramic hull were investigated during this study
using various spacer technigues. An annular
paper gasket used as a spacer was found to be an
adequate approach and was selected for use in
the assembly of the aft and forward heads for the
26-inch-housing assembly. The cyclic fatigue life
of AL-600 12-inch-OD cylinders assembled with
titanium end-cap joint rings and annular paper gas-
kets was investigated in a second paraliel study
(reference 4). It was confirmed that this assembly
approach provided a cyclic fatigue life well in
excess of 1,000 dive cycles at the stress levels at
which the 26-inch housing was designed to oper-
ate.

The annular paper gasket used in epoxy bonding
the titanium end-cap joint ring to the aft head of the
26-inch housing is shown in figures 49 and 50.
Figures 51 and 52 show the Type 4 alumina hemi-
sphere used for the aft head assembly. Prepara-
tion of the bonding surfaces of the titanium joint
ring and the alumina hemisphere proceeded as
described for the cylindrical hull assembly. In
order to bond the end-cap joint ring to the alumina
hemisphere, the joint ring was first centered on the
table SK9402-090-1 (figure 48). In this position,

the U-shaped gland of the joint ring was partially
filled with the epoxy mixture, and the axial bearing
surface paper gasket was placed in the joint ring
as shown in figure 53 and pushed down through
the epoxy mixture to the bearing surface at the
bottom of the joint-ring gland. A wooden pedestal -
SK9402-090-2 (figure 48) was elevated above the
table with the forks of a hydraulic lift truck so the
alumina hemisphere could be centered above the
epoxy-filled end-cap joint ring as shown in figure
54. Then, with the aid of the hydraulic lift truck,
the hemisphere was lowered into the end-cap joint
ring, clamped in place with tie rods (figure 55), and
the epoxy was allowed to cure.

The aft head assembly for the 26-inch housing is
shown in figure 56 without its protective external
fairing and again in figure 57 with the fairing in
place. The identical procedures used for the aft
head assembly were used for the forward head.
The completed forward head assembiy is shown in
figures 58 through 60. Only two of the six through
holes intended for the forward head were finish
ground prior to assembly. Postponing machining
of the remaining four holes was done to expedite
delivery of the alumina hemisphere so that pres-
sure testing for the 26-inch housing could be com-
pleted on schedule.

The original design of the titanium inserts used in
the through-hole ports of the forward head assem-
bly are shown in figures 61 and 62. These inserts
were dimensioned to have a nominal radial clear-
ance of 0.002 of an inch when assembled to the
Type 6 alumina hemisphere (figure 4). A tight toi-
erance fit was required to prevent extrusion of the
insert O-ring into the radial clearance during exter-
nal pressure loading. A dimensional inspection of
the through holes in the forward head (appendix B)
indicated that the holes were slightly oval. There-
fore, it was decided to modify the inserts to
increase the radial clearance in order to prevent
uneven loading on the walls of the through hole.
This change required that the fabric-reinforced
phenolic spacers used between the alumina hemi-
sphere and the inserts be redesigned to move the
O-ring away from the shaft of the insert as shown
in figures 63 and 64.
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TEST PLAN

The test plan for the 26-inch-housing assembly
was to individually proof test each of the three
major subassemblies (cylindrical hull section, for-
ward head hemispherical end closure, and aft head
hemispherical end closure) to an external pressure
of 10,000 psi. The rate of pressurization during
each proof test was specified not to exceed

1,000 psi per minute followed by a 60-minute hold
at a sustained pressure of 10,000 psi. The
depressurization rate was not to exceed 10,000 psi
per minute.

Biaxial electric resistance strain-gage rosettes
were to be mounted at specific internal surface
locations on each subassembly, waterproofed, and
read at 1,000-psi intervals to 10,000 psi during the
prooftest. In addition, the strains were recorded
for the cylindrical hull assembly at 200-psi incre-
ments between 9,000 and 10,000 psi. Additional
strain measurements were made for the cylindrical
hull near the proof pressure to identify nonlinear
deformations that could occur should buckling of
the hull assembiy be incipient. Ninety-degree rec-
tangular rosette strain gages were used with one
leg oriented in the hoop direction and the other in
the meridional direction. Strain gages were placed
at midbay of the cylindrical hull on the titanium
central stiffener since any deformations associated
with general instability would be most pronounced
at this location. Strain gages were to be read fol-
lowing the 60-minute hold at 10,000 psi and read
again for any residual strains after depressuriza-
tion to O psi.

Acoustic emissions data were to be recorded
throughout the proof test of the cylindrical hull
assembly. Acoustic emissions data were tracked
via a transducer bonded to the exterior of the pres-
sure vessel. After completion of the proof test,
each major subassembly was to be individually
cycled a minimum of ten times to 9,000 psi exter-
nal pressure with a one-minute hold at 9,000 psi
during each cycle. Acoustic emissions data were
1o be recorded for the cylindrical hull assembly
throughout the ten cycles to 9,000 psi.
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The test assembly used to proof test the cylindrical
hull section (figure 29) of the 26-inch housing is
shown in figure 65. Ten strain gages were mounted
to the interior surface of the central stiffened joint
ring in the locations indicated. All testing fixtures
designed for the proof test are shown in figures 66
through 72. The steel hemispheres in figure 66
were used as end closures to proof test the cylin-
drical hull section. A single liting lug (figure 67)
was welded in line with the center of gravity of
each steel hemisphere to aid in assembling the huill
section test assembly. An O-ring (figure 68) was
used for a face seal beiween the cylinder end-cap
joint ring at each end of the cylindrical hull section
and the mating steel hemisphere. The aluminum-
alloy clamp bands shown in figure 69 maintained
closure between the hull section and the steel
hemispherical end closures. Strain-gage leads
and a vent line were passed from the interior of the
test assembly by potting the feed through shown in
figure 70 with two-part epoxy and urethane. The
polar penetration in the remaining steel hemispher-
ical end closure was capped with the -2 plug
shown in figure 71.

The entire cylindrical hull section test assembiy
was mounted in the test fixture cage (figure 72).
The 30-inch bore and 111-inch internal length of
the pressure vessel dictated the design of the test
fixture cage. The test fixture had eight belly bands
clamping two aluminum channels to the external
fairing of the 26-inch hull section. Shackle pad
eyes were welded to one end of each channel
while a pivot foot was bolted to the opposite end of
each channel. Since the hull section was
assembled horizontally (figure 73), the pivot foot
allowed the hull test assembly to be lifted by the
pad eyes into a vertical position (figure 74) and
then lowered into the pressure vessel for testing
(figure 75).

Prior to being used to proof test any of the major
ceramic subassemblies of the 26-inch housing, the
stee! hemispherical end closures were proof tested
together to an external pressure of 10,000 psi as
shown in figure 76. Proof testing the two steel
hemispheres together was performed to check all
seals for leaks and to verify the structural integrity
of the steel hemispherical end closures. Additional
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testing components that were designed for proof-
ing the steel hemispheres are shown in figures 77
through 79.

Individual proof testing of the forward head and aft
head hemispherical end closures was performed
as shown in figure 80 reusing many of the testing
components described earlier. An additional plug
(figure 81) was used to cap the pressure relief
valves in the forward head hemispherical end clo-
sure. Proof tests of each of the alumina-ceramic
hemispherical end closures was performed with
the number and locations of strain gages as shown
in figure 80. Figure 82 shows the test configura-
tion for the aft head assembly as it is being low-
ered in the pressure vessel for proof testing to
10,000 psi. Figure 83 shows the test configuration
for the forward head assembly prior {o pressure
testing.

TEST RESULTS

CYLINDRICAL HULL SECTION

All pressure testing work performed on the 26-inch
housing assembily took place at SRI. The strains
recorded from the interior surface of the central
stiffener surface during the proof test of the cylin-
drical hull assembly are shown graphically in fig-
ures 84 and 85. These plots indicate that the
recorded strains are increasing in a linear fashion
throughout the pressurization to 10,000 psi. The
average strains at 10,000-psi external pressure
were —1,950 microinches/inch in the hoop direction
and +2,580 microinches/inch in the axial direction.
Two of the twenty channels used to record the
strain gage data failed before reaching the 10,000-
psi proof pressure. The slight variation in strains
that were recorded from each gage is due to the
fact that each rosette was bonded in place by
hand. Variations in location and orientation of each
gage would effect the magnitude of the recorded
strains.

The total number of acoustic events emitted by the
cylindrical hull section during the initial proof pres-
surization for 0 to 10,000 psi was 594 events.

After attainment of 10,000-psi external pressure,
the pressure was held for 60 minutes, during which

time the cumulative total of acoustic events
increased from 594 to 610. During the depres-
surization from 10,000 psi to 0 psi, the total num-
ber of acoustic events increased from 610 1o 619.
The depressurization took place at an average rate
of 434 psi/minute.

Immediately after depressurization to 0 psi, pres-
sure cycling to an external pressure of 9,000 psi
for a total of ten cycles was initiated. Each pres-
sure cycle consisted of pressurization to 9,000 psi
at an average rate of 1500 psi/minute, followed by
depressurization to 50 psi at an average rate of
5,000 psi/minute. The total number of acoustic
emissions generated by the first nine pressure

-cycles was 27 events, indicating that during that
period no cracks were initiated or propagating in
the ceramic cylinders.

During performance of the tenth cycle, a mishap
occurred. At the instant the pressure reached
9,000 psi, the 0.50-inch 1D bulkhead penetration
used for strain gage instrumentation leads through
the vessel end closure failed catastrophically,
resutting in a violent release of the pressure from
inside the vessel chamber. The pen on the strip
chart recording the number of acoustic emission
events was pegged at its maximum position (400
events) during the rupture. The digital recorder
used to count the number of acoustic emission
events was drenched with water released through
the buikhead penetration after it failed, and, conse-
quently, the exact number of acoustic emission
events was not recorded.

The bulkhead penetration consisted of a tapped
steel fitting with a 0.50-inch diameter bore, through
which the sirain gage leads and a vent line were
fed. The remaining volume of the 0.50-inch bore
was potted with a two-part epoxy by the technical
staff at SR, allowed to dry, and sealed with poly-
urethane. During the tenth pressure cycle, the
bond between the potting material and the
penetration bore failed, jettisoning the strain-gage
leads and potting material into the rafters of the
pressure testing laboratory, resulting in an instan-
taneous decompression of the 26-inch-housing
cylindrical hull section.

The magnitude of the forces exerted on the cylin-
drical hull section were accentuaied by the fact
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that the hull test assembly occupied the bulk of the
water volume in the pressure vessel. The loads
acting on the hull section during this violent
decompression are analogous to dynamic oscilla-
tory forces felt by a spring as it is released from a
compressed state. This unspringing of the vessel
undoubtedly resulted in substantial tensile loading
on the alumina cylinders. These tensile forces
were accentuated by the inertia of the steel end
closures moving in opposite directions from each
other as the axial compression of the cylindrical
hull assembly was suddenly released.

Following the explosive depressurization of the
pressure vessel interior, the 26-inch-housing cylin-
drical hull test assembly was removed for visual
inspection. The hull assembly appeared to be
intact even though it appeared to jump within the
test fixture cage, loosening the bolts that tighten
the belly bands around the housing’s external fair-
ing. After tightening the belly bands, the housing
assembly was lowered back into the pressure ves-
sel for reappiication of a proof test to 10,000 psi.

This second proof test was to determine whether
the structural integrity of the 26-inch-housing cylin-
drical hull section was compromised by the
dynamic loading to which it was subjected during
sudden depressurization. If the housing withstood
the pressure test to 10,000 psi without significant
acoustic activity it would be considered as proof
that cracks were not introduced into the ceramic
components of the housing structure during the
catastrophic decompression event. If it passed
this proof test, the housing could be mated with
ceramic hemispherical end closures for further
testing without fear of premature failure of the
ceramic cylindrical hull section. On the other hand,
if the pressure housing generated excessive
acoustic events, or if it failed prior to reaching
10,000 psi, it would be considered damaged and
would not be acceptabie for further testing.

After zeroing out the acoustic events recorded dur-
ing the catastrophic failure of the pressure vessel
penetration, pressurization was initiated with the
electric drive piston pump. Pressurization pro-
ceeded at approximately 2,000 psi/minute while
acoustic events were continuously recorded. Little
acoustic activity occurred until the pressure
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increased beyond 2,000 psi. In the interval
between 2,000 psi and 3,000 psi, a momentary
burst of acoustic activity produced 120 acoustic
events. Thereafter, the acoustic activity settled
down to a steady pace of approximately

8 events/1,000-psi pressure rise. When the pres-
sure reached 9,000 psi, there was another sudden
burst of acoustic activity generating an additional
230 acoustic events. The rate of acoustic emis-
sion increased as the pressure rose above

9,000 psi. Upon reaching 9,250 psi, catastrophic
failure of the 26-inch-housing cylindrical hull sec-
tion took place. Figure 86 shows the total number
of acoustic emission events that were recorded
for each pressure test performed on the 26-inch-
housing cylindrical hull section. Figure 87 shows
the cumulative number of acoustic emission events
generated by the housing throughout all the pres-
sure testing that was performed.

Inspection of the imploded cylindrical hull assembly
did not detect any out of roundness in the joint
rings, which indicates that the failure was not
caused by buckling. The internal flange of one of
the cylinder end-cap joint rings was pushed inward
at a single circumferential location, as was the
internal flange on one side of the central-stiffener
joint ring. The flanges on the opposite side of the
central stiffener and for the remaining end-cap joint
ring showed no sign of permanent deformation. It
appeared that one of the alumina cylinder bays
imploded, resulting in failure of the entire cylindrical
hull section. The high number of acoustic events
recorded during the attempt to proof test the hous-
ing again after the explosive decompression indi-
cates that cracks were propagating in at least one
of the alumina cylinders. At least one of these
cracks propagated to the point that it became criti-
cal enough to result in catastrophic failure of the
entire cylindrical hull test assembiy.

The difference in acoustic emission data prior to,
and after, the sudden decompression mishap indi-
cates that although the housing survived the pres-
sure vessel accident in one piece, substantial
cracks were introduced during the accident which
resulted in huli failure during the subsequent
repressurization test. Although the original proof
test demonstrated the design of the cylindrical hull
assembly would not fail by buckling at design
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depth, extensive cyclic fatigue-life data to design-
depth pressures were not obtained for the
25-inch-0D cylinders because of failure of the
pressure-vessel bulkhead penetration during the
tenth pressure cycle.

HEMISPHERICAL END CLOSURE SECTIONS

Loss of the cylindrical hull section changed the
pressure test plan for the two remaining major sub-
assemblies of the 26-inch housing. in addition to
performing a 10,000-psi proof test with the forward
and aft head hemispherical end closures mated to
a steel hemispherical end closure, it was decided
to cycle each head separately 500 times to an
external pressure of 9,000 psi. Performing the
cyclic tests of the forward and aft head end clo-
sures individually would provide more cyclic fatigue
data for large 96-percent alumina-ceramic compo-
nents than if the forward and aft heads were pres-
sure cycled together.

Figure 88 shows the hoop strains recorded from
the five gages bonded to the interior surface of the
alumina hemisphere used for the aft head assem-
bly during its proof test to 10,000 psi. As shown in
figure 80, sheet 3, these gages were equally
spaced along the meridian from the equatorial joint
ring interface to the hemispherical pole. Since the
wall thickness tapered along the meridian, the
strains varied with gage location, with the highest
strains recorded from rosetie 20 (located at the
pole where the minimum wall thickness occurs).
As expected, all recorded strains increase in direct
proportion to the applied external pressure.

The meridional strains recorded during the proof
test of the Type 4 hemisphere used in the aft head
assembly are shown in figure 89. The highest
measured meridional strains occurred at rosette 16
due to bending caused by the geometric transition
between the cylindrical equatorial skirt and the
hemispherical shell wall.

After its proof test, the Type 4 alumina hemi-
sphere used in the aft head assembly was sub-
jected to 500 cycles to a peak external pressure of
9,000 psi. At 100 cycle intervals, the hemispherical
assembly was removed from the pressure vessel,
and the Type 4 hemisphere was inspected as

shown in figure 90 to detect the presence of any
fatigue cracking that may have developed during
testing. No cracks were found, and the aft head
assembly successfully completed all 500 pressure
cycles.

The Type 6 alumina hemisphere used for the for-
ward head assembly also surpassed a proof test to
10,000 psi and 500 cycles to the 9,000-psi design
pressure. The hoop and meridional strains that
were measured from the five gages bonded to the
interior surface of the alumina hemisphere during
the proof test are shown in figures 91 and 92. No
hoop strain measurements were obtained from
rosette 12 due to gage failure. The strains
recorded from rosettes 13, 14, and 15 were identi-
cal, as expected, since they were located in the
portion of the hemisphere with constant wall thick-
ness. Hoop strains recorded from rosette 11 were
lower because of their placement in the thicker
transition region adjacent to the cylindrical equato-
rial skirt.

In addition to the forward and aft head assemblies,
a third alumina hemisphere was received from
WESGO that was assembled and subjected to a
proof test to 10,000 psi and 500 cycles to

9,000 psi. This third part was intended to be a
Type 4 hemisphere (tapered wall thickness without
any holes) used in the aft head assembly, but was
originally rejected because it did not meet the
dimensional tolerances on engineering drawing
559100127649 (figure 3). It met the tolerances
for the cylindrical equatorial skirt shown, but the
wall thickness of the remainder (transition region
from the skirt to the tapered hemispherical section)
was approximately 0.040 inch undersized. Figure
93 shows wall thickness measurements being
made with a hand-held ultrasonic thickness detec-
for of the dimensionally disqualified Type 4 alumina
hemisphere. One of the titanium end-cap joint
rings used with the cylindrical hull assembly was
refurbished and attached to this additional alumina
hemisphere. Figure 94 shows this third hemi-
sphere assembled with the dimensionally qualified
aft head alumina hemisphere. This back-to-back
alumina hemisphere configuration was not pres-
sure tested, but, rather, the reject aft head

13
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hemisphere was pressure tested with a steel test
hemisphere.

Five strain gage rosettes were bonded to the inte-
rior of the reject aft head hemisphere in the same
locations specified for the dimensiconally qualified
aft head hemisphere per figure 80. The strains
recorded for this third hemisphere during its proof
test to 10,000 psi are shown in figures 95 and 96.
Because of its reduced wall thickness, the strains
are higher than those recorded for the dimension-
ally qualified aft head hemisphere as presented in
figures 88 and 89. Specifically, the hoop strain at
the pole of the reject hemisphere was measured to
be -2,963 microinches/inch at 10,000-psi external
pressure as compared to —2,463 microinches/inch
recorded for the aft hemisphere that met dimen-
sional specifications. As with the first two alumina
hemispheres tested, the reject aft head hemi-
sphere also survived 500 cycles to 9,000-psi exter-
nal pressure.

POST-SERVICE INSPECTION OF
ALUMINA-CERAMIC COMPONENTS

After completion of the pressure testing program,
the outer flange of the end-cap joint ring was
removed from both the aft head end closure that
used the dimensionally gualified Type 4 alumina
hemisphere and the aft head end closure that used
the dimensionally disqualified Type 4 alumina
hemisphere. A horizontal lathe was used to
remove the outer flange as shown in figure 97.
Machining off the outer flange allowed for a full-
immersion pulse-echo ultrasonic inspection of the
bearing-surface region of each hemisphere to
determine if any structural damage had occurred
as a result of pressure testing.

Inspection of the dimensionally qualified Type 4
alumina hemisphere revealed that a circumferential
crack had developed on the plain-bearing surface
of the ceramic hemisphere in a single location.
This crack was located at a depth of 0.25 inch from
the OD of the equatorial skirt, had a circumferential
length of 0.74 inch, and extended to a depth of
0.10 inch from the bearing-surface region. This
crack appeared to be typical of previously
observed bearing-surface cracks that formed in

ceramic housing assemblies as a result of cyclic
external pressure loading (references 4, 5, and
16). The very small amount of cracking found in
the dimensionally qualified Type 4 alumina hemi-
sphere indicates that this unit would have a cyclic
fatigue life of well beyond the 500 pressure cycles
1o 9,000-psi external pressure to which it was sub-
jected.

The dimensionally disqualified Type 4 alumina
hemisphere assembied with the refurbished end-
cap joint ring was found to have substantially more
internal cracks in its bearing-surface region after
completion of the 500 pressure cycles to 9,000 psi
to which it was also tested. A pulse-echo C-scan
generated of the entire cylindrical skirt region indi-
cated that bearing-surface cracks had developed
around the entire circumference of the hemi-
sphere. These cracks had propagated to a mini-
mum depth of 0.60 inch from the bearing surface
and had grown as far as the transition region
{2.50 inches) from the cylindrical skirt into the
hemispherical shell in three locations.

Cracks that have propagated past the region of the
ceramic shell encapsulated by the flanges of the
joint ring can lead to eventual failure of the hull
assembly. Delaminations caused by internal cir-
cumferential cracking can buckle under external
pressure loading, resulting in spalling of ceramic
shards from the surface of the ceramic shell wall.
With spalling of the ceramic comes a loss of load-
bearing material and potential leakage of water into
the epoxy bond at the joint interfaces. In the case
of the dimensionally disqualified Type 4 alumina
hemisphere, the cracks extended into the shell wall
beyond the two-inch-long flanges of the refur-
bished cylinder end-cap joint ring (figure 13).

Thus, the fatigue life of this unit is not likely to be
much greater than the 500 pressure cycles to
9,000 psi that it has already survived.

STRUCTURAL ANALYSIS

Structural analysis for the completely assembled
26-inch housing was presented in reference 1.
Since all the testing that was performed for the
26-inch housings occurred with the three major hull
assemblies pressurized individually, additional
finite element analysis (FEA) of these three test
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configurations is presented here. Finite element
models (FEM) were generated by mating the
ceramic cylindrical hull with steel test hemispheres
at each end and joining the forward and aft head

ceramic end closures with steel test hemispheres.

A cross section of the FEM used to calculate the
stresses in the ceramic cylinders and the Type 4
ceramic hemisphere used in the aft head assembly
are shown in figures 98 and 99. These figures
show axisymmetric models constructed using the
FEA software ANSYS-PC, revision 4.4A, a product
of Swanson Analysis Systems, Inc. A symmetry
point at midbay (at the axial centerline of the
central-stiffener joint ring) was also used in the
model of the cylindrical hull assembly (figure 98).
All test assembly components were modeled using
STIF82 2-D, eight-node quadrilateral solid ele-
ments with the following linear elastic isotropic
material properties:

AL-600 96-percent alumina ceramic:
E=48.7 Mpsi (alumina cylinder)

E=45.4 Mpsi (Type 4 alumina hemisphere)

E=48.3 Mpsi (Type 6 alumina hemisphere)
v=.23

Titanium alloy Ti-6Al-4V:
E=16.4 Mpsi
v=.31

Epoxy:
E=300 kpsi
v=.40

Steel alloy 4340:
E=29 Mpsi
v=.32

Aluminum alloy 7075:
E=10.3 Mpsi
v=.33

where E is the elastic modulus and v is the
Poisson’s Ratio of each material.

STIF12 2-D gap elements were used to model the
joint interfaces; for example, between the alumi-
num spacer ring and the steel test hemisphere,
and between the aluminum spacer ring and the
titanium end-cap joint ring that is epoxy bonded to
the alumina hemisphere for the aft and forward
head end closures. STIF12 elements are capable
of supporting only compressive loads normal {o the

contact surfaces. These elements allow adjacent
surfaces to maintain, or break, physical contact
and allow one surface to slide relative to the other
surface. The use of gap elements introduces non-
linearities into the stress analysis and, therefore,
requires that an iterative solution be used when
running the FEM.

FEM for each of three test assemblies were run
using the maximum external pressure used during
the cyclic testing of 9,000 psi. Figure 100is a
stress contour plot of the minimum principal
stresses that exist in the ceramic cylinders at
9,000-psi external pressure. A peak compressive
stress of —130,539 is calculated to exist at midbay
of each ceramic cylinder and is oriented in the
hoop direction. Figure 100 reveals that more
bending is occurring at the ceramic cylinder inter-
face with the central stiffener (as seen at the bot-
tom of the figure) than at the cylinder interface with
the steel test hemisphere. This implies that more
radial support of the ceramic cylinder is given by
the integrally bonded central stiffener than is pro-
vided by the steel test hemisphere. Figure 101 is
a stress contour plot of the maximum principal
stresses in the ceramic cylinder in the bearing-
surface region adjacent to the cylinder end-cap
joint ring interface with the steel test hemisphere
for an external pressure load of 9,000 psi. A
maximum tensile siress of +4,571 psi is predicted
to occur at the plain axial bearing surface and is
oriented in the radial direction.

Figure 102 is a contour plot of the minimum princi-
pal stresses that exist in the Type 4 ceramic hemi-
sphere of the aft head end closure at 9,000-psi
external pressure. A peak compressive stress of
—164,187 psi is calculated to exist at the pole of
the hemisphere. Figure 103 is a detailed view of
the maximum principal-siress contour plot for the
Type 4 hemisphere in the region of its equatorial
bearing surface. This plot indicates that a maxi-
mum tensile stress of +7,434 psi occurs in the
ceramic adjacent to the epoxy layer that separates
the hemisphere axial bearing surface from the
axial bearing surface of the titanium end-cap joint
ring.

The resulits of the stress calculation from the FEM
for the Type 6 hemisphere used in the forward
head end closure are shown in figures 104 and
105. Figure 104 indicates that a peak compressive
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stress of —199,941 psi occurs at a through hole
located at the hemispherical pole (a 1.004-inch-
diameter hole for a pressure-relief valve insert was
used in the model) when the assembly is pressur-
ized to 9,000 psi. The polar location of the through
hole does not represent an actual location of one
of the six holes that exists in the forward head.
The polar location was used because it can be rep-
resented with an axisymmetric analysis and
because the siresses around the hole will not vary
with the location of the hole, as long as the holes
are properly spaced and located in the portion of
the hemisphere which has a constant wall thick-
ness. The maximum tensile stress of +8,044 psi at
the bearing surface of the Type 6 hemisphere
shown in figure 105 is slightly higher than that cal-
culated to exist in the Type 4 hemisphere at the
same load level. This difference can be attributed
to the differences in the elastic modulus used to
model each hemisphere.

FINDINGS

1. The fabrication technology for isostatically
pressed AL-600 alumina cylinders and hemi-
spheres is sufficiently mature to aliow
manufacture of the hull components used in
the 26-inch housing with minimum risk.

2. The following range of average material
properties were found for the AL-600 alumina
cylinders and hemispheres used in the
26-inch-OD pressure housing assembly:

compressive modulus 45.4 — 48.9 Mpsi
compressive strength 360 — 412 kpsi
flexural strength 43.5 —-50.3 kpsi
Weibull Modulus 18-29

density 0.135 - 0.136 Ib/in®

3. Economical and reliable quality control of the
AL-600 alumina hull components for the
26-inch housing was performed using com-
mercially available full-immersion pulse-echo
ultrasonic inspection techniques. This inspec-
tion method was capable of detecting internal
discontinuities as small as 0.015 inch in the
ceramic shell wall. The largest defects found
in any of the 26-inch-housing alumina
components were internal voids approxi-
mately 0.050 inch in size.
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Assembly of the 26-inch-OD by 91-inch-long
ceramic-housing assembly was performed
without difficulty using simple handling fixtures
1o epoxy bond titanium joint rings to the ends
of each alumina hull section.

The design of the central-stiffening joint ring
used to bond the two alumina cylinders in the
cylindrical hull assembly of the 26-inch-OD
housing was validated through a proof test to
10,000-psi external pressure (1.1 times the
design depth). The cylindrical hull of the
26-inch-OD housing assembly was designed
{reference 1) to have a minimum safety factor
(SF) of 1.5 against buckling at its 9,000-psi
design depth when capped by hemispherical
end closures. The integral T-shaped ring of
the central stiffening joint ring was sized to
provide this 1.5 SF to prevent collapse by
general instability at pressures below 13,500
psi.

The dimensionally qualified aft and forward
head alumina hemispherical end closures of
the 26-inch-OD alumina-ceramic housing
assembly were found to have a cyclic fatigue
life in excess of 500 cycles to an external
pressure of 9,000 psi, generating the following
peak stresses during each cycle:

min. principal membrane stress: —154,187 psi

min. principal stress at localized stress
concentrator: ~199,941 psi

max. principal stress at localized stress
concentrator: +8,044 psi

The minimum principal membrane stress
occurred at the pole of the Type 4 hemisphere
used for the aft head end closure. The mini-
mum principal stress at a localized stress con-
centrator was found at the through holes of
the Type 6 hemisphere used for the forward
head end closure. The maximum principal
stress at a localized stress concentrator
occurred at the plain axial-bearing surface of
the Type 6 hemisphere at its bond interface
with its end-cap joint ring.
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The dimensionally disqualified Type 4 alumina
hemisphere was found to have a fatigue life of
500 cycles to an external pressure of

9,000 psi. The wall thickness of this reject
part was 0.040 of an inch undersized every-
where, except at its cylindrical skirt. This
reduced wall thickness resulted in compres-
sive membrane stresses that were approxi-
mately 11-percent greater in magnitude

(—172 kpsi at the pole) than those that existed
in the dimensionally qualified Type 4 alumina
hemisphere.

The pressure testing program completed by
the forward and aft heads validates the equa-
torial cylindrical skirt at the bearing surface of
the ceramic end closures as a worthy design
feature for improving cyclic fatigue life of
hemispherical end bells. Successful comple-
tion of proof and cyclic testing by the forward
head end closure also demonstrates that
ports for electrical connectors, pressure-relief
valves, etc., can be successfully made using
metallic inserts in the ceramic shell wall. The
titanium insert penetrators designed for the
forward head end closure did not serve as
crack initiators in the ceramic hemisphere dur-
ing pressure cycling.

As with the ceramic pressure hulls tested in
earlier generations of NOSC?2 and NRaD
housings, the cyclic fatigue life of the alumina
hull sections of the 26-inch-OD housing
assembly is determined by the initiation and
propagation of cracks that originate on the
bearing surface of ceramic component ends
at their interface with metallic joint rings.

DISCUSSION

1.

The intent in performing ultrasonic and radio-
graphic inspection of the ceramic hull compo-
nents of the 26-inch housing was 1o ensure
that no gross fabrication defects were present
that could compromise the structural integrity
of the pressure housing assembly. The
acceptance of the 26-inch housing’s ceramic
components with 0.050-inch pores is based
on NRaD's quality control experience with

2NRaD was previously Naval Ocean Systems Center (NOSC).

engineering ceramics and is not based on a
critical flaw size in the performance of alumina
pressure hulls. NRaD has never documented
the failure of a ceramic pressure hull due to
the presence of a defect that was identified in
pre-service inspection. Rather, cyclic fatigue
is thought to initiate at stress concentrations
around micro pores located near the bearing
surfaces at ceramic component ends (refer-
ence 9). This intrinsic microporosity is a char-
acteristic of AL-600 alumina and can not be
detected using the NDE technigues described
in this report.

Although both the dimensionally qualified and
dimensionally disqualified Type 4 hemi-
spheres tested in this report surpassed

500 cycles to 9,000-psi external pressure,
post-service inspection of these two units
revealed substantial differences in the extent
of fatigue cracking that had occurred in the
bearing-surface region of each component.
The dimensionally qualified unit was found to
have one small region of crack growth adja-
cent to its bearing surface, where as, the
dimensionally disqualified hemisphere had
extensive internal delaminations around the
entire circumference of its bearing surface.
Possible explanations for the apparent discre-
pancies in the performance of these two units
are offered as follows:

» Differences in the ceramic material in
these two hemispheres could explain the
differences in the amount of crack growth
that occurred. Specificaily, differences in
the fracture toughness, flexural strength,
Weibull Modulus, residual stress, intrinsic
porosity, or extrinsic grinding damage on
the bearing surface of each part could
affect its resistance to the formation of
fatigue cracks. Unfortunately, material
properties and quality control data were
not obtained for the disqualified unit
because it was not originally intended for
pressure testing.

¢ The quality of the seal that was used to
protect the epoxy bond between the metal-
lic joint ring and cylindrical skirt of the
ceramic hemisphere from water intrusion
could affect the end closure's structural
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performance. If the epoxy bond is not
adequately sealed during extensive pres-
sure testing, it is possible that the com-
bination of water and tensile stresses in
the bearing surface region could accentu-
ate fatigue of the ceramic through stress
corrosion cracking.

CONCLUSIONS

Monocogue ceramic cylinders with 25-inch-
OD by 31.90-inch-length by 0.90-inch wall
thickness with mating ceramic hemispheres
can be successfully fabricated from isostati-
cally pressed 96-percent alumina for service
as components of an external pressure hous-
ing for 9,000-psi service.

Full-immersion pulse-echo ultrasonic inspec-
tion has been found to be a reliable NDE
technique for detection of voids and inclusions
larger than 0.015 of an inch in the walls of alu-
mina pressure hull components of <1-inch
thickness.

Monocoque alumina cylinders can be
assembled into long cylindrical full-scale
housings by epoxy bonding the ends of the
adjoining cylinders to titanium joint rings with
integral ring stiffeners. The design of cylindri-
cal hull sections with stiffened joint rings to
provide the desired safety margin against fail-
ure by buckling can be performed using stan-
dard structural analysis techniques
(references 1 and 2).

Although cyclic fatigue data was not obtained
for the 25-inch-OD alumina cylinders (L/OD =
1.276, t/OD = 0.036) used in the 26-inch-
housing cylindrical hull assembly, extensive
pressure-test data has been generated
(reference 4) for 12-inch-OD isostatically
pressed AL-600 cylinders (L/OD = 1.5, t/OD =
0.034). At 9,000-psi external pressures, the
12-inch-OD cylinders were found to have a
cyclic fatigue life of well in excess of 1,000
dive cycles. Similar data needs 1o be gener-
ated for the 25-inch-OD cylinders as has been
generated for 12-inch-OD cylinders and the
25-inch-OD hemispheres documented in this
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report. For this reason, it is suggested that
prior to being placed into service, a qualifica-
tion test program based on determining
fatigue life be completed for 25-inch-OD
monocogque alumina cylinders subjected to
external pressure cycles.

The design of the aft and forward head has
been validated for operational use as end clo-
sures for the 26-inch-OD housing for use at
depths to 20,000 feet (9,000 psi) with a mini-
mum fatigue life of 500 dive cycles. The key
design features of these enclosures, ceramic
cylindrical equatorial skirt, titanium end-cap
joint rings, and titanium inserts for port
penetrations, should be incorporated into
future pressure-housing applications where
ceramic hemispherical bulkheads are desired.

Full-scale UUV pressure housings using
alumina-ceramic hull sections can be
designed and assembled which provide
improved operational performance over equiv-
alent metallic housings designed to the same
requirements. The net lift in seawater gener-
ated by the 26-inch-OD by 91-inch-long
alumina-ceramic pressure housing is three
times greater than that created by a rib-
stiffened titanium housing with the same
external dimensions and external pressure
rating.

RECOMMENDATIONS

Pre-service inspection of alumina-ceramic
pressure hull components should be made
before final grinding is completed to avoid
additional investment in parts that may have
unacceptable internal defects. NRaD’s expe-
rience in inspecting the 25-inch-OD hulls for
the 26-inch housing indicates that isostatically
pressed 96-percent alumina components can
be fabricated of this size that do not contain
flaws of which the dimensions exceed

0.05 inch.

As the acceptance of ceramic pressure hulls
grows for ocean engineering applications in
the future, pericdic in-service inspection
techniques should be developed to ensure the
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structural integrity of the pressure housings
throughout their operational lives. The use of
portable hand-held ultrasonic thickness detec-
tors has been shown 1o be a reliable means of
finding internal discontinuities such as dela-
minations associated with extensive cyclic
fatigue of ceramic pressure hulls. If a ceramic
hull section is inspected and found to have
crack growth that has extended meridionally
in the shell wali beyond the encapsulating
flanges of the metallic joint rings, it can be
removed from further service and replaced
with a new hull.

The majority of research performed for
ceramic pressure housings to date has
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focused on determining designs that will per-
form successfully for external pressure loads
associated with the full range of depths found
in the world’s oceans. in order to gain further
acceptance by the ocean engineering commu- .
nity, the capabilities of ceramic pressure-
housing assemblies to withstand dynamic
loading associated with handling should also
be characterized.

Research should be initiated that has as its
goal the development of an economical non-
destructive inspection procedure for the
detection and measurement of residual
stresses in ceramic components introduced
by the sintering process.
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GLOSSARY

AL-600 WESGO. 96-percent
aluminum oxide compaosition

alumina aluminum oxide

ASL Arctic Submarine Laboratory

FEA finite element analysis

FEM finite element models

flexural strength
GFR
ID

L
L/OD

MEK
MOR

modulus of rupture
graphite fiber-reinforced
inside diameter

Length
length-to-outer-diameter ratio

methyl ethyl ketone
modulus of rupture
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NDE
NOSC

oD
PEEK

ROV
RTV

SF
specific strength
SRI

1
/0D

uuwv
W/D

nondestructive evaluation
Naval Ocean Systems Center

outside diameter
poly-ether-ether-ketone

remotely operated vehicle
room-temperature vulcanizing

sealant

safety factor (factor of safety)
strength-to-density ratio
Southwest Research Institute

thickness
thickness-to-outer-diameter
ratio

unmanned underwater vehicle
weight to displacement ratio
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Raw Material Acceptance

Ceramic Body
Preparation

Mixing, Milling

Binder Addition

HE s EEEENEX -.
Spray Drying . injection
Extrusion :
¥ Molding
]
. mEm
] . | [ ]
Dry Iso Roll Continuous Slip
Pressing Pressing }]Compaction Casting Casting
|
Pre-Sinter Pre-Sinter Pre-Sinter
Machining Machining Machining
T
--I-------J---- I

Hot Pressing or

Hot [sostatic

Presso Sintering

|
Grinding

l .
Surface Treating Lapping

| .

Assembly o

Techniques Polishing

L}

%. EmEm -l

L

Final Inspection

Packing & Shipping

Figure 1. Manufacturing steps for alumina-ceramic parts.
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Figure 5. lIsostatic pressing mold for 26-inch-housing alu-
mina cylinders.

Figure 6. Hydrostatic pressure chamber used for pressing 26-inch-housing
alumina components.
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Figure 7. Removal of cylinder alumina green body from
hydrostatic pressure chamber.

Figure 8. Removal of cylinder alumina green body from isopress tooling.
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T

Figure 9. Isostatically pressed alumina-ceramic green body for
26-inch-housing placed in an oven for low temperature bakeout.

Figure 10. Isostatic pressing mold for 26-inch housing alumina hemispherical end
closures.
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Figure 11. Isostatically pressed alumina green body for forward and aft head hemispherical end closures.
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Figure 15. Titanium alloy rolled ring forgings for 26-inch-housing
joint rings.

Figure 16. Machining of titanium end-cap joint ring for alumina hemispherical
end closure.
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Figure 18. Cylinder end-cap joint ring.
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Figure 24. Composite fairing for 26-inch housing.
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FLAT CERAMIC SAMPLE - . . o .= 7

SoN €1

Figure 28. Puise-echo ultrasonic C-scan of the 0.030-inch-pore NDE calibration standard.
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FEATURED RESEARCH

Figure 33. Epoxy bonding of central stiffening joint ring
1o first cylinder bay.

Figure 34. Epoxy bonded central stiffener with assembly
fixtures.
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FEATURED RESEARCH

Figure 36. Assembly preparation for first and second bay of the cylindrical
hull.
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FEATURED RESEARCH

Figure 37. Joining of first and secend bay of the
cylindrical huil.

Figure 38. Clamping fixtures used for assembly of
cylindrical hull.
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FEATURED RESEARCH

Figure 39. 26-inch-housing alumina-ceramic cylindrical
hull.

Figure 40. Handling of the cylindrical hull for placement
into a horizontal position.
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Figure 41, ¢
fairings.

ylindrical hyll prior to attachment of composite
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FEATURED RESEARCH

Figure 43. Internal view of 26-inch-housing cylindrical hull
with payload rails and tie rods.

Figure 44. 26-inch-housing cylindrical hull with external composite
fairing.
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FEATURED RESEARCH

T e

Figure 45. Packaging of 26-inch-housing cylindrical hull for shipment to
pressure-testing facility at SRi. :
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FEATURED RESEARCH

Figure 51. Type 4 alumina hemisphere used in aft head assembly.
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FEATURED RESEARCH

SRR

Figure 53. Placement of axial bearing-surface spacer in titanium end-cap joint ring.
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FEATURED RESEARCH

Figure 54. Assembly of aft head alumina hemisphere with
titanium end-cap joint ring.

Figure 55. Assembly fixture for forward and aft heads.
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FEATURED RESEARCH

Figure 56. 26-inch-housing aft head without protective external fairing.

Figure 57. 26-inch-housing aft head with protective external fairing.
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FEATURED RESEARCH

Figure 59. External view of 26-inch-housing forward head with protective external fairing.
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FEATURED RESEARCH

Figure 0. Internal view of 26-inch-housing forward head.
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FEATURED RESEARCH
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FEATURED RESEARCH

Figure 75. Lowering of 26-inch-housing cylindrical hull into the 30-inch-
diameter pressure chamber at SRI. The test fixture centers the ceramic
hull inside the chamber.
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o

Figure 82. Lowering of the 26-inch-housing att head assem-
bly with test fixtures into the pressure chamber. The test fix-
ture keeps the housing from tloating up in the chamber.

Figure 83. 26-inch-housing forward head assembly prior to place-
ment into the test fixture.
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26 INCH HOUSING CYLINDRICAL ASSEMBLY PROOF TEST STRAN GACGE DATA

HOOP STRAINS FROM
. CENTRAL STIFFENER
5
=z -1000 |
3
T
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@]
v
]
=
=
< 2000
—
[7p]
-3000

02x10* 0.4x10* 06x10* 0.8x10* 10x10*
EXTERNAL PRESSURE. PSI

Figure 84. Hoop strains on the interior surface of the central stiffener used in the
» cylindrical hull assembly.

26 INCH HOUSING CYLINDRICAL ASSEMBLY PROOF TEST STRAIN GAGE DATA
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Figure 85. Axial strains on the interior surface of the central stiffener used in the
cylindrical hull assembly.
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26 INCH HOUSING CYLINDRICAL ASSEMBLY ACOUSTIC EMISSIONS DATA

600 S _ S
N 26 NCHHOUSNG N
N PROOF TEST FALS AT 9250 PSI N
N TO 10,000 PS! WHILE TRYING TO RE- N
§ PROOF HOUSING TO ‘Q
10,000 PS|
N N
%%} N ™
Z 400} - N
e \ \
g \ PRESSURE VESSEL N
o N BULKHEAD PENETRATORY N
3 N FALS, # OF ACOUSTIC N
5 N EMISSIONS > 400 N
3 \ \
Q
2 2ol N N
N
\ \
N N
\ \
0 N et -y = e Pt k )
0 1 2 3 4 5 6 7 8 9 W " £ 1B
CYCLE #

Figure 86. Acoustic emissions data for each pressure test performed on the cylindri-

cal hull assembly.

26 INCH HOUSING CYLINDRICAL ASSEMBLY ACOUSTIC EMISSIONS DATA
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Figure 87. Cumulative acoustic emissions data for all pressure testing performed on .
the cylindrical hull assembly.
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26 INCH HOUSING AFT HEAD PROOF TEST STRAIN GAGE DATA

0 -
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Figure 88. Hoop strains on the interior surface of the dimensionally qualified Type 4
alumina hemisphere used in the zft head assembly.
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26 INCH HOUSING AFT HEAD PROOF TEST STRAIN GAGE DATA
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Figure 89. Meridional strains on the interior surface of the dimensionally qualified
Type 4 alumina hemisphere used in the aft head assembly.
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Figure 90. Periodic inspection of the aft head assembly
during pressure cycling to 9,000-psi external pressure.

26 INCH HOUSING FORWARD HEAD PROOF TEST STRAIN GAGE DATA
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Figure 91. Hoop strains on the interior surface of the Type 6 alumina hemisphere
used in the forward head assembly.
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26 INCH HOUSING FORWARD HEAD PROOF TEST STRAIN GAGE DATA
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Figure 92. Meridional strains on the interior surface of the Type 6 alumina hemi-
sphere used in the forward head assembly.

Figure 93. The wall thickness of the Type 4 ceramic hemispheres was mea-
sured with a hand-held puise-echo ultrasonic transducer.
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STRAIN, MCROINCHE S/INCH

Figure 94. External pressure housing consisting
of two Type 4 alumina hemispheres.

26 INCH HOUSING AFT HEAD (REJECT) PROOF TEST STRAIN GAGE DATA
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Figure 95. Hoop strains on the interior surface of the dimensionally disquali-
fied Type 4 alumina hemisphere intended for use in the aft head assembly.
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26 INCH HOUSING AFT HEAD (REJECT) PROOF TEST STRAIN GAGE DATA
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Figure 86. Meridional strains on the interior surface of the dimensionally dis-
qualified Type 4 alumina hemisphere intended for use in the aft head assem-
bly.

Figure 97. Removal of the exterior flange of the end-cap joint ring used on the dimen-
sionally qualified Type 4 alumina hemisphere for post-service ultrasonic inspection of
the bearing-surface region.
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FLAT CERAMIC SAMPLE ' :

SN C1

.838°° PORES

A
15, 1993 @88:12:56

Figure 28. Puise-echo ultrasonic C-scan of the 0.030-inch-pore NDE calibration standard.
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f FAMIYS-FC 4. 4FRL
i MAR @ 1394
1

Figure 98. FEA solid model of pressure-test configuration for the cylindrical hull
assembly.

I ANSYS=PC 4, 4M2
- JTEN

Figure 99. FEA solid model of pressure-test configuration for aft head assembly using
a Type 4 alumina hemisphere.
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]

—-i30539
[ =
Tonem

Figure 100. Minimum principal stresses at 9,000-psi external pressure in the alumina
cylinder used for the cylindrical huli assembly.

Figure 101. Maximum principal stresses at 9,000-psi external pressure in the alumina
cylinder used for cylindrical hull assembly.
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ANSYS~ST 4. 4R
JEN 12 1o22
18:18:153
LT ND . i
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Figure 102. Minimum principal stresses at 9,000-psi external pressure in the Type 4

alumina hemisphere used for the aft head assembly.
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Figure 103. Maximum principal stresses at 9,000-psi external pressure in the bearing
surface region of the Type 4 alumina hemisphere used for the aft head assembly.
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PNEYS-SC 4,48
TEN 2C iossa
=

L

Figure 104. Minimum principal stresses at 9,000-psi external pressure in the Type 6
alumina hemisphere used for the forward head assembly.
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+ TEN 20 1532
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Figure 105. Maximum principal stresses at 9,000-psi external pressure in the Type 6
alumina hemisphere used for the forward assembly.
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Table 1. Material property data for WESGO alumina-ceramic compaositions.

WESGO GD

Technical Ceramics

and Metals
Wesgo® Dense Alumina & Properties
Property " Unit Temp. AL-500 AL-600 AL-300 AL-995
Al,O, Content G 94.0 96.0 97.6 99.5
Flexural Strength psi Room 50,000 53,000 43,000 45,000
MPa Temp. (RT) 345 365 296 310
Compressive Strength psi >300,000 >300,000 >250,000 >300,000
MPa R.T. >2070 >2070 >1720 >2070
Density thsfin® 0.132 0.134 0.136 0.139
gfce R.T. 3.67 3.72 3.76 3.86
Porosity % water vacuumtight  vacuumtight vacuumtight vacuum tight
absorption 0. 0. 0.00 0.00
Color — white white white white
Hardness Rockwell 45N - 78 79 75 81
Thermal Conductivity BTU/fthr°F 11.9 14.8 15.5 16.9
W/m°K R.T. 20.5 25.6 26.8 29.3
Coefficient of Linear 25°— 200°C 6.3 6.4 6.9 6.9
Thermal Expansion 10757°C 200°— 400°C 7.5 7.6 7.8 7.8
400°— 600°C 8.0 8.2 8.5 8.3
°— 800°C 8.6 8.7 8.8 9.0
°—1000°C 9.1 9.0 9.0 9.4
10°%rF 77°— 390°F 3.5 3.6 3.8 3.8
390°— 750°F 42 42 4.3 4.3
750°—1110°F 4.4 4.6 4.7 4.6
1110°—1470°F 4.8 4.8 4.9 5.0
1470°—1830°F 5.1 5.0 5.0 52
Maximum Working °C 1600 1620 1650 1725
Temperature °F 2910 2950 3000 3150
Dielectric Strength D.C.volts/mil R.T. 650 675 1100 800
{.100" thick D.C. kilovolts/ 25.6 26.6 43.3 31.5
under oil) mm
Te Value °C >950 >950 >1000 >975
°F >1740 >1740 >1800 >1790
Volume Resistivity ohm-cm 25°C/77°F >10M >10M >10M >10M
300°C/570°F 2.0x10!2 2.0x10'2 1.0x10'2 2.0x101!
600°C/1110°F 4.6x10°8 5.2x10° 2.3x10'° 6.0x108
900°C11650°F 3.5x10° 4.1x10° 5.0x10° 2.5x10°
Property Unit AL-500 AL-600 AL-300 AL-995
Dielectric 25°C  300°C  500°C 25C  300°C 500°C 25°C  300C 500°C 25C  300°C  500°C
Constant 1AMHz 907 953 94 930 965 1010 933 991 104 958 942  10.20
(K" 1000MHz 204 — - 9 — — 9.00 - — UK — —
B500MHz 898 926  9.40 916 930 4945 904 032 951 937 961  9.82
Dissipation 25°C  300°C  500°C 25°C  300°C  500°C 25°C  300°C  300°C 25°C  300°C 3500°C
Factor 10MH: 0.00026 1.00028 0.00341 0.00030 0.00061 0.00330 0.00004 0.00016 0.00052 0.00003 0.00009 0.00040
(Tan d) 1000MHz 0.00062 — — 0.00044 — — 0.00030 — — 0.00014 — -
8500MHz 0.00078 0.00135 0.00155 0.00062 L.00USS 0.00121 10.00045 0.00040 0.00072 0.00009 0.00013 0.00025
Loss Factor 25°C  300°C 500°C 25°C  300°C 500°C 25°C  300°C 500°C 25°C  300°C  500°C
(K’ Tan & 10MHz 0.00236 0.00267 0.03369 0.00279 0.00588 0.03333 0.00038 0.00158 0.00527 0.00029 0.00088 0.00308
1000MHz 0.00560 — — 0.0405 — - 0.00270 — - 0.00130 — -
8500MH:z L.00700 0.01165 0.01457 0.00568 1.00719 0.01143 0.14UT 0.00373 0.00687 1.00084 0.0001350.00245

113



FEATURED RESEARCH

APPENDIX A: MATERIAL PROPERTY
TEST DATA
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FIGURES

A-1. Compressive strength test data for cylinder part 544-3.

A-2. Flexural strength test data for cylinder part 544-3.

A-3. Density and compressive modulus data for cylinder parts 544-3 and 544-4.
A-4, Compressive strength test data for cylinder part 544-4.

A-5. Flexural strength test data for cylinder part 544-4.

A-6. Compressive strength test data for Type 4 hemisphere part 649-4.

A-7. Flexural strength test data for Type 4 hemisphere part 649-4.

A-8. Density and compressive modulus data for Type 4 hemisphere part 649-4.
A-9. Compressive strength test data for Type 6 hemisphere part 755-4.

A-10. Flexural strength test data for Type 6 hemisphere part 755-4.

A-11. Density and compressive modulus data for Type 6 hemisphere part 755-4.
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FMC Corporation

Corporate Technology Center

2 - X
1205 Soleman Avenue MATERIALS ENGINEERING

Santa Clara California 95052 RESULTS RECORD NO. 930177
408 289 2731

January 29, 1993 » fmc

RESULTS OF TESTING
ASTM D695
COMPRESSIVE STRENGTH

SERIAL NUMBER 464811102544-3

Specimen Ultimate Compressive Ultimate Compressive
Number Strength Strength
(Ibs) (psi)

1 12,767 260,028
2 20,638 420,326
3 20,393 415,336
4 14,877 302,994
5 17466 355,723
6 21,455 436,965
7 20,953 426,741
8 21,089 429511
9 21,546 438,819
10 18,994 386,843

Test rate - 10,000 pounds/minute
Room temperature
Overall specimen length - 0.500 inch; Specimen diameter - 0.250 inch

Tested by: 4’;—;’"“ Qf %S zé’?

Figure A-1. Compressive strength test data for cylinder part 544-3.
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EMC Corporation

Corpaorate Techgology Center
1205 | W
L20S goleman Avenue MATERIALS ENGINEERING

Santa Clara California 85052 RESULTS RECORD NO. 930177
408 283 2731

January 29, 1993 . ; Mc

RESULTS OF TESTING
Federal Standard 1492 (4-point)
FLEXURAL STRENGTH

Serial No.: 464811102544-3

Specimen Load at Failure Modulus of Rupture
Number {1bs) (psi)
1 123.2 39443
2 143.5 45542
3 123.4 39507
4 133.0 42580
B 139.4 44629
6 132.2 42324
7 143.7 46006
8 136.9 43829
9 1354 43349
10 134.9 43189
11 1414 45270
12 134.9 43189
13 133.8 42837
14 138.4 44309
15 131.1 41972
16 138.4 44309
17 139.3 44597
18 136.1 43573
19 134.6 43093
20 141.5 45302

Test rate - 0.02 inch/minute

Room temperature

Overall specimen length - 2.000 + 0.050 inch
Specimen breadth - 0.250 inch

Specimen depth - 0.125 inch

Figure A-2. Flexural strength test data for cylinder part 544-3.
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FMC Corporation

Corporale Technology Center
1205 Coleman Avenus

Box 580 MATERTALS ENGINEERING

Santa Clara California 35052 RESULTS RECORD NO. 930177
408 289 2731

January 29, 1993 ;Mc

RESULTS OF TESTING
ASTM D695
COMPRESSIVE STRENGTH

SERIAL NUMBER 464811019544-4

Specimen Ultimate Compressive Ultimate Compressive
Number Strength Strength
(Ibs) (psi)
1 21678 441,507
2 21,634 440,611
3 20,382 415,112
4 19,785 402,953
5 20,679 419,124
6 18481 376,395
7 18,389 374,521
8 20,059 408,534
9 20,730 422,200
10 21,004 427,780

Test rate - 10,000 pounds/minute
Room temperature

Overall specimen length - 0.500 inch; Specimen diameter - 0.250 inch

Tested By: =

-

Figure A-4. Compressive strength test data for cylinder part 544-4.
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FMC Corpoeration

Corporate Technology Center
1205 Coleman Avenue

Box 580 MATERIALS ENGINEERING
Santa Clara California 95052 RESULTS RECORD NO. 930177
408 289 2731

January 29, 1993 fMC

RESULTS OF TESTING
Federal Standard 1492 (4-point)
FLEXURAL STRENGTH

SERIAL NO.: 464811019544-4

Specimen Load at Failure Modulus of Rupture
Number (1bs) (psi)
1 1418 45398
2 134.56 43061
3 128.5 41140
4 1417 45366
b 129 41300
6 138 44131
7 139.4 44629
8 138.1 44213
9 140.7 45046
10 139.1 44533
11 138.3 44277
1z 134.9 43189
13 132.4 42388
4 140.3 44918
15 139.4 44629
16 124.8 39955
17 1356.1 43253
18 1221 39091
19 139.2 44565
20 1404 44950

Test rate - 0.02 inch/minute
Room temperature
Overall specimen length - 2.000 + 0.050 inch

Specimen breadth - 0.250 inch
NS s VAN

Specimen depth - 0.125 inch
Figure A-5. Flexural strength test data for cylinder part 544-4,
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FMC Corporation

Corporate Technology Center

Corporalte Techiold MATERIALS ENGINEERING
Box 560 e ' RESULTS RECORD NO. 93-188
Sanla Clara Calilornia 95052

408 289 2731

FVIC

RESULTS OF TESTING
ACMA Test #1
COMPRESSIVE STRENGTH

Serial No: 4649F0315649-4

Ultimate Ultimate
Specimen | Compressive Compressive
Number |Strength (lbs)| Diameter Area |Strength (psi)
1 21,502 0.25 0.0491 438,000
2 20,297 0.25 0.0491 413,500
3 20,272 0.25 0.0491 413,000
4 19,448 0.25 0.0491 396,200
5 19,078 0.25 0.0491 388,700
6 19,455 . 025 0.0491 396,300
7 20,546 0.25 0.0491 418,600
8 19,272 0.25 0.0491 392,600
9 20,301 0.25 0.0491 413,600
10 20,730 0.25 0.0491 422,300

Average 409,300
Standard Deviation 14,700

Test rate - 10,000 pounds/minute
Room temperature

Overall specimen length - 0.500 inch; Specimen diameter - 0.250 inch

Tested by: Qg /Xi@,)?
B. Kipp

May 13, 1993 v
PA TMM7-011-15 2

Figure A-6. Compressive strength test data for Type 4 hemisphere part 649-4.
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FMC Corporation

Corposate lechinology Center
1205 Colernan Avenue

MATERIALS ENGINEERING

Box 580 _ RESULTS RECORD NO., 93-188
Sanla Clara Califurnia 95052
408 289 2731
RESULTS OF TESTING
Federal Standard 1492 (4-point)
FLEXURAL STRENGTH
Serial No: -4649F0315649-4
Specimen Load at Failure Modulus of Rupture
Number (1bs) (psi)
1 158 50,5684
2 162 51,865
3 146 46,742
4 166 53,145
5 i61 51,545
6 163 52,185
7 170 54,426
8 172 55,066
9 153 48,984
10 159 50,904
n 131 41,940
12 166 52,825
13 143 - 45,782
14 157 50,264
15 156 49,944
16 143 45,782
17 171 54,746
18 150 48,023
19 162 51,865
20 155 49,624
Average 50,300
Std Deviation 3,300

Test rate - 0.02 inch/minute

Room temperature

Overall specimen length - 2.000 £ 0.050 inch
Specimen breadth - 0.250 inch

Specimen depth - 0.125 inch

_ May 13, 1993

PA TMM7-011-15

Tested by:_ﬁ /i j;,/,,(Qﬁ
.Kpp ~ UV ¥V ) ,

- Figure A-7. Flexural strength test data tor Type 4 hemisphere part 649-4,
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fmc Materials Engineering Laboratories
. 1205 Coleman Avenue & Box580 # Santa Clara, CA 95052

TEST REPORT ' ‘ Page 4

ACMA Test #1
COMPRESSIVE STRENGTH

“Serial No: 4744F0624755-4

Ujtimate . Ultimate
Specimen Compressive Diameter Area Compressive
Number - Load (lbs) (in.) (sq. in.) | Strength (psi)
1 18,041 0.25 0.0491 367,500
2 16,357 0.25 0.0491 333,200
3 17,525 0.25 0.0491 357,000
4 19,854 0.25 0.0491 404,500
5 13,584 0.25 0.0491 | 276,700
6 - 18,785 0.25 0.0491 382,700
7 17,767 0.25 - 0.0491 361,800
8 19,404 0.25 0.0491 395,300
- 9 19,466 0.25 0.0491 396,600
10 15,785 0.25 0.0491 321,600
Average: 359,700
Std. Deviation: 37,800

Test rate - 10,000 pounds/minute
Room temperature .
Overall specimen length - 0.500 inch; Specimen diameter - 0.250 inch

Analyst:

Approved:

For more information about FMC's Materials Engineering Laboratories services, call (408) 289-0215

Figure A-9. Compressive strength test data for Type 6 hemisphere part 755-4.
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f c Materials Engineering Laboratories
1205 Coleman Avenue & Box580 & Santa Clara, CA 95052

TEST REPORT Page 1
CUSTOMER: Paula Davis cusT.PoNo: 14652
COMPANY: WESGO, Inc. FMC ACCT. No:  7MM7-015-15

Federal Standard 1492 (4-point)
FLEXURAL STRENGTH

Serial No: 4744F0624755-4

Specimen Load at Failure Modulus of Rupture
Number {1bs) {psi)

1 164 52,505
2 156 49,944
3 155 49,624
4 149 47,703
5 147 47,063
6 . 169 54,106
7 141 45,142
8 147 47,063
9 175 56,027
10 176 56,347
11 164 52,505
12 142 45,462
13 151 48,343
14 165 . 52,825
15 153 48,984
16 156 49,944
17 157 50,264
18 158 50,584

" 19 157 50,264
20 161 51,545

Average: 50,300
Std. Deviation: 3,000

Test rate - 0.02 inch/minute

Room temperature )

Overall specimen length - 2.000 + 0.050 inch
Specimen breadth - 0.250 inch

Specimen depth - 0.125 inch

For more information about FMC's Materials Engineering Laboralories services, call (408) 289-0215

Figure A-10. Flexural strength test data for Type 6 hemisphere part 755-4.
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APPENDIX B: DIMENSIONAL RANGE
DATA FORMS
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FIGURES

B-1.

B-2.

B-3.

B-4.

B-4.

Dimensional range data form for cylinder part 544-3.

Dimensional range data form for cylinder part 544-4.

Dimensional range data form for Type 4 hemisphere part 649-4.

Dimensional range data form for Type 6 hemisphere part 755-4, sheet 1.

Dimensional range data form for Type 6 hemisphere part 755-4, sheet 2.
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MEET

or

DIHENS_IO{ML RANGE DATA FORM

"WESGO TS

’I‘achnical Carathlc ,;,
ahd Brazlng Allo}}ag: i,

i)

TARL HAME

S.0.
N66001-92-C-0030 Housing,Cylindrical 25"
: L OS5 Lo /S
TAWING HUMBER (GRAPHIC) 15SUE LOI'#
55910-0127-544 - 3 Rev. B FALLE T Ho T
. RANGE
DRAYWING DIMENSION OR NOTE MIN. HAX. SAMPLE SIZE
L_31.90 % 010 3 Q25| ILF833
L .90 I .010 L 999 1. %008 | ]
. § 25.000 % .005 3L P27 25,001
. _R..04 ¥ .010  4Pl, - L8 32 s oK
I 1 lomnfa | D05 | o ool
. rA V=g UOzl Y-S Y2
, O s I
" I//l 0107002 | A] = | 2ar
\ 53v/ 2pL. 3.5 45

o, 1sv/ 2PL.

b

1.

. Serial # 9 5/ SoSv0.3

4.

;. Visual Class A

ZU// Pec

Do Visual

5, Fandling

7. Porosity

Contract # N66001-92-C-0030

—Iliem_4 0001 Code # 944
oL % o 5
INSPECTOR ‘/QGJ-\ETY ASSURANCE DATE COMPLEIED
16.75)
Figure B-1. Dimensional range data form for cylinder part 544-3,
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SIEETY or

l

DIMENSIONAL RANGE DATA FORM l

WESGOHE

Jechnical Cerainilts|i .{
ahd Brazinq I\lloVs‘g'i‘"

SHCHASE OnER 10, " FARRE HAME 5.0.
N66001-92-C-0030 Housing,Cylindrical 25"
/250 /
TMAWING NUMBER IGRAPHIC) ISSUE LOT#
55910-0127-544 ~ 4 Rev. B AL T 10/
. _NANGE
DRAWING DIMEMSION ONR HOTE MIM, HAX, SAMPLE SIZE
L 31.90 ¥ o010 T, Pok 7|3, Fozz
L .90 I .010 L PR . PodS
3, a 25.000 % .005 RS 0023 |25 2439
4 R..04 I .010 _ 4PL. o032 | .o080
I dipinla | s oa l oo 3
7. IA-Ialu(le o < ,ps/
% . & s D7
o 2/Lotollooa {a] iy L osys
19,
1. 6397 2pL. =2 S5
12,
1697 2PL. 7 /2
1. .
|us. Serial # 25¢ 5L <L
‘, 6. -
;7. Visual Class A w/, P2 e
. 1
18, _Candlina /l/& \/Ouﬂb D-é?a}
7. Pornsity @) bse F\)E/C/
0.

fontract # N66001-92-£-0030

ltam 4 0001

Code # 944

(0 Lowe!

INSPECTOR

QéI\LITY ASSURANCE

by o

DATE COMPFLETED

Figure B-2. Dimensional range data form for cylinder part 544-4,
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"‘WESGO

Tochnical Cgraml i

R S : §'-

eer —L— or L— DIMENSIONAL RAHGE DATA FORM ahd B'GZ'"Q A""y’lﬁ{jﬁ,’
[FURTIASE ORGEN TIOT FATT HIAME 8.0.
N66001-92-C-0030 . e entie L2 503
UNAWIHNG NUMBER IGNAFIIICE 15sLVE wr# jﬁ %474?
55910-0127-649 B £Eo 35
. RANGE
DRAWING DITENSION OR HOTE HIN. HAX, SAMI'LE SIZE
L 25.000 ¢ -302 2L 975\ G2 G
2 § 23.200 ¢ "ape | 23.195] 23./9¢
s j el .0000A |8 O} e ool | 002
A M AT 77 0ozl y=e < .pg/
5. 2.50 + 01 252 | 2. 5281
6. SPHER R 11 86 ' ' ' IR AR WIS -k
riela o00o®laleOl 22/ . 203
6 SPHER R.12.59 ' lP. 576 | /2. 599
] @ | g‘_.;‘%ﬁg@l Al sl A .20/ oo T
0.R 4,00 +3.00 ) . L . -3. 5 3 ¥
R 04 + 01 : L0309 LoD
1, 150 4 yo : . /] 525 | 152,72
13.3.13 ¢ 010 3. 000 | 3.053| K
14, ”.',V/ . é L
1s. 6377 41 : val?, =5
1. SERTAL NQ . .
1. L5 & FF o0 # 250649 00%
1o VISUAL CLASS. A W, Spec
19. CANDLING /Ua Dngr s
. POROSITY ' _ Db sevrved

Contract# N66001-92-C-0030 Item # 0001AC Code # 944 , /%)7&3:@3-!%"01445#9(

15 evpenseze (.96 ) AwD ALSO  Ass  weDhy of TBri  (SY TrApEl s WE
llows oS  Conifoas Colid Ac  Frecs (F w.i_ Sarupr_ Th Rez-GnseyD
AvD_ Mot By ConVed Avg e)Lf Dt Grteabyyve. WiHrec PAatat Rassvitve
P T par7s (3) Matowes sar T s owlr Gsaunihe . We ysso A
Bavin o~ Bgre 70 Mogouns W 73mVESS © T Dhe  PloCasd 79 Bacd MMRiaDd
55 2.0, é/’ﬂﬂ_ e
30/ - /é vl

INSPECIOR QU/\bi AESURANCE DATR cCOMriRIeD

Figure B-3. Dimensional range data form for Type 4 hemisphere part 649-4.
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FNEET _]_. or .—2;—

DIMENSIONAL RANGE DATA FORM

' WESGO, z&%ﬁ g 2@“”} l
Tochnical Cerar‘nfth;

| &hd Brazing I\“o}'m e

"MCHASE ONRDEN RO,

FANT HAME

S.0.
455001-92-C-0030 gg;ig‘:{; Hgﬂli%pe ° /RE5L oL
TAWING MUMBER IGRAFINC) IRSUE LOT# 314 7477#
35910-0127-755 B /=g 2%

RANGE !
DRAWIHG DIMENSIDN ON HOTE MIN, MAX, SANPLE S12E !
. @ 25.000 = :8%5 25.000 |25 205 |
L 0 23.200 = Q42 2320 |23.205|
s [ e d a.OOO(DA‘BQj_) D~ ey i
wl-a-lr—7 o = < po/ 3
3 2.50 + .01 D hho | 2 575
& SPHER R 11.8% (56D | M EEZ
»le]o 000 Olals® | ook 5
e .563 + 010 .58 | 547 '
5. R 4.00 + 2%80 2. & 3.7
© B 04+ 0f 035 | . g4
1._15° & o /.5° /5%
2 3.13 + 010 F. 095 | 3 205
3, 2.003 = 2.005 s 37 | HeopS
+Jel o .0s0@al 8@ s PEY
s. 1.003 / 1.005 [ oo | Lood
«.Jo 1p .0a0 () [a]lBGI o Y74 '
4, R .030 2 .02 o/5 | .o/8 '
[ ° o
p 2072 ¥ " FAETS —:Ega ?/a,z_
9. 16 <" 3P Holes 2 : 2.
v, 63 < 2 py Zo = A
Contract# NAGOO1-92-C-0030 Item# 00QAD. Code? 944
- Marxs: ﬁF‘ﬁm IMVET FeriTons - T Q«.vz for _thiswe s .50 To!/SpEc
Z” e AtV

Arad? Qﬂ:ﬁ Tt s Eosser Toum FACA 7& Go or/?“ofS‘owmé- ny 055"
AS Mptsuras o Toss PatATan of Bre R.46— 2,575, <2 ipaille”

T T2

INSPECTOR
te.76)

T o) 26/93

9 5/ 3

QUALITY ASSURANCE

~
DATE cour?lR1ED

Figure B-4. Dimensional range data form for Type & hemisphere part 755-4, sheet 1.



FEATURED RESEARCH

DIMENSIONAL RANGE DATA FORM

' WESGO s

Technlcal Carainié B .{
ahd Brazing Allojau

by

JH’\@’

CHASE QROER L),

N56001-92-C-0030

TANT HAME

Ceramic Hemi Type 6
Battery Heusing

S.0.

/[R5 Lo <~

AWIHNG HUMHBER IGRAPHIC)

15SUE

LOT# F A #T7 <5

55910-0127-649 B Fod2sL
. NAHNGE
DRAWING DIMENSION OR NOTE MIN, MAX, SAMPLE SIZE
._SERIAL NO.
L 25HT55 004
3. VISUAL CLASS A ' W Sme. _
., CANDLING b DederT =
;. POROSITY Observed

Centract# N66001-92-C-0030

Item # 0001AD Code # 944

\50 7I

INSPECTOR

16.76)

LD

Y5/t

I.TY ASSURANCE

OATE CO""LFIED

Figure B-4. Dimensional range data form for Type 6 hemisphere part 755-4, sheet 2.
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