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1. INTRODUCTION

This user guide explains how to use the CHIEF2004 computer program. CHIEF2004 is
an update of the CHIEF2000 program [Benthien, Barach, and Hobbs, 2000]. The program
was tested on machines running Windows 95/98 �, Windows NT �, and COMPACT UNIX.
The CHIEF program was originally developed in the 1960s to compute the acoustic radiation
from an arbitrary shaped radiating body. The program was extensively updated in 1988 and
a users manual was published [Benthien, Barach, and Gillette, 1988]. This CHIEF manual
is still an excellent reference for those interested in the details of the CHIEF program and
the underlying theory. The original CHIEF manual was included in the CD-ROM document
[Benthien and Barach, 1998]. The CHIEF2000 manual was published as an Adobe Acrobat
document [Benthien,Barach, and Hobbs, 2000].

The original CHIEF program and the 1988 update were essentially a library of Fortran
subroutines that were called from a user-generated control routine. This approach gave the
user a lot of flexibility, but required a Fortran compiler to compile and link the control
routine with the library routines. The presence of a Fortran compiler was not a big problem
on most main frame computers. However, with the increasing use of PCs and workstations
for numerical computation, the presence of a Fortran compiler can no longer be assumed.
Thus, both CHIEF 2000 and CHIEF2004 are compiled executable programs that rely on a
user-generated ASCII text file for input. While this approach gives up some flexibility, we
have included as many features of the previous versions of CHIEF as possible.

This user guide describes the setup of the user-generated input file and provides a number
of examples. Section 2 describes the additions and changes to CHIEF2000 introduced by
CHIEF2004. Section 3 describes the use of the program and the general organization of the
input file. Sections 4–6 describe the main subdivisions of the input file. Section 4 describes
the parameter section in which the user can define parameters for use in the remaining
sections of the input file. Section 5 describes the geometry input section in which the user
specifies the radiating surface and its subdivision. Section 6 describes the control section in
which the user specifies the quantities to be computed and the form of the output. Section 7
describes the format of the various possible output files. Section 8 contains several example
problems along with the corresponding input files.

Much of the material in this user-guide is reference material; therefore this document is
not designed to be read from start to finish as one would read a novel. The authors feel
that the program can be best learned by studying the example problems near the end of the
manual. A suggested reading plan is given below:

1. Read Introduction.

2. Read Changes from CHIEF2000

3. Read General Organization section.

4. Read Parameter section.
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5. Read introductory portions of the Geometry and Control sections.

6. Work through example problems.

7. Refer to the command descriptions in the Geometry and the Control sections as needed.

2



2. CHANGES FROM CHIEF2000

Although CHIEF2004 and CHIEF2000 have the same basic function, there have been a
number of additions and changes introduced since the release of CHIEF2000. Some of the
changes are transparent to the user and some require user interaction. I will attempt to
outline below the major changes and what improvements they are intended to provide.

1. CHIEF2000 relies extensively on disk I/O. For large problems a significant amount of
time can be spent in moving large matrices in and out of RAM memory. CHIEF2004
attempts to minimize this transfer of data by keeping as much data as possible in core
at any given time. A large portion of the disk I/O was involved with combining the
symmetry blocks of the CHIEF A,B-matrices. In the new storage scheme a predeter-
mined number of rows of all the symmetry blocks are kept in RAM at any one time.
In this way the symmetry combinations of the blocks can be performed for the rows
in core. The number of rows present in RAM at any time is determined based on
the amount of RAM available. If all the rows of all the blocks will fit in core, then
the whole process is accomplished in core. The matrix area in RAM is also used to
hold the combined blocks during the solution procedure. In this case there is only one
symmetry block of the matrix in core at any given time. It is hoped that this revised
storage scheme will significantly speed up larger CHIEF problems.

2. The revised storage scheme required almost a complete recoding of CHIEF. In the
process the code was made more modular. This should make it easier to make future
changes.

3. In CHIEF2004 virtually all of the array dimensioning is done dynamically in the sub-
routines where the arrays are used. Therefore, there is very little wasted storage space
and it is not necessary to redimension and recompile CHIEF in order to handle larger
problems.

4. The linear equation solver in CHIEF2004 now employs routines from LAPACK. For
overdetermined systems a QR algorithm with column pivoting is used. For square sys-
tems an LU algorithm is used. In both cases a condition number estimate is obtained.
The maximum condition number at each frequency is printed to the screen and to the
output file so that frequencies where nonuniqueness occurs can be detected. The LU
algorithm is about four times faster than the QR algorithm. In CHIEF2000 a QR
algorithm was used in all cases.

5. In CHIEF2004 the interior points used in overdetermining the equations near frequen-
cies where the solution is nonunique can be determined automatically. The points
are chosen along the inner normal to the surface at the center of randomly selected
CHIEF subdivisions. The distance off the surface is chosen based on the size of the
corresponding subdivision. We want to avoid having all interior points lie on a nodal
surface of an interior mode since such points do not help the nonuniqueness problem.
Our strategy is to keep the points fairly close to the boundary surface (which also is a
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nodal surface), but not so close that there are problems with the singular integrands
in the matrix coefficients. We use a distance from the surface equal to the square
root of the corresponding subdivision area. After a potential interior point is chosen
it is tested to make sure that it lies interior to the surface. The test uses a numerical
approximation to the integral relation

−
∫

S

∂

∂nξ

(
1

|x − ξ|
)

dS(ξ) =

⎧⎪⎨
⎪⎩

0 x exterior to S

2π x on S

4π x interior to S.

6. In the point source check the program now automatically determines if the point source
is interior to the surface or exterior to the surface using the integral relation above.

7. CHIEF2004 now contains triangular elements as well as quadrilateral elements. These
elements can use either linear or quadratic interpolation.

8. The user can now specify which planes are to be used as planes of symmetry. In
CHIEF2000 a single plane of symmetry had to be the x1 = 0 plane and two planes of
symmetry had to be the x1 = 0, x2 = 0 planes.

9. There is now an additional symmetry option that allows for a symmetry plane x3 = 0
along with rotational symmetry.

10. In addition to the point source check there is now also a plane wave check. In this check
the actual surface is considered to be transparent. The surface velocity distribution
is determined from the normal derivative of the incident plane wave. This velocity
distribution is used along with the incident pressure field to form the right-hand-side
of the CHIEF equations. The CHIEF equations are solved for the surface pressures
that are then compared with the incident plane wave pressures.

11. The user can now use mathematical expressions in any argument of the commands
contained in the input file that are looking for a real or integer value. These expres-
sions can involve any previously defined parameters. In CHIEF2000 mathematical
expressions were restricted to the parameter section.

12. The first record of binary output files (.zmx, .pmf, .pmn, .abs, .abf, .abn) now contains
the lowest frequency, the frequency increment, and the number of frequencies used in
the frequency sweep. This allows faster search of these files for information associated
with a desired frequency.

13. The user can now specify a surface acceleration distribution or the normal derivative
of pressure in place of a velocity distribution.

14. The program can now generate a coupling matrix that can be used in the coupling of
the finite element equations to the CHIEF equations. The user specifies a list of nodal
coordinates on the surface and and a list of surface elements specifying the surface
nodes belonging to each element. The program outputs a coupling matrix relating
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the finite element force degrees of freedom to the CHIEF surface pressures and a list
relating the finite element node numbers to the sequential node numbers (1,2,. . . ) used
by CHIEF. It should be emphasized that CHIEF does not solve the coupled problem.
It only provides certain matrices that can be used by a knowledgeable user in solving
the coupled problem.

15. The output file (.out) now contains the time spent in various subroutines as well as
the RAM memory usage of the larger arrays.

16. Frequency independent quantities such as quadrature points, surface field points, sur-
face normals, far-field points, etc. are now computed only once and stored in arrays.

17. An executable program convert.exe is now included with CHIEF. This program can
convert all or part of a CHIEF binary output file to an ASCII data file. The user can
specify which frequencies and which symmetry blocks are desired.
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3. GENERAL ORGANIZATION

The program can be run by typing the command

chief <input file name>.inp

at the command prompt. In Windows 95/98 � or Windows NT �, the user should go to an
MS-DOS � window to enter the command. The input file name can be any legal DOS file
name (maximum of eight characters with no spaces). The .inp extension can be omitted in
the command line. If the run completes normally, the message Normal Termination will
appear on the screen.

The input file (<input file name>.inp) is an ASCII text file generated by the user. It
must not contain any control characters. The file is divided into the following three major
sections:

1. Parameter definition

2. Geometry specification

3. Control logic

In the parameter section, the user can assign parameter names to values required for
input in the following sections. The parameter definitions can involve arithmetic expressions
as well as previously defined parameters. It is not necessary to define any parameters since all
required input values can be either parameters or numerical values. The parameter section is
provided for the user’s convenience. In the geometry section, the user specifies the radiating
surface, the subdivision of the surface, and any symmetry conditions. In the control logic
section, the user can specify the quantities to be computed, provide necessary input data,
and specify the type of output. A sample input file is shown below.
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! Parameter section

nblks=8
rotlim=pi/nblks
radius=1.2e-1 ! radius of sphere
freql=100
frequ=200
freqinc=10
end*parameters

! Geometry section

rotational,nblks
sphere,radius
0,pi,-rotlim,rotlim
12,1,4,16
3,0,0,0
end*geometry

! Control logic section

frequency,freql,frequ,freqinc
fluid,995,1489
rhs symmetry
velocities,sample.vel
surface pressures,1
far-field,1,3
0,90,5,0,0,0

A detailed explanation of each input-file section will be given later. Note that the param-
eter definition section must be terminated with a statement beginning with end*p and the
geometry section must be terminated with a statement beginning with end*g. The control
logic section is terminated by an end of file. Blank lines are ignored in the input file, as are
any comments. Comments must begin with an exclamation point (!). All commands and
parameters are case insensitive. Thus, NBLKS is the same parameter as nblks, and Sphere
is the same command as sphere. It is also important that consistent units be used for all
input quantities. The program by default takes the fluid density and sound speed to be 1000
Kg/m3 and 1500 m/sec. If the user desires to use a system of units other than mks, then
these quantities must be changed to values appropriate for that system of units. Data read
in from files must also be in the chosen consistent set of units.
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Unlike the original version of CHIEF, this version has virtually no predetermined size
limits. Most arrays used by the program are allocated dynamically within the program based
on inputs in the input file. The only major exception is the limit of 64 on the number of
Gaussian quadrature points in each direction. This limit is imposed by the method used to
calculate the Gaussian roots and weights.

In addition to any user-specified output files, the program always creates a file with the
name <input file name>.out that contains an echo of all input file lines, error diagnostics,
and user-specified output. In the parameter and geometry sections, the program finds as
many input errors as it can before stopping. However, the program does not go on to the
next section if there are any errors found in the current section. In the control section, the
program terminates if any input error is found. Termination helps prevent calculations from
being performed with inconsistent or missing input.

9



The program can generate many output files. These files all have the same root file
name as the input file. Table 2 lists the extensions of these output files along with a brief
description of their contents.

Table 1. Possible output files.

File Extension File Type File Contents

.sps ASCII Surface pressures on each subdivision

.ffp ASCII Far-field angles and pressures

.nfp ASCII Near-field coordinates and pressures

.zmx Binary Radiation impedance matrix

.pmf Binary Far-field pattern matrix

.pmn Binary Near-field pattern matrix

.abs Binary A and B surface matrices

.abf Binary A and B far-field matrices

.abn Binary A and B near-field matrices

10



4. PARAMETER SECTION

In the parameter section, the user can define parameters that can be used elsewhere in
the CHIEF ASCII input file in place of numerical inputs. Only a single parameter may be
defined on each line of the parameter section, and the parameter definition must have the
form

<parameter name>=<expression>.

The parameter name may be any sequence of alpha-numeric characters or underscore
characters ( ) subject to the following restrictions:

• The first character must be a letter.

• The length of the parameter name can not exceed 24 characters.

• The parameter name cannot contain any spaces.

Case is not important in parameter names (e.g., Nblks is the same as nblks).

All parameter values are interpreted by the program as real numbers. However, the
nearest integer is used in places where an integer input is expected. The user may insert
comments on a separate line or at the end of a line by preceding the comment with an
exclamation point (!).

The expression on the right-hand side is subject to the following conditions:

• The four arithmetic operations (+, −, *, /) and exponentiation (∧) are allowed.

• The mathematical functions sin, cos, tan, sqrt, abs, ln, log, and exp are allowed (e.g.,
sin(xˆ2) or sqrt(x+y)).

• The operands can be numerical values or previously defined parameters.

• Parenthetical grouping (...) and nested operations may be used.

• An exponent may be any real number.

• Scientific notation is allowed (i.e., 1.6e-6).

• The entire line must not exceed 132 characters.

Expressions satisfying the above conditions are also allowed in the geometry and the control
sections wherever a numeric input is expected.
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Spaces may be freely used in parameter definitions except within parameter names. The
program ignores them. There is one parameter, pi, that has been predefined by the program
and may be used anywhere in the input file, including the definition of other parameters.
The usual rules for precedence of operations apply, for example,

• Operators of equal precedence are evaluated in the usual left to right order.

• Exponentiation has precedence over addition, subtraction, multiplication, and division.

• Multiplication and division have precedence over addition and subtraction.

• Unary plus and minus operations (i.e., -1.0 or +5.6) have the same precedence as
exponentiation.

The parameter section must end with a line whose first five nonblank characters are end*p.
The following is an example of a valid parameter section.

rho=1000
c=1500.

diam = 1.5e2 ! This is a comment
height = 4.67
length1 = ((height*.5)ˆ2+(diam/2)ˆ2)ˆ.5
length2 = length1ˆ(1/2)

theta_upper=pi/4
costu=cos(theta_upper)
theta_lower=-theta_upper

freq_upper=3e3
freq_lower=freq_upper*1e-1

near_field_r=length1*c/freq_lower
near_field_theta=pi*5E-1

end*parameters

The following example contains some invalid parameter definitions.

rho fluid=1000 (space in name)
c(1)=1500 (parenthesis in name)
height=4.67 width=2.0 (more than one parameter on line)
length1=((height*.5)ˆ2+(diam/2)ˆ2)ˆ.5

12



(parameter used on the right side before its definition)
1diam=1.5, (name begins with a numeral and comma illegal)
inner*radius=.5 (* illegal symbol in name)
outer-radius=2.5 (- illegal symbol in name)
end*param

A line specifying the end of the parameter section (i.e., end*params) must be included
even if no parameters are defined.

13
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5. GEOMETRY SECTION

CHIEF calculates radiation from one or more closed surfaces in 3-space, or from one or
more planar regions in an infinite rigid baffle. In this section of the manual, we describe how
the user specifies the geometry of the radiating surface. If the surface has one, two, or three
planes of reflective symmetry or a finite order of rotational symmetry, then the user only
needs to input the portion of the surface corresponding to one symmetry block.

The commands that specify the surface geometry may be given in any order, except the
command specifying the symmetry type (NONE, REFLECTIVE, ROTATIONAL) must be
the first command in the geometry section. If there are no underscore characters in the
command word, the program uses only the first three characters. If there is an underscore
character, the program uses the first letter, the underscore character, and the first character
after the underscore to specify the command. Other forms of the command words are
perfectly valid as long as the three characters specifying the command are the same.

Each command line consists of a command or a command followed by one or more
arguments. Some command lines must be followed by additional lines of data. Commands,
arguments, and data items are separated by commas. Parameters defined in the parameter
section and expressions involving these parameters may be used for any numerical input in
this section. As always, blank lines, comments, and spaces are ignored.

CHIEF has many predefined surfaces such as spherical, cylindrical, ellipsoidal, etc. The
radiating surface can be defined in terms of portions of several of these predefined surfaces.
CHIEF also allows the surface to be defined in terms of nodes and elements as in a finite
element problem. The user must supply inputs specifying the various nonoverlapping surface
regions that make up the total radiating surface. In the case of finite element type input,
each element is considered as a separate surface region. Each surface region is defined by a
one-to-one smooth mapping from a rectangular planar region into 3-dimensional space. The
points on the surface as well as any field points are defined in terms of a global rectangular
Cartesian coordinate system, x1, x2, x3. Points in the base rectangular region are defined in
terms a pair of coordinates, u, v. The values u and v are sometimes called surface coordinates.
Each surface region is defined by three relations of the form:

x1 = x1(u, v) x2 = x2(u, v) x3 = x3(u, v).

Each predefined geometry is actually defined in terms of a local x, y, z Cartesian coordi-
nate system that is related to the global coordinate system by a translation and/or a cyclic
permutation of the coordinate axes. The translation is specified by a vector, �t, from the
global origin to the local origin. The cyclic permutation of the coordinate axes is specified
by giving the axis (Iz) in the global system that corresponds to the z-axis in the local system.
The user input for this specification is the integer Iz. Figures 1–3 show the relation between
the global and local coordinate systems for Iz = 1, 2, 3. Note that Iz = 3 corresponds to no
rotation at all.
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Figure 1. Global and local coordinate
systems for Iz = 1.

X

Y

Z

X 1

X 2

X 3

Global  System

Local  System

Translat ion

Figure 2. Global and local coordinate
systems for Iz = 2.
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Figure 3. Global and local coordinate
systems for Iz = 3.
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Thus, each surface region is defined by relations of the form:

x = x(u, v) y = y(u, v) z = z(u, v),

and the specification of Iz and �t.

In addition to specifying a relation between the local and global coordinate systems, the
input quantity Iz is also used to help specify the outward normal vector to the surface region.
From the defining equations for a surface region, CHIEF can compute a normal vector at each
point of the region, but it cannot determine whether this normal vector is inward or outward.
The user specifies this by the sign of Iz. A plus sign accepts the choice made by the CHIEF
program and a minus sign reverses the direction of the surface normal on this surface region.
For example, in the case of a circular planar surface region, the program computes the normal
pointing in the positive z-direction. This direction may or may not be the correct choice for
the surface region under consideration. If the radiating surface was like a tin can with axis
of rotation along the z-axis, then the outward normal would be in the positive z-direction
on the top, but in the negative z-direction on the bottom. Thus, the user would specify
a negative Iz for the bottom surface. The user can also specify a breakup of each surface
region into subareas (on which the pressure and normal velocity will be assumed constant)
by specifying a uniform breakup in the uv rectangular region. Conventional wisdom says
that all subdivisions should be less than 1/4 wavelength with something on the order of 1/8
wavelength desirable. As far as integration over the subdivisions, four Gaussian quadrature
points in 1/8 wavelength seems to give sufficient accuracy.

The first statement in the geometry section must be one of the CHIEF symmetry options
(ROTATIONAL, REFLECTIVE, or NONE) along with any associated parameters. Following the
symmetry specification, the surface regions may be defined in any order. However, the
ordering will influence the numbering of the subdivisions. The numbering begins with the
first region specified and continues consecutively with the other regions in the order specified.
Within a region, the numbering starts with the subarea having the smallest u, v values. The
numbering continues through the region in the direction of increasing u and v, with the
variation in v occurring before variation in u. Figure 4 shows an example of the numbering
for three adjacent planar surface regions.

The numbering proceeds sequentially through the various symmetry blocks and the num-
bering within each symmetry follows the same pattern as in the first block. By default, the
symmetry plane for one plane of symmetry is x1 = 0, and the symmetry planes for two planes
of symmetry are x1 = 0 and x2 = 0. Other choices for symmetry planes can be specified.
The numbering of symmetry blocks for reflective symmetry (default planes) is shown in ta-
bles 2 through 4. The first block is always taken to be in the half-plane, quadrant or octant
containing the octant with all positive coordinates. For one plane of symmetry, the second
block is in the half-space not containing the all-positive octant. For two planes of symmetry,
the quadrants are numbered counterclockwise around the axis formed by the intersection of
the two planes. For three planes of symmetry, the default numbering of blocks is always
used.
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Figure 4. An example of the subdivision numbering scheme.

Table 2. One plane of symmetry (x1 = 0).

Block Octants

x1 x2 x3

1 + + +
+ - +
+ - -
+ + -

2 - + +
- - +
- - -
- + -

Table 3. Two planes of symmetry (x1 = 0 and
x2 = 0).

Block Octants

x1 x2 x3

1 + + +
+ + -

2 - + +
- + -

3 - - +
- - -

4 + - +
+ - -
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Table 4. Three planes of symmetry
(x1 = 0, x2 = 0, and x3 = 0).

Block Octants

x1 x2 x3

1 + + +

2 - + +

3 - - +

4 + - +

5 + - -

6 - - -

7 - + -

8 + + -

The geometry section ends with a statement like end*geometry, where only the first
part, end*g, is significant to the program. Commands specifying the surface geometry are
described on the following pages. The syntax for each command is given along with a
description of the parameters and data items that accompany the command. For commands
that do not contain an underline character, the program only looks at the first three letters.
For commands that contain an underline character, the program looks at the first character,
the underline character, and the first character after the underline character. Alternate
forms of the commands are allowed as long as the three significant characters are in the
right place. Optional parameters are enclosed in brackets. For those commands that define
a surface region, the mapping from the u, v rectangular region to the surface is described.
The user needs to understand what u and v are in order to understand the numbering of the
surface subdivisions.
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reflective symmetry

specifies planes of reflective symmetry

Command: reflective symmetry, ip

ip Integer specifying planes of symmetry. It consists of three digits each of
which is 0 or 1. A one in the first position means that x1 = 0 is a plane
of symmetry; a one in the second position means that x2 = 0 is a plane
of symmetry; a one in the third position means that x3 = 0 is a plane of
symmetry. For example, ip = 011 specifies x2 = 0 and x3 = 0 as planes of
symmetry. Three planes of symmetry is specified by ip = 111.
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rotational symmetry

specifies finite order rotational symmetry

Command: rotational symmetry, N [, Iref]

N Specifies N -fold rotational symmetry

Iref Has the value 1 if z = 0 is a plane of symmetry. The default is Iref = 0
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none

specifies no symmetry

Command: none
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rectangular planar

rectangular region on surface parallel to the x, y plane

Command: rectangular planar, z0

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

z0 Constant value of z in local coordinate system

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the z-axis is normal to the plane
of the surface. In this case u is equal to x and v is equal to y. The local coordinates and
normal vector are related to the u, v coordinates by

x = u nx = 0
y = v ny = 0
z = z0 nz = 1
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circular planar

circular region on surface parallel to the x, y plane

Command: circular planar, z0

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

z0 Constant value of z in local coordinate system

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the z-axis is normal to the plane
of the surface. In this case u is the radial distance from the z-axis and v is the angle from
the x-axis in the xy plane. The local coordinates and normal vector are related to the u, v
coordinates by

x = u cos v nx = 0
y = u sin v ny = 0
z = z0 nz = 1
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elliptical planar

elliptical region on surface parallel to the x, y plane

Command: elliptical planar, a, b, z0

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a Half the length of the major axis of the ellipse

b Half the length of the minor axis of the ellipse

z0 Constant value of z in local coordinate system

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the z-axis is normal to the plane of
the surface. In this case u = r/f where r is the average of the radial distances of a point
from the two foci and f is half the interfocal distance. The range of u is 1 ≤ u ≤ a/

√
a2 − b2.

The family of curves for which u is a constant consists of ellipses having the same foci. The
ellipse corresponding to u = 1 is the degenerate ellipse consisting of the interval [-f,f] on
the x-axis. The ellipse corresponding to u = a/

√
a2 − b2 is the boundary ellipse with major

diameter of 2a and minor diameter of 2b. Thus, the upper limit uU of the variable u is almost
always a/

√
a2 − b2. On an ellipse of constant u the variable v is related to the angle θ from

the x-axis in the xy plane by

v = tan−1
(

u√
u2 − 1

tan θ

)
.
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The local coordinates and normal vector are related to the u, v coordinates by

x = fu cos v nx = 0,

y = f
√

u2 − 1 sin v ny = 0,
z = z0 nz = 1,

where f =
√

a2 − b2.

Equal increments in v do not produce equal increments in θ and vise versa. However,
quadrants in the xy-plane do come out the same, as can be seen from the following table:

v x y θ

0 fu 0 0

π/2 0 f
√

u2 − 1 π/2

π −fu 0 π

3π/2 0 -f
√

u2 − 1 3π/2
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circular cylinder

cylindrical surface with axis along z-axis

Command: circular cylinder, a

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a radius of cylinder

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the z-axis coincides with the axis of
the cylinder. In this case, u = z and v is the angle from the x-axis in the xy plane. The
local coordinates and normal vector are related to the u, v coordinates by

x = a cos v nx = cos v

y = a sin v ny = sin v

z = u nz = 0
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elliptic cylinder

elliptic cylindrical surface with axis along z-axis

Command: elliptic cylinder, a, b

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a Half the major diameter

b Half the minor diameter

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the axis of the cylinder coincides
with the z-axis. In this case u = z and v is related to the angle θ from the x-axis in the xy
plane by

v = tan−1
(a

b
tan θ

)
.

The local coordinates and normal vector are related to the u, v coordinates by

x = a cos v nx =
b cos v√

a2 − (a2 − b2) cos2 v

y = b sin v ny =
a sin v√

a2 − (a2 − b2) cos2 v

z = u nz = 0
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Equal increments in v are not equal increments in θ, and vise versa. However, quadrants
in the xy-plane do come out the same as shown in the following table:

v x y θ

0 a 0 0

π/2 0 b π/2

π −a 0 π

3π/2 0 −b 3π/2
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sphere

spherical surface

Command: sphere, a

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a Radius of sphere

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the polar axis coincides with the
z-axis. In this case u is the angle from the z-axis and v is the angle from the x-axis in the
xy plane. The local coordinates and normal vector are related to the u, v coordinates by

x = a sin u cos v nx = sin u cos v

y = a sin u sin v ny = sin u sin v

z = a cos u nz = cos u
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oblate spheroid

oblate spheroidal surface obtained by rotating ellipse around minor axis

Command: oblate spheroid, a, b

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a Half the major diameter of elliptical cross section

b Half the minor diameter of elliptical cross section

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the axis of rotation coincides with
the z-axis. In this case v is the angle from the x-axis in the xy plane. u is related to the
angle θ from the z-axis by

u = tan−1
(

b

a
tan θ

)
.

31



The local coordinates and normal vector are related to the u, v coordinates by

x = a sin u cos v nx =
b sin u cos v√

a2 − (a2 − b2) cos2 v

y = a sin u sin v ny =
b sin u sin v√

b2 − (a2 − b2) cos2 u

z = b cos u nz =
a cos u√

b2 − (a2 − b2) cos2 u

Equal increments in u do not produce equal increments in θ, and vise versa. However,
quadrants do come out the same as shown in the following table:

u x y z θ

0 0 0 b 0

π/2 a cos v a sin v 0 π/2

π 0 0 −b π
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prolate spheroid

prolate spheroidal surface obtained by rotating ellipse around major axis

Command: prolate spheroid, a, b

uL, uU , vL, vU

Nu, Nv, Qu, Qv

Iz, [t1, t2, t3]

a Half the major diameter of elliptical cross section

b Half the minor diameter of elliptical cross section

uL, uU Lower and upper limits for the surface coordinate u

vL, vU Lower and upper limits for the surface coordinate v

Nu, Nv Number of subdivisions in the u and v directions in the planar rectangular
region

Qu, Qv Number of Gaussian quadrature points per subarea in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)

Surface definition:

The local coordinate system must be set up so that the axis of rotation coincides with
the z-axis. In this case v is the angle from the x-axis in the xy plane and u is related to the
angle θ from the z-axis by

u = tan−1
(a

b
tan θ

)
.
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The local coordinates and normal vector are related to the u, v coordinates by

x = b sin u cos v nx =
a sin u cos v√

a2 − (a2 − b2) cos2 v

y = b sin u sin v ny =
a sin u sin v√

b2 − (a2 − b2) cos2 u

z = a cos u nz =
b cos u√

b2 − (a2 − b2) cos2 u

Equal increments in u are not equal increments in θ, and vise versa. However, quadrants
do come out the same as shown in the following table:

u x y z θ

0 0 0 a 0

π/2 b cos v b sin v 0 π/2

π 0 0 −a π
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fe axisymmetric

curve generated by finite element interpolation functions is rotated around z-axis

Command: fe axisymmetric, file.crd, file.elt, Qu, Qv

Iz, [t1, t2, t3]

file.crd File containing nodal coordinates. This file is an ASCII file containing three
columns of data with one or more spaces between columns. The first column
contains nodal numbers, the second column contains the radial r coordi-
nates of the nodes, and the third column contains the axial z coordinates
of the nodes. The nodes lie along the generating curve for the surface. This
curve is rotated around the z-axis to generate the surface.

file.elt File containing element node numbers. This file is an ASCII file that
contains two columns if linear interpolation is used and three columns if
quadratic interpolation is used. The columns are separated by one or more
spaces. Each line of data contains the node numbers for an element. If
there are two columns, the node numbers are for the first and last node in
the element. If there are three columns, then the columns correspond to
first node, middle node, and last node respectively.

Qu, Qv Number of Gaussian quadrature points in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)
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Surface definition:

The local coordinate system is set up with the z-axis being the axis of rotation. Each
finite element corresponds to one CHIEF subdivision of the surface. The surface coordinate
v is the angle from the x-axis in the xy-plane. The surface coordinate u is in the interval
[-1,1]. The local coordinates and normal vector are related to the u, v coordinates by

x = r(u) cos v nx = nr(u) cos v

y = r(u) sin v ny = nr(u) sin v

z = z(u) nz = nz(u)

where

⎛
⎝r(u)

z(u)

⎞
⎠ =

2,3∑
n=1

φn(u)

⎛
⎝rn

zn

⎞
⎠

and

⎛
⎝tr(u)

tz(u)

⎞
⎠ =

2,3∑
n=1

φ′
n(u)

⎛
⎝rn

zn

⎞
⎠ tangent vector

⎛
⎝nr(u)

nz(u)

⎞
⎠ =

⎛
⎝−tz(u)/

√
t2r(u) + t2z(u)

tr(u)/
√

t2r(u) + t2z(u)

⎞
⎠ .

rn, zn given coordinates of nodes belonging to element

φn(u) finite element interpolation function (linear or quadratic)

For linear interpolation, the interpolation functions φn are given by

φ1(u) = 1
2(1 − u)

φ2(u) = 1
2(1 + u).

For quadratic interpolation,

φ1(u) = 1
2u(u − 1)

φ2(u) = 1 − u2

φ3(u) = 1
2u(u + 1).

The normal has been chosen so that it points to the left as you travel along the cross-
section curve.
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fe 3d

surface generated by finite element interpolation functions

Command: fe 3d, file.crd, file.elt, Qu, Qv

Iz, [t1, t2, t3]

file.crd File containing nodal coordinates. This file is an ASCII file containing four
columns of data with one or more spaces between columns. The first column
contains nodal numbers and the second through fourth columns contain the
x, y, z coordinates of the nodes.

file.elt File containing element node numbers. This file is an ASCII file that con-
tains four columns if linear interpolation on a rectangular patch is used and
eight columns if quadratic interpolation on a rectangular patch is used. It
contains three columns if linear interpolation on a triangular patch is used
and six columns if quadratic interpolation on a triangular patch is used.
The columns are separated by one or more spaces. Each line of data con-
tains the node numbers for an element. If there are three or four columns,
the node numbers are for the corner nodes of the element taken in a coun-
terclockwise direction around the element. If there are eight (six) columns,
then the first four (three)columns are the same as for the linear case and the
last four (three) columns are for the mid nodes taken in a counterclockwise
direction beginning with the node between the first and second nodes.

Qu, Qv Number of Gaussian quadrature points in the u and v directions

Iz Specifies rotation from local to global coordinate system and orientation of
normal

t1, t2, t3 Components of the translation vector from the global origin to the local
origin (default is t1 = t2 = t3 = 0)
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Surface definition:

Each finite element corresponds to one CHIEF subdivision of the surface. Figure 5 shows
the base rectangle for a rectangular surface patch.
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Figure 5. The base rectangle in the uv coordinate system.

The local coordinates and normal vector are related to the u, v coordinates by

x = x(u, v) nx = νx(u, v)/
√

νx(u, v)2 + νy(u, v)2 + νz(u, v)2

y = y(u, v) ny = νy(u, v)/
√

νx(u, v)2 + νy(u, v)2 + νz(u, v)2

z = z(u, v) nz = νz(u, v)/
√

νx(u, v)2 + νy(u, v)2 + νz(u, v)2,

where ⎛
⎜⎜⎜⎝

x(u, v)

y(u, v)

z(u, v)

⎞
⎟⎟⎟⎠ =

4,8∑
n=1

φn(u, v)

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠
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and ⎛
⎜⎜⎜⎝

tux(u, v)

tuy(u, v)

tuz (u, v)

⎞
⎟⎟⎟⎠ =

4,8∑
n=1

∂φn(u, v)
∂u

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠ u tangent vector

⎛
⎜⎜⎜⎝

tvx(u, v)

tvy(u, v)

tvz(u, v)

⎞
⎟⎟⎟⎠ =

4,8∑
n=1

∂φn(u, v)
∂v

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠ v tangent vector

⎛
⎜⎜⎜⎝

νx(u, v)

νy(u, v)

νz(u, v)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

tuy(u, v)tvz(u, v) − tuz (u, v)tvy(u, v)

tuz (u, v)tvx(u, v) − tux(u, v)tvz(u, v)

tux(u, v)tvy(u, v) − tuy(u, v)tvx(u, v)

⎞
⎟⎟⎟⎠

xn, yn, zn given coordinates of nodes belonging to element

φn(u, v) finite element interpolation function (linear or quadratic)

For linear interpolation on a rectangular element, the interpolation functions φn are given
by

φ1(u, v) = 1
4(1 − u)(1 + v)

φ2(u, v) = 1
4(1 − u)(1 − v)

φ3(u, v) = 1
4(1 + u)(1 − v)

φ4(u, v) = 1
4(1 + u)(1 + v).

For quadratic interpolation on a rectangular element,

φ1(u, v) = 1
4(1 − u)(1 + v)(v − u − 1)

φ2(u, v) = 1
4(1 − u)(1 − v)(−v − u − 1)

φ3(u, v) = 1
4(1 + u)(1 − v)(−v + u − 1)

φ4(u, v) = 1
4(1 + u)(1 + v)(v + u − 1)

φ5(u, v) = 1
2(1 − u)(1 + v)(1 − v)

φ6(u, v) = 1
2(1 − u)(1 − v)(1 + u)

φ7(u, v) = 1
2(1 + u)(1 − v)(1 + v)

φ8(u, v) = 1
2(1 + u)(1 + v)(1 − u).

The normal was chosen so that the nodes appear in counterclockwise order when viewed
from the positive normal side of the surface.
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For triangular patches, the base triangle is shown in figure 6.

(0,0)

(0,1/2)

(0,1)

(1/2,1/2)

(1/2,0) (1,0) ξ

η

1 4 2

5

3

6

Figure 6. Base triangle for CHIEF element.

The local coordinates and normal vector are related to the ξ, η coordinates by

x = x(ξ, η) nx = νx(ξ, η)/
√

νx(ξ, η)2 + νy(ξ, η)2 + νz(ξ, η)2

y = y(ξ, η) ny = νy(ξ, η)/
√

νx(ξ, η)2 + νy(ξ, η)2 + νz(ξ, η)2

z = z(ξ, η) nz = νz(ξ, η)/
√

νx(ξ, η)2 + νy(ξ, η)2 + νz(ξ, η)2,

where ⎛
⎜⎜⎜⎝

x(ξ, η)

y(ξ, η)

z(ξ, η)

⎞
⎟⎟⎟⎠ =

3,6∑
n=1

φn(ξ, η)

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠
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and ⎛
⎜⎜⎜⎝

tξx(ξ, η)

tξy(ξ, η)

tξz(ξ, η)

⎞
⎟⎟⎟⎠ =

3,6∑
n=1

∂φn(ξ, η)
∂ξ

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠ ξ tangent vector

⎛
⎜⎜⎜⎝

tηx(ξ, η)

tηy(ξ, η)

tηz(ξ, η)

⎞
⎟⎟⎟⎠ =

3,6∑
n=1

∂φn(ξ, η)
∂η

⎛
⎜⎜⎜⎝

xn

yn

zn

⎞
⎟⎟⎟⎠ η tangent vector

⎛
⎜⎜⎜⎝

νx(ξ, η)

νy(ξ, η)

νz(ξ, η)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

tξy(ξ, η)tηz(ξ, η) − tξz(ξ, η)tηy(ξ, η)

tξz(ξ, η)tηx(ξ, η) − tξx(ξ, η)tηz(ξ, η)

tξx(ξ, η)tηy(ξ, η) − tξy(ξ, η)tηx(ξ, η)

⎞
⎟⎟⎟⎠

xn, yn, zn given coordinates of nodes belonging to element

φn(ξ, η) finite element interpolation function (linear or quadratic)

For linear interpolation on a triangular element, the interpolation functions φn are given by

φ1(ξ, η) = 1 − ξ − η

φ2(ξ, η) = ξ

φ3(ξ, η) = η.

For quadratic interpolation on a triangular element,

φ1(ξ, η) = 2(1 − ξ − η)(1
2 − ξ − η)

φ2(ξ, η) = 2ξ(ξ − 1
2)

φ3(ξ, η) = 2η(η − 1
2)

φ4(ξ, η) = 4ξ(1 − ξ − η)
φ5(ξ, η) = 4ξη
φ6(ξ, η) = 4η(1 − ξ − η).

The normal is chosen so that the nodes appear in counterclockwise order when viewed from
the positive normal side of the surface.

The base triangle is mapped onto a planar rectangular region by the polar-like transformation

ξ = u(1 − v)
η = uv,

where 0 ≤ u, v ≤ 1.
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6. CONTROL SECTION

In this section, commands are given to specify the type of job CHIEF is asked to perform.
The commands in this section may be given in any order. Only the first three characters of
the command word itself are used by the program. Other forms of the command words are
perfectly valid as long as the same first three characters are used.

Each command line consists of a command or a command followed by one or more
arguments. Some command lines must be followed by additional lines of data. Commands,
arguments, and data items are separated by commas. Parameters that have been defined
in the parameter section and expressions involving these parameters may be used for any
numerical input in this section. As always, blank lines, comments, and spaces are ignored.

The following types of problems may be run in CHIEF (with only one type allowed per
run). The first two types are the most commonly used. Following each type are a list of
commands that must be included in the input file. Optional commands are given in braces.

1. Calculate surface and/or field pressures (see example problems 1, 2, 5, 6, 8):

velocity, acceleration, or planewave

surface pressures

[far-field]

[near-field]

2. Calculate impedance and/or field matrices (see example problem 4):

impedance

[far-field]

[near-field]

3. Calculate A and B matrices (see example problem 9):

a b matrices

One or more of the following are required:

[surface pressures]

[far-field]

[near-field]

4. Point source check on numerical accuracy (see example problem 3):

point source
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5. Compute coupling matrix

couple

CHIEF solves exterior radiation or scattering problems by default. If the inside com-
mand is given, CHIEF solves an interior problem. For interior problems, commands such
as far-field and infinite baffle make no sense. We now provide the format for each
command. Optional parts of the command line are in brackets.
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a b matrices

outputs the surface or field A and B matrices

Command: a b matrices

When the surface pressures command is given CHIEF produces a system of equations
of the form AP = BV + Pinc where P is the vector of surface pressures, V is the vector of
surface normal velocities, and Pinc is the vector of incident surface pressures resulting from
an incident plane wave specified by the user. When the far-field pressures command
is given CHIEF produces a set of equations of the form Pff = AP + BV where Pff is the
vector of far-field radiated pressures at prescribed angles. When the near-field pressures
command is given CHIEF produces a set of equations of the form Pnf = AP + BV where
Pnf is the vector of near-field pressures at prescribed locations.

A and B matrices may be output for any or all of the above three case. These matrices
are output to binary files with extensions .abs, .abf, and/or .abn if the commands surface
pressures, far-field pressures, and/or near-field pressures, respectively, have been
given in the CHIEF input file.
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acceleration

specifies surface normal acceleration input

Command: acceleration, <filename>

<filename> Name of file containing surface normal acceleration input. This file is an
ASCII file containing five columns separated by one or more spaces. The
first column is the acceleration distribution number (i.e., the first acceler-
ation distribution will have a 1 in this column, the second a 2, etc.). The
second column contains the symmetry block number. The third column
contains the surface subdivision number. The fourth and fifth columns
contain the real and imaginary parts of the normal acceleration.

If the acceleration has the same symmetry as the radiating surface, then only one symmetry
block of the accelerations needs to be input.
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acceleration (alternate form)

specifies surface normal acceleration input by means of a loop

Command: acc(i1 : i2 : i3, j1 : j2 : j3, k1 : k2 : k3) = (x, y) I = I1, I2, I3

I loop index (does not have to be I—the name can be selected by the user).
If no loop is desired the portion of the command beginning with “I =” can
be omitted.

I1, I2, I3 I1 is the starting index for the loop, I2 is the ending index for the loop, and
I3 is the step size. These limits can be replaced by any expression involving
previously defined parameters.

i1 : i2 : i3 specifies a range for the surface subdivision number, where i1 is the starting
index, i2 is the ending index, and i3 is the step size. If i3 is not present,
it is set to 1. If i2 and i3 are not present, i2 is set equal to i1. The colon
is not necessary if the following index is not present (e.g., the range could
be given by i1 : i2 or just i1). The range limits can be replaced by any
expression involving previously defined parameters and/or the index I.

j1 : j2 : j3 specifies a range for the symmetry block number, where j1 is the starting
index, j2 is the ending index, and j3 is the step size. If j3 is not present,
it is set to 1. If j2 and j3 are not present, j2 is set equal to j1.The colon
is not necessary if the following index is not present (e.g., the range could
be given by j1 : j2 or just j1). The range limits can be replaced by any
expression involving previously defined parameters and/or the index I.

k1 : k2 : k3 specifies a range for the acceleration distribution number, where k1 is the
starting index, k2 is the ending index, and k3 is the step size. If k3 is not
present, it is set to 1. If k2 and k3 are not present, k2 is set equal to k1.The
colon is not necessary if the following index is not present (e.g., the range
could be given by k1 : k2 or just k1). The range limits can be replaced by
any expression involving previously defined parameters and/or the index I.

x, y x is the real part of the acceleration and y is the imaginary part of the
acceleration. If the imaginary part is zero, the user can use x in place
of (x, y). x and y can be replaced by any expression involving previously
defined parameters and/or the index I.

If the acceleration has the same symmetry as the radiating surface, then only one symmetry
block of the accelerations needs to be input.
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couple

calculates coupling matrix relating finite element forces to CHIEF pressures

Command: couple, Iprt, Ndof

Iprt If Iprt = 1, then the coupling matrix will be output to the ASCII .out file
in addition to being output to the binary file <input filename>.cpl. If
Iprt = 0 (default), then the coupling matrix will only be output to the
binary file.

Ndof Number of finite element degrees of freedom per node (default 3).

The forcing vector F in the finite element program is given by

Fmα =
∫

S

�t · �φmα dS,

where m is the node number, α is the dof number (1 ≤ α ≤ 3), �t is the surface traction, and
�φmα is the finite element interpolation function corresponding to the node m and the dof α.
The traction vector corresponding to acoustic loading is given by

�t = −p�n,

where p is the acoustic pressure and �n is the outward surface normal. Thus, the corresponding
finite element force is given by

Fmα = −
∫

S

p�φmα · �n dS.

Because p is assumed constant over each surface subdivision Sn, we have

Fmα = −
∑

n

pn

∫
Sn

�φmα · �n dS,

where the summation index n extends over all surface subdivisions. The vector interpolation
functions �φmα are assumed to have the form

�φmα = φm�eα,

where φm is a scalar interpolation function and �eα is a unit vector in the α coordinate
direction. Thus,

Fmα = −
∑

n

pn

∫
Sn

φm�n · �eα dS.

This equation can be written in the alternate form

Fmα = −
∑

n

pnAnCmαn,
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where An is the area of the n-th subdivision and

Cmαn =
1

An

∫
Sn

φm�n · �eα dS

are the components of the coupling matrix. The coupling matrix is output as a two-
dimensional matrix with the indices m and α combined into a single index in which the
degrees of freedom for each node occur together, i.e.,

Cm′n = Cmαn m′ = (m − 1)Ndof + α.
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far-field

calculates far-field pressures or matrix

Command: far-field, N , Iprt

θ1
L, θ1

U , θ1
inc, φ1

L, φ1
U , φ1

inc

...

θN
L , θN

U , θN
inc, φN

L , φN
U , φN

inc

N Number of far-field data lines to follow command

Iprt Print flag. If Iprt=1, then far-field pressures are written to the standard
output file (<input filename>.out). If Iprt=2, then the far-field pressures
are written to an ASCII file (<input filename>.ffp) containing only far-
field output. If Iprt=3, then the far-field pressures are written to both the
standard output file and the far-field ASCII output file. If far-field matrices
are computed, they are written to the binary file (<input filename>.pmf)
regardless of the value of the print flag.

θk
L, θk

U , θk
inc Lower limit, upper limit, and increment in θ for k-th θ, φ range

φk
L, φk

U , φk
inc Lower limit, upper limit, and increment in φ for k-th θ, φ range

Each data line specifies a set of equally spaced φ’s and a set of equally spaced θ’s. The
program performs far-field computations for all θ, φ pairs, where θ is taken from the set of
equally spaced θ’s and φ is taken from the set of equally spaced φ′s. Each successive data line
specifies another collection of θ, φ pairs for which far-field calculations are to be performed.

If the Impedance command is contained in the control section, then far-field matrices are
computed. Each matrix row corresponds to a direction specified by a θ, φ pair, and each
column corresponds to a surface subdivision. If G is the far-field matrix, then the vector of
far-field pressures Pff at the specified directions is related to the vector of surface normal
velocities V by

Pff = GV.

If a surface velocity distribution is specified by a Velocity command in the control section,
then the far-field radiated pressures corresponding to the velocity distribution are computed
instead of the far-field matrix. If an incident plane wave is specified through the Plane wave
command, then the scattered far-field pressures are computed.
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fluid

user specified fluid density and sound speed

Command: fluid, ρ, c

ρ Density of fluid

c Sound speed in fluid

If the fluid command is omitted, then the default values of ρ = 1000 and c = 1500 will
be used. These values are fairly typical for water in mks units, but if a different fluid or a
different set of units is used, then the appropriate values can be set with this command.
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frequency

specifies frequency range for calculations

Command: frequency, fL [, fU , finc]

fL Lower frequency limit for range of equally spaced frequencies

fU Upper frequency limit for range of equally spaced frequencies

finc Frequency increment

If fu and finc are missing, then only one frequency fL will be used.
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impedance

calculates impedance matrix

Command: impedance, Isym, Iprt

Isym If Isym = 1, then the velocity distribution has the same symmetry as the
radiating surface. If Isym = 0, then CHIEF will not take advantage of
velocity symmetry

Iprt Print flag. If Iprt = 1, then the impedance matrix will be output to the
binary file <input filename>.zmx.

The impedance matrix Z is defined by

F = ZV,

where V is the vector of surface normal velocities on the CHIEF subdivisions and F is the
vector of surface forces on the CHIEF subdivisions.
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infinite baffle

specifies infinite rigid baffle

Command: infinite baffle

CHIEF treats the radiating surface as a planar region in an infinite rigid baffle. The surface
definition must only consist of planar regions.
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inside

specifies that an interior problem is to be solved

Command: inside

CHIEF solves an interior problem instead of an external problem. The positive normal
direction is still taken as external to the surface.
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interior points

adds equations corresponding to prescribed interior points to improve numerical stability of
CHIEF equations at certain critical frequencies

Command: interior points, N

x1, y1, z1

...

xN , yN , zN

N Number of interior points per symmetry block

xk, yk, zk Global Cartesian coordinates of k-th interior point where k = 1, . . . , N .
If N sets of coordinates are not provided, the program will automatically
generate the missing sets.

The CHIEF surface A matrix becomes ill-conditioned near certain critical frequencies
corresponding to resonances of the interior problem with a zero surface pressure bound-
ary condition. The addition of equations corresponding to interior points relieves this ill-
conditioning if at least one of the points does not lie on a nodal surface for the interior
mode corresponding to the critical frequency. To automatically generate an interior point
CHIEF randomly chooses a surface field point (the center of some subdivision) and goes
along the interior normal at that point a distance equal to the square root of the area of
the subdivision. CHIEF then checks this point using an integral expression (see Appendix
A) to determine that the point is inside the body. If not, the program tries another sur-
face field point. The program gives a warning stating the number of unsuccessful attempts.
Unsuccessful attempts often occur when the body is very thin and the subdivisions are too
large.
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memory

specifies amount of RAM memory available for storing large matrices.

Command: memory, M

M Bytes of RAM memory available for storing large matrices such as the
CHIEF A,B-matrices. The default is 20 MB.

The amount of RAM available is used to determine how many rows of each symmetry
block can be stored in memory at any one time. Two complex matrix areas are dimensioned
to hold the matrices in memory. The number of columns is dimensioned to the number
of surface subdivisions and the number of rows is dimensioned to the number of rows per
symmetry block times the number of symmetry blocks for the largest matrix used (surface,
far-field, near-field).
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near-field

calculates near-field pressures or matrix

Command: near-field, N , Iprt

x1, y1, z1

...

xN , yN , zN

N Number of near-field points

Iprt Print flag. If Iprt = 1, then near-field pressures are written to the stan-
dard output file (<input filename>.out). If Iprt = 2, then the near-field
pressures are written to an ASCII file (<input filename>.nfp) contain-
ing only near-field output. If Iprt = 3, then the near-field pressures are
written to both the standard output file and the near-field ASCII output
file. If near-field matrices are computed, they are output to the binary file
(<input filename>.pmn) regardless of the value of the print flag.

xk, yk, zk Global Cartesian coordinates of k-th near-field point at which near-field
pressures are desired (k = 1, . . . , N).

If the Impedance command is contained in the control section , then near-field matrices
are computed. Each row of this matrix corresponds to a near-field point and each column
corresponds to a surface subdivision. If G is the near-field matrix, then the vector of near-
field pressures Pnf at the specified points is related to the vector of surface normal velocities
V by

Pnf = GV.

If a surface velocity distribution is specified by a Velocity command in the control section,
then the near-field radiated pressures corresponding to the velocity distribution are computed
instead of the far-field matrix. If an incident plane wave is specified through the Plane wave
command, then the scattered near-field pressures are computed.
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plane wave

specifies plane incident wave for rigid scattering problem

Command: plane wave, Isym, ainc, θinc, φinc

Isym If Isym = 1, then the incident pressure field has the same symmetry as
the radiating surface. If Isym = 0, then CHIEF will not take advantage of
velocity symmetry

ainc Amplitude of the incident plane wave

θinc, φinc Angles (in degrees) specifying the direction from which the plane wave is
coming relative to the global coordinate axes. θinc is the angle from the
x3-axis and φinc is the angle from the x1-axis in the x1x2-plane.

Since CHIEF does not contain any structural capabilities, it can only compute rigid scatter-
ing.
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pscheck

uses pressures from specified point sources to check the accuracy of CHIEF calculations

Command: pscheck, Isym, N

x1, y1, z1, W re
1 , W im

1
...

xN , yN , zN , W re
N , W im

N

Isym Isym = 1 specifies that the point source distribution has the same symmetry
as the radiating surface. In this case, the point sources only need to be input
for the first symmetry block

N Number of point sources

xk, yk, zk Global Cartesian coordinates of k-th point source

W re
k , W im

k Real and imaginary parts of the weight for the k-th point source

The point source check uses analytic expressions to calculate surface velocities and in-
cident surface pressures (for exterior point sources) due to the prescribed point sources
assuming that the surface is transparent. The surface pressures are then calculated using
the CHIEF equations

AP = BV + P inc.

If all the point sources are interior to the surface, P inc = 0. The surface pressures calculated
using CHIEF can be compared to the pressures on the surface calculated using analytical
expressions for point sources. This comparison can be used to determine the adequacy of
the surface break-up into subareas, adequacy of interior points to remove ill-conditioning at
critical frequencies, and errors due to improper input such as wrong directions for normal
vectors. The location of the point sources should be selected to produce a velocity distribu-
tion that is as smooth as the expected velocity distribution. For thin bodies, the velocity due
to an interior point source will vary very rapidly near the point source. Therefore, it may
be necessary to use exterior point sources to obtain a velocity distribution with the desired
smoothness. The program automatically determines if a point source is located interior to
or exterior to the boundary surface.
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pwcheck

uses pressures from incident plane wave to check the accuracy of CHIEF calculations

Command: pwcheck, ainc, θinc, φinc, [Isym]

ainc magnitude of incident wave

θinc, φinc Angles (in degrees) specifying the direction from which the plane wave is
coming relative to the global coordinate axes. θinc is the angle from the
x3-axis and φinc is the angle from the x1-axis in the x1x2-plane.

Isym Isym = 1 specifies that the plane wave pressure distribution has the same
symmetry as the radiating surface. The default is Isym=0.

The plane wave check uses an analytic expression to calculate surface velocities and
incident surface pressures due to the plane wave assuming that the surface is transparent.
The surface pressures are then calculated using the CHIEF equations

AP = BV + P inc.

The surface pressures calculated using CHIEF can be compared to the pressures on the
surface calculated using analytical expressions for point sources. This comparison can be
used to determine the adequacy of the surface break-up into subareas, adequacy of interior
points to remove ill-conditioning at critical frequencies, and errors due to improper input
such as wrong directions for normal vectors.
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rhs symmetry

specifies that the velocity (appearing on the right-hand side of the equation Ap = Bv) has
the same symmetry as the surface

Command: rhs
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point source

specifies spherical incident wave for rigid scattering problem

Command: point source, x1, x2, x3, wreal, wimag, [Isym]

x1, x2, x3 global coordinates of point source producing spherical incident wave.

wreal, wimag real and imaginary parts of the weight applied to point source.

Isym If Isym = 1, then the incident pressure field has the same symmetry as the
radiating surface. The default is Isym = 0

Since CHIEF does not contain any structural capabilities, it can only compute rigid scatter-
ing.
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surface pressures

specifies calculation of surface pressures

Command: surface pressures, [Iprt]

Iprt Print flag. If Iprt = 1, then surface pressures are written to the standard
output file (<input filename>.out). If Iprt = 2, then the surface pressures
are written to an ASCII file (<input filename>.sps) that only contains
surface pressure output. If Iprt = 3, then the surface pressures are written
to both the standard output file and the surface pressure ASCII output file.
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velocity

specifies surface normal velocity input

Command: velocity, <filename>

<filename> Name of file containing surface normal velocity input. This file is an ASCII
file containing five columns separated by one or more spaces. The first col-
umn is the velocity distribution number (i.e., the first velocity distribution
will have a 1 in this column, the second a 2, etc.). The second column
contains the symmetry block number. The third column contains the sur-
face subdivision number. The fourth and fifth columns contain the real and
imaginary parts of the normal velocity.

If the velocity has the same symmetry as the radiating surface, then only one symmetry
block of the velocities needs to be input.
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velocity (alternate form)

specifies surface normal velocity input by means of a loop

Command: vel(i1 : i2 : i3, j1 : j2 : j3, k1 : k2 : k3) = (x, y) I = I1, I2, I3

I loop index (does not have to be I—the name can be selected by the user).
If no loop is desired the portion of the command beginning with “I =” can
be omitted.

I1, I2, I3 I1 is the starting index for the loop, I2 is the ending index for the loop, and
I3 is the step size. These limits can be replaced by any expression involving
previously defined parameters.

i1 : i2 : i3 specifies a range for the surface subdivision number, where i1 is the starting
index, i2 is the ending index, and i3 is the step size. If i3 is not present,
it is set to 1. If i2 and i3 are not present, i2 is set equal to i1. The colon
is not necessary if the following index is not present (e.g., the range could
be given by i1 : i2 or just i1). The range limits can be replaced by any
expression involving previously defined parameters and/or the index I.

j1 : j2 : j3 specifies a range for the symmetry block number, where j1 is the starting
index, j2 is the ending index, and j3 is the step size. If j3 is not present,
it is set to 1. If j2 and j3 are not present, j2 is set equal to j1.The colon
is not necessary if the following index is not present (e.g., the range could
be given by j1 : j2 or just j1). The range limits can be replaced by any
expression involving previously defined parameters and/or the index I.

k1 : k2 : k3 specifies a range for the velocity distribution number, where k1 is the start-
ing index, k2 is the ending index, and k3 is the step size. If k3 is not present,
it is set to 1. If k2 and k3 are not present, k2 is set equal to k1.The colon
is not necessary if the following index is not present (e.g., the range could
be given by k1 : k2 or just k1). The range limits can be replaced by any
expression involving previously defined parameters and/or the index I.

x, y x is the real part of the velocity and y is the imaginary part of the velocity.
If the imaginary part is zero, the user can use x in place of (x, y). x and y
can be replaced by any expression involving previously defined parameters
and/or the index I.

If the velocity has the same symmetry as the radiating surface, then only one symmetry
block of the velocities needs to be input.
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7. OUTPUT FILE FORMATS

In this section, we describe the formats of the various output files. The files that are
likely to be small are written as formatted ASCII files. The files that are likely to be large are
written as unformatted binary files. The version of this program for Windows 95/98 � and
Windows NT � machines was compiled using the Lahey Fortran 95 compiler. The version
for the DEC Alpha OSF1 was compiled using the Digital Fortran 90 compiler. In both cases,
the unformatted sequential binary files are divided into records that have a 4-byte integer
prefix and suffix containing the number of bytes in the record (excluding prefix and suffix).
Both also use IEEE little endian format for floating point reals and integers. The first record
in every binary file contains the following 14 items:

1. Starting frequency (32-bit real)

2. Frequency increment (32-bit real)

3. Fluid density (32-bit real)

4. Sound speed (32-bit real)

5. Symmetry type (4 characters, 32-bits)

6. Number of frequencies (32-bit integer)

7. Number of symmetry blocks (32-bit integer)

8. Number of symmetry blocks output (32-bit integer)

9. Right-hand-side symmetry flag (32-bit integer)

10. Number of surface field points (32-bit integer)

11. Number of surface subdivisions (32-bit integer)

12. Number of far field theta-phi angle pairs (32-bit integer)

13. Number of near-field points (32-bit integer)

14. Number of right-hand-sides (32-bit integer)

All or part of a binary output file can be converted to ASCII using the program ‘convert’.
The format for this command is

convert <filename> <frequency range> <block number range>,
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where <filename> is the filename including extension; <frequency range> contains a start-
ing frequency, an ending frequency, and a frequency increment separated by colons (e.g.,
100:1000:10); <block number range> contains a beginning symmetry block number, an
ending symmetry block number, and a block number increment separated by colons (e.g.,
1:6:2). If the increment is omitted, then the increment used in creating the file is used. If the
upper value and increment are omitted, then only the lower value is used. Thus, 100:1000
and 100 are valid ranges. If no ranges are specified, the program prints some header infor-
mation from the file and asks if you wish to continue. If you answer ‘N’, the program quits.
If you answer ‘Y’, the program converts all the results in the file. The converted results are
put in a file with the same file name and “ ascii” appended to the extension.

The formats of quantities in the various output files are described using Fortran-type
specifiers. For example, (F12.3) specifies a fixed-point-style real number with a total width
of 12 and 3 digits to the right of the decimal point, (I5) specifies a 5-digit integer, and (E14.2)
specifies an exponential-style real number with a total width of 14 and 3 digits to the right of
the decimal place. The total width includes any preliminary plus or minus sign, the decimal
point, and the exponent (E±xx). We will now look at each file type individually.

Surface pressure file (.sps)

This file is formatted ASCII. For each frequency, the first line contains the density, the
sound speed, the number of velocity distributions, the number of symmetry blocks, the
number of symmetry blocks output, the right-hand-side symmetry flag, and the number
of areas with the format (2f10.3,5i5). The second line contains the frequency with format
(f12.3). The following lines have the form,

irhs iblk i Preal(i) Pimag(i) area(i),

where irhs is an index running over the number of velocity distributions, iblk is an index
running over the number of symmetry blocks, i is an index running over the number of
CHIEF subdivisions, Preal(i) and Pimag are the real and imaginary parts of the surface
pressure on the i-th subdivision, and area(i) is the area of the i-th subdivision. The format
for each of these lines is (3I5, 3E15.6). The index i varies the fastest, next is iblk, and slowest
is irhs. The above lines are repeated for each frequency.

Far-field pressure file (.ffp)

This file is formatted ASCII. For each frequency, the first line contains the density, the
sound speed, the number of velocity distributions, and the number of far-field points with
the format (2f10.3,2i5). The second line contains the frequency with the format (F12.3).
The following lines have the form,

irhs φ θ P real
ff (φ, θ) P imag

ff (φ, θ),
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where irhs is an index running over the number of velocity distributions, φ and θ run over
all θ-φ pairs, and P real

ff (φ, θ), P imag
ff (φ, θ) are the real and imaginary parts of the far-field

pressure. The format for each of these lines is (I5, 2F10.2, 2E15.6). The above lines are
repeated for each frequency.

Near-field pressure file (.nfp)

This file is formatted ASCII. For each frequency, the first line contains the density, the
sound speed, the number of velocity distributions, and the number of near-field points with
the format (2f10.3,2i5). The second line contains the frequency with the format (F12.3).
The following lines have the form,

irhs x y z P real
nf (x, y, z) P imag

nf (x, y, z),

where irhs is an index running over the number of velocity distributions, x, y, and z run over
all prescribed near-field points, and P real

nf (x, y, z), P imag
nf (x, y, z) are the real and imaginary

parts of the near-field pressure. The format for each of these lines is (I5, 3E12.4, 2E15.6).
The above lines are repeated for each frequency.

Impedance Matrix file (.zmx)

This file is binary. The first record is the standard header. The second record contains the
surface areas of the CHIEF subdivisions. Each of the following records contains a frequency,
a symmetry block number, and a block of the impedance matrix. The matrices are written
out column by column. All the blocks for a frequency are output before the next frequency
is output.

Far-field Matrix file (.pmf)

This file is binary. The first record is the standard header. The second record contains the
theta-phi pairs for the far-field directions. Each of the following records contains a frequency,
a symmetry block number, and a block of the far-field pattern matrix. The matrices are
written out column by column. All the blocks for a frequency are output before the next
frequency is output.

Near-field Matrix file (.pmn)

This file is binary. The first record is the standard header. The second record contains
the coordinates for the near-field points. Each of the following records contains a frequency,
a symmetry block number, and a block of the near field pattern matrix. The matrices are
written out column by column. All the blocks for a frequency are output before the next
frequency is output.
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Surface A,B Matrices file (.abs)

This file is binary. The first record is the standard header. The second record contains the
surface areas of the CHIEF subdivisions. Each of the following records contains a frequency,
a symmetry block number, a block of the surface A matrix, and a block of the surface B
matrix. The matrices are written out column by column. All the blocks for a frequency are
output before the next frequency is output.

Far-field A,B Matrices file (.abf)

This file is binary. The first record is the standard header. The second record contains the
theta-phi pairs for the far-field directions. Each of the following records contains a frequency,
a symmetry block number, a block of the far-field A matrix, and a block of the far-field B
matrix. The matrices are written out column by column. All the blocks for a frequency are
output before the next frequency is output.

Near-field A,B Matrices file (.abn)

This file is binary. The first record is the standard header. The second record contains
the coordinates for the near-field points. Each of the following records contains a frequency,
a symmetry block number, a block of the near-field A matrix, and a block of the near-field
B matrix. The matrices are written out column by column. All the blocks for a frequency
are output before the next frequency is output.

Coupling Matrix file (.cpl)

This file is binary. The first record contains the number of finite element nodes, the
number of degrees of freedom per node, and the number of surface elements. The second
record contains the finite element node numbers. The third record contains the surface areas
of the elements. The fourth record contains the coupling matrix for the first symmetry
block. The coupling matrices for the other symmetry blocks are not output because they
are identical to the coupling matrix for the first block.
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8. EXAMPLE PROBLEMS

In this section, we will show how to set up the ASCII input files for ten example problems.
Most of these examples are the same as those used in the original CHIEF manual. To gain
maximum benefit from these example problems, the user should try to set up each of the
input files without looking at the answers provided.

71



Example Problem 1

Figure 7 shows the geometry for the first problem. It consists of a free-flooded cylinder
having an inner radius of 1.68 m, an outer radius of 2.04 m, and a height of 1.2 m. The
normal velocity on the inner cylindrical surface is -1.029 m/sec, the normal velocity on the
outer cylindrical surface is 0.971 m/sec, and the normal velocity on the top and bottom
surfaces is 0.097 m/sec.

1
2

3

4

5

6

X 3

X 3= height/2

X 3= -height/2

Subdivisions 7,8 are on the
bottom surface and subdivisions
9-12 are on the inside surface

Figure 7. Geometry of example problem 1.

The problem is to compute the surface pressures and the far-field pattern in the plane
φ = 0 with ∆θ = 5◦ and 0 ≤ θ ≤ 90◦ for a frequency of 1500/(2π). Use 12-fold rotational
symmetry and no velocity symmetry (even though there really is) to solve the problem. The
surface and far-field pressures should be output to a file. The following is an input file for
this problem:

freq1=1500/(2*pi)
nblks=12
ai=1.68
ao=2.04
ht=1.2
htd2=.5*ht
rotlim=pi/nblks
rho=999.89
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end*params

rotational,nblks

circ_planar, htd2
ai,ao,-rotlim,rotlim
2,1,4,16
3,0,0,0

circ_cylinder, ao
-htd2,htd2,-rotlim,rotlim
4,1,4,16
3

circ_planar, -htd2
ai,ao,-rotlim,rotlim
2,1,4,16
-3

circ_cylinder, ai
-htd2,htd2,-rotlim,rotlim
4,1,4,16
-3

end*geom

fluid,rho,1500.05

freq, freq1, freq1, 0.

vel,tc1.vel

surface,3

farfield,1,3
0,90,5,0,0,0

The user also needs to construct a file containing the velocity distribution. Since we are
not using the symmetry of the velocity, the velocity distribution must be input for all 12 of
the rotational symmetry blocks. If we had chosen to use the velocity symmetry, then the
input file would only need to contain the velocity distribution for the first symmetry block.
The velocity input file for example problem 1 is shown below:

1 1 1 0.097 0
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1 1 2 0.097 0
1 1 3 0.971 0
1 1 4 0.971 0
1 1 5 0.971 0
1 1 6 0.971 0
1 1 7 0.097 0
1 1 8 0.097 0
1 1 9 -1.029 0
1 1 10 -1.029 0
1 1 11 -1.029 0
1 1 12 -1.029 0
1 2 1 0.097 0
1 2 2 0.097 0
1 2 3 0.971 0
1 2 4 0.971 0
1 2 5 0.971 0
1 2 6 0.971 0
1 2 7 0.097 0
1 2 8 0.097 0
1 2 9 -1.029 0
1 2 10 -1.029 0
1 2 11 -1.029 0
1 2 12 -1.029 0
1 3 1 0.097 0
1 3 2 0.097 0
1 3 3 0.971 0
1 3 4 0.971 0
1 3 5 0.971 0
1 3 6 0.971 0
1 3 7 0.097 0
1 3 8 0.097 0
1 3 9 -1.029 0
1 3 10 -1.029 0
1 3 11 -1.029 0
1 3 12 -1.029 0
1 4 1 0.097 0
1 4 2 0.097 0
1 4 3 0.971 0
1 4 4 0.971 0
1 4 5 0.971 0
1 4 6 0.971 0
1 4 7 0.097 0
1 4 8 0.097 0
1 4 9 -1.029 0
1 4 10 -1.029 0
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1 4 11 -1.029 0
1 4 12 -1.029 0
1 5 1 0.097 0
1 5 2 0.097 0
1 5 3 0.971 0
1 5 4 0.971 0
1 5 5 0.971 0
1 5 6 0.971 0
1 5 7 0.097 0
1 5 8 0.097 0
1 5 9 -1.029 0
1 5 10 -1.029 0
1 5 11 -1.029 0
1 5 12 -1.029 0
1 6 1 0.097 0
1 6 2 0.097 0
1 6 3 0.971 0
1 6 4 0.971 0
1 6 5 0.971 0
1 6 6 0.971 0
1 6 7 0.097 0
1 6 8 0.097 0
1 6 9 -1.029 0
1 6 10 -1.029 0
1 6 11 -1.029 0
1 6 12 -1.029 0
1 7 1 0.097 0
1 7 2 0.097 0
1 7 3 0.971 0
1 7 4 0.971 0
1 7 5 0.971 0
1 7 6 0.971 0
1 7 7 0.097 0
1 7 8 0.097 0
1 7 9 -1.029 0
1 7 10 -1.029 0
1 7 11 -1.029 0
1 7 12 -1.029 0
1 8 1 0.097 0
1 8 2 0.097 0
1 8 3 0.971 0
1 8 4 0.971 0
1 8 5 0.971 0
1 8 6 0.971 0
1 8 7 0.097 0
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1 8 8 0.097 0
1 8 9 -1.029 0
1 8 10 -1.029 0
1 8 11 -1.029 0
1 8 12 -1.029 0
1 9 1 0.097 0
1 9 2 0.097 0
1 9 3 0.971 0
1 9 4 0.971 0
1 9 5 0.971 0
1 9 6 0.971 0
1 9 7 0.097 0
1 9 8 0.097 0
1 9 9 -1.029 0
1 9 10 -1.029 0
1 9 11 -1.029 0
1 9 12 -1.029 0
1 10 1 0.097 0
1 10 2 0.097 0
1 10 3 0.971 0
1 10 4 0.971 0
1 10 5 0.971 0
1 10 6 0.971 0
1 10 7 0.097 0
1 10 8 0.097 0
1 10 9 -1.029 0
1 10 10 -1.029 0
1 10 11 -1.029 0
1 10 12 -1.029 0
1 11 1 0.097 0
1 11 2 0.097 0
1 11 3 0.971 0
1 11 4 0.971 0
1 11 5 0.971 0
1 11 6 0.971 0
1 11 7 0.097 0
1 11 8 0.097 0
1 11 9 -1.029 0
1 11 10 -1.029 0
1 11 11 -1.029 0
1 11 12 -1.029 0
1 12 1 0.097 0
1 12 2 0.097 0
1 12 3 0.971 0
1 12 4 0.971 0
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1 12 5 0.971 0
1 12 6 0.971 0
1 12 7 0.097 0
1 12 8 0.097 0
1 12 9 -1.029 0
1 12 10 -1.029 0
1 12 11 -1.029 0
1 12 12 -1.029 0

For this example, the velocity could be specified directly in the input file instead of
reading the velocities from a data file. This is accomplished by replacing the line

vel, tc1.vel

by the lines,

vel(1:2,1:12,1)=(.097,0.)
vel(3:6,1:12,1)=(.971,0.)
vel(7:8,1:12,1)=(.097,0.)
vel(9:12,1:12,1)=(-1.029,0.)

The following pages show the output that would be obtained in the .out file for this
problem.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
2 2 1 3 4 16

ul uu vl vu
0.168000E+01 0.204000E+01 -.261799E+00 0.261799E+00

cc array
0.600000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 2

neqn nu nv izaxis iquadu iquadv
4 4 1 3 4 16

ul uu vl vu
-.600000E+00 0.600000E+00 -.261799E+00 0.261799E+00

cc array
0.204000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 3

neqn nu nv izaxis iquadu iquadv
2 2 1 -3 4 16

ul uu vl vu
0.168000E+01 0.204000E+01 -.261799E+00 0.261799E+00

cc array
-.600000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 4

neqn nu nv izaxis iquadu iquadv
4 4 1 -3 4 16
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ul uu vl vu
-.600000E+00 0.600000E+00 -.261799E+00 0.261799E+00

cc array
0.168000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 12 # interior points = 0

Memory Usage (bytes)

quadrature points 24576
surface pressures 1152
far-field pressures 152
near-field pressures 0
point source pressures 0
external pressures 0
dpdn 1152
surface field points 1728
far-field points 2736
near-field points 0
A,B matrices 43776
total 75272

number of surface row blocks = 1
number of far-field row blocks = 1
number of near-field row blocks = 0

Frequency = 238.732407

SURFACE PRESSURES

Block 1 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
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9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 2 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 3 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 4 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
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12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 5 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 6 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 7 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00
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Block 8 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 9 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 10 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 11 Right-hand-side 1

real imag area
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1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Block 12 Right-hand-side 1

real imag area
1 -0.724289E+06 0.223635E+06 0.166819E+00
2 -0.371080E+06 0.523689E+06 0.183783E+00
3 0.213456E+06 0.131391E+07 0.320443E+00
4 0.345704E+06 0.154564E+07 0.320443E+00
5 0.345704E+06 0.154564E+07 0.320443E+00
6 0.213456E+06 0.131391E+07 0.320443E+00
7 -0.724290E+06 0.223635E+06 0.166819E+00
8 -0.371080E+06 0.523689E+06 0.183783E+00
9 -0.162378E+07 -0.103561E+07 0.263894E+00
10 -0.189947E+07 -0.144824E+07 0.263894E+00
11 -0.189947E+07 -0.144824E+07 0.263894E+00
12 -0.162378E+07 -0.103561E+07 0.263894E+00

Complex Power = (26697000.0,37852400.0) Power(kW) = 26697.0020

FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 0.203828E+06 0.149905E+06 -19.25
2 5 0 0.187885E+06 0.125888E+06 -20.23
3 10 0 0.141056E+06 0.553571E+05 -23.71
4 15 0 0.662309E+05 -0.572913E+05 -28.47
5 20 0 -0.321061E+05 -0.205238E+06 -20.97
6 25 0 -0.148321E+06 -0.379923E+06 -15.11
7 30 0 -0.276163E+06 -0.571862E+06 -11.26
8 35 0 -0.409313E+06 -0.771487E+06 -8.49
9 40 0 -0.541879E+06 -0.969896E+06 -6.40
10 45 0 -0.668782E+06 -0.115945E+07 -4.78
11 50 0 -0.786007E+06 -0.133415E+07 -3.52
12 55 0 -0.890704E+06 -0.148977E+07 -2.53
13 60 0 -0.981144E+06 -0.162382E+07 -1.75
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14 65 0 -0.105657E+07 -0.173530E+07 -1.16
15 70 0 -0.111699E+07 -0.182432E+07 -0.71
16 75 0 -0.116287E+07 -0.189174E+07 -0.39
17 80 0 -0.119492E+07 -0.193871E+07 -0.17
18 85 0 -0.121382E+07 -0.196637E+07 -0.04
19 90 0 -0.122006E+07 -0.197549E+07 0.00

Source Level =247.3 DI = 2.3

condition number = 1.7E+01

TIME IN SUBROUTINES (secs)

QPTGEN 0.002
SURFACEGEN 0.000
GENSURFLDPTS 0.000
SURMATS 0.283
SURPRS 0.025
GENFARFLDPTS 0.000
FFMATS 0.325
FFPRS 0.001

Total Time = 3.097

Example Problem 2
Figure 8 shows the geometry for the second problem. The geometry of this problem is the same as

example problem 1. In this example, three planes of reflective symmetry are used in place of rotational
symmetry and velocity symmetry is used. The surface and far-field pressures should be output to a file.

X 3

X 3= height/2

X 3= -height/2

1 2
3

4
5

6

7
8

9
10

11
12

Subdivisions 13-18 are
on the inside surface

Figure 8. Geometry of example problem 2.

The following is an input file for this problem:
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freq1=1500/(2*pi)
nblks=12
ai=1.68
ao=2.04
ht=1.2
htd2=.5*ht
reflim=pi/2
end*params

reflective,111

circ_planar, htd2
ai,ao,0,reflim
2,3,4,16
3,0,0,0

circ_cylinder, ao
0,htd2,0,reflim
2,3,4,16
3,0,0,0

circ_cylinder, ai
0,htd2,0,reflim
2,3,4,16
-3,0,0,0

end*geom

freq, freq1, freq1, 0.

rhs symmetry
vel, tc2.vel

surface,3

farfield,1,3
0,90,5,0,0,0

The user also needs to construct a file containing the velocity distribution. Since we chose to use the
velocity symmetry, the input file only needs to contain the velocity distribution for the first octant. The
velocity input file for example problem 2 is shown below:

1 1 1 0.097 0
1 1 2 0.097 0
1 1 3 0.097 0
1 1 4 0.097 0
1 1 5 0.097 0
1 1 6 0.097 0
1 1 7 0.971 0
1 1 8 0.971 0
1 1 9 0.971 0
1 1 10 0.971 0
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1 1 11 0.971 0
1 1 12 0.971 0
1 1 13 -1.029 0
1 1 14 -1.029 0
1 1 15 -1.029 0
1 1 16 -1.029 0
1 1 17 -1.029 0
1 1 18 -1.029 0

As in example problem 1, the command

vel, tc2.vel

and the velocity input file can be replaced by the lines,

vel(1:6,1,1)=(.097,0.)
vel(7:12,1,1)=(.971,0.)
vel(13:18,1,1)=(-1.029,0.)

The following pages show the output that would be obtained in the .out file for this problem.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
2 2 3 3 4 16

ul uu vl vu
0.168000E+01 0.204000E+01 0.000000E+00 0.157080E+01

cc array
0.600000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 2

neqn nu nv izaxis iquadu iquadv
4 2 3 3 4 16

ul uu vl vu
0.000000E+00 0.600000E+00 0.000000E+00 0.157080E+01

cc array
0.204000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 3

neqn nu nv izaxis iquadu iquadv
4 2 3 -3 4 16

ul uu vl vu
0.000000E+00 0.600000E+00 0.000000E+00 0.157080E+01

cc array
0.168000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 18 # interior points = 0
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Memory Usage (bytes)

quadrature points 36864
surface pressures 144
far-field pressures 152
near-field pressures 0
point source pressures 0
external pressures 0
dpdn 144
surface field points 1728
far-field points 1824
near-field points 0
A,B matrices 43776
total 84632

number of surface row blocks = 1
number of far-field row blocks = 1
number of near-field row blocks = 0

Frequency = 238.732407

SURFACE PRESSURES

Block 1 Right-hand-side 1

real imag area
1 -0.724311E+06 0.223842E+06 0.166819E+00
2 -0.724324E+06 0.223837E+06 0.166819E+00
3 -0.724317E+06 0.223837E+06 0.166819E+00
4 -0.371021E+06 0.523867E+06 0.183783E+00
5 -0.371028E+06 0.523871E+06 0.183783E+00
6 -0.371025E+06 0.523864E+06 0.183783E+00
7 0.345971E+06 0.154586E+07 0.320443E+00
8 0.345948E+06 0.154583E+07 0.320443E+00
9 0.345965E+06 0.154587E+07 0.320443E+00
10 0.213674E+06 0.131412E+07 0.320443E+00
11 0.213658E+06 0.131409E+07 0.320443E+00
12 0.213669E+06 0.131412E+07 0.320443E+00
13 -0.189997E+07 -0.144817E+07 0.263894E+00
14 -0.189992E+07 -0.144813E+07 0.263894E+00
15 -0.189995E+07 -0.144816E+07 0.263894E+00
16 -0.162418E+07 -0.103550E+07 0.263894E+00
17 -0.162414E+07 -0.103547E+07 0.263894E+00
18 -0.162416E+07 -0.103550E+07 0.263894E+00

Complex Power = (26706058.0,37854312.0) Power(kW) = 26706.0586
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FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 0.203834E+06 0.149854E+06 -19.26
2 5 0 0.187886E+06 0.125835E+06 -20.23
3 10 0 0.141041E+06 0.552972E+05 -23.71
4 15 0 0.661887E+05 -0.573618E+05 -28.47
5 20 0 -0.321830E+05 -0.205322E+06 -20.96
6 25 0 -0.148438E+06 -0.380022E+06 -15.11
7 30 0 -0.276324E+06 -0.571978E+06 -11.26
8 35 0 -0.409520E+06 -0.771618E+06 -8.49
9 40 0 -0.542130E+06 -0.970041E+06 -6.40
10 45 0 -0.669075E+06 -0.115961E+07 -4.78
11 50 0 -0.786339E+06 -0.133431E+07 -3.52
12 55 0 -0.891068E+06 -0.148994E+07 -2.53
13 60 0 -0.981535E+06 -0.162400E+07 -1.75
14 65 0 -0.105699E+07 -0.173548E+07 -1.16
15 70 0 -0.111742E+07 -0.182451E+07 -0.71
16 75 0 -0.116332E+07 -0.189193E+07 -0.39
17 80 0 -0.119537E+07 -0.193890E+07 -0.17
18 85 0 -0.121428E+07 -0.196655E+07 -0.04
19 90 0 -0.122052E+07 -0.197568E+07 0.00

Source Level =247.3 DI = 2.3

condition number = 1.9E+01

TIME IN SUBROUTINES (secs)

QPTGEN 0.018
SURFACEGEN 0.000
GENSURFLDPTS 0.000
SURMATS 0.361
SURPRS 0.004
GENFARFLDPTS 0.000
FFMATS 0.367
FFPRS 0.001

Total Time = 2.782

Example Problem 3
The geometry for this problem is the same as for example problem 1. This example illustrates the

use of a point source check. A point source check can be used to determine the adequacy of the surface
discretization as well as the need for and the placement of interior points. The basic idea of a point source
check is to consider the boundary surface as an imaginary surface in an infinite fluid medium containing a
finite number of point sources. The surface pressures are calculated using the CHIEF formulation with a
surface velocity distribution produced by the point sources and compared with the exact pressures due to
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the point sources. If the point sources are inside the body, then the CHIEF computation is like a radiation
problem. If the point sources are outside the body, then the CHIEF computation is like a scattering problem.
For this example, we will use one point source located at the origin, having a complex weight of 1+i0. (This
point is outside the body.) For thin bodies like this free-flooded cylinder, it is usually better to place the
point source outside the body, since point sources inside the body are so close to the surface that they will
produce a surface velocity distribution that varies more rapidly than the ones likely to be used in practice.
The input file for this example is shown below:

freq1=1500/(2*pi)
nblks=12
ai=1.68
ao=2.04
ht=1.2
htd2=.5*ht
rotlim=pi/nblks
end*params

rotational,nblks

circ_planar, htd2
ai,ao,-rotlim,rotlim
2,1,4,16
3,0,0,0

circ_cylinder, ao
-htd2,htd2,-rotlim,rotlim
4,1,4,16
3,0,0,0

circ_planar, -htd2
ai,ao,-rotlim,rotlim
2,1,4,16
-3,0,0,0

circ_cylinder, ai
-htd2,htd2,-rotlim,rotlim
4,1,4,16
-3,0,0,0

end*geom

freq, freq1, freq1, 0.
pscheck, 1,1
0,0,0,1,0,1

The following pages show the output that would be obtained in the .out file for this problem.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
2 2 1 3 4 16

ul uu vl vu
0.168000E+01 0.204000E+01 -.261799E+00 0.261799E+00

cc array
0.600000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 2

neqn nu nv izaxis iquadu iquadv
4 4 1 3 4 16

ul uu vl vu
-.600000E+00 0.600000E+00 -.261799E+00 0.261799E+00

cc array
0.204000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 3

neqn nu nv izaxis iquadu iquadv
2 2 1 -3 4 16

ul uu vl vu
0.168000E+01 0.204000E+01 -.261799E+00 0.261799E+00

cc array
-.600000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 4

neqn nu nv izaxis iquadu iquadv
4 4 1 -3 4 16
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ul uu vl vu
-.600000E+00 0.600000E+00 -.261799E+00 0.261799E+00

cc array
0.168000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 12 # interior points = 0

Memory Usage (bytes)

quadrature points 24576
surface pressures 96
far-field pressures 0
near-field pressures 0
point source pressures 96
external pressures 0
dpdn 96
surface field points 1728
far-field points 0
near-field points 0
A,B matrices 27648
total 54240

number of surface row blocks = 1
number of far-field row blocks = 0
number of near-field row blocks = 0

Frequency = 238.732407

POINT SOURCE SURFACE PRESSURES

Block 1
Error

preal pimag psreal psimag mag% ang(deg)
1 -0.159219E+00 -0.485809E+00 -0.150085E+00 -0.488410E+00 0.06 -1.06
2 -0.217887E+00 -0.415344E+00 -0.211734E+00 -0.417422E+00 0.21 -0.79
3 -0.228535E+00 -0.392456E+00 -0.226435E+00 -0.397090E+00 -0.65 -0.52
4 -0.214423E+00 -0.411792E+00 -0.213385E+00 -0.415221E+00 -0.55 -0.31
5 -0.214423E+00 -0.411792E+00 -0.213385E+00 -0.415221E+00 -0.55 -0.31
6 -0.228535E+00 -0.392456E+00 -0.226435E+00 -0.397090E+00 -0.65 -0.52
7 -0.159219E+00 -0.485809E+00 -0.150085E+00 -0.488410E+00 0.06 -1.06
8 -0.217888E+00 -0.415344E+00 -0.211734E+00 -0.417422E+00 0.21 -0.79
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9 -0.909805E-01 -0.550150E+00 -0.920394E-01 -0.541286E+00 1.56 0.26
10 -0.661868E-01 -0.570716E+00 -0.654635E-01 -0.562361E+00 1.48 0.02
11 -0.661868E-01 -0.570716E+00 -0.654635E-01 -0.562361E+00 1.48 0.02
12 -0.909805E-01 -0.550150E+00 -0.920394E-01 -0.541286E+00 1.56 0.26

condition number = 1.7E+01

TIME IN SUBROUTINES (secs)

QPTGEN 0.002
SURFACEGEN 0.000
GENSURFLDPTS 0.000
SURMATS 0.321
SURPRS 0.004

Total Time = 1.733

Example Problem 4
The geometry for this example problem is the same as for example problem 1. In this example, the

radiation impedance matrix relating surface forces and velocities and the field matrix relating far-field pres-
sures and surface velocities are computed. It is assumed that the velocities have the same symmetry as the
geometry. The results are to be written to an output file. The input file for this example problem is given
below:

freq1=1500/(2*pi)
nblks=12
ai=1.68
ao=2.04
ht=1.2
htd2=.5*ht
rotlim=pi/nblks
end*params

rotational,nblks

circ_planar, htd2
ai,ao,-rotlim,rotlim
2,1,4,16
3,0,0,0

circ_cylinder, ao
-htd2,htd2,-rotlim,rotlim
4,1,4,16
3,0,0,0

circ_planar, -htd2
ai,ao,-rotlim,rotlim
2,1,4,16
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-3,0,0,0

circ_cylinder, ai
-htd2,htd2,-rotlim,rotlim
4,1,4,16
-3,0,0,0

end*geom

freq, freq1, freq1, 0.

impedance matrix,1,1

farfield pressures,1,1,19
0,90,5,0,0,0
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Example Problem 5
In this example problem, we consider a uniformly pulsating sphere of radius 1 m with a radial velocity

of 1+i0 m/sec. Figure 9 shows the geometry and breakup for this example problem. This example problem
shows the need and use of interior points. We consider two frequencies corresponding to ka = π/3 and
ka = π. The value ka = π corresponds to an interior resonance where interior points are needed. The value
ka = π/3 is well below the first interior resonance and, thus, does not require interior points. Let us first
calculate the far-field pressures for these two frequencies with no interior points.

1

2

12

X 3

φ = π/6φ = −π/6

Figure 9. Geometry for example problem 5.

The input file for this calculation is shown below:

ka1=pi/3
ka2=pi
a=1.0
c=1500
fu=ka2*c/(2*pi)
fl=fu/3
finc=fu-fl
uu=pi/6
end*params

rot,6
sphere,1.0
0,pi,-uu,uu
12,1,4,16
3,0,0,0
end*geom

frequency,fl,fu,finc

95



!interior points,3
!0,0,0

rhs
vel(1:12,1,1)=(1.0,0.)
! or read velocities from a file with: velocity,tc5.vel

surface pressures,3

far-field pressures,1,1,4
0,180,30,0,0,0

The following pages show the output that would be obtained in the .out file for this problem.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
6 12 1 3 4 16

ul uu vl vu
0.000000E+00 0.314159E+01 -.523599E+00 0.523599E+00

cc array
0.100000E+01 0.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 12 # interior points = 0

Memory Usage (bytes)

quadrature points 24576
surface pressures 96
far-field pressures 56
near-field pressures 0
point source pressures 0
external pressures 0
dpdn 96
surface field points 864
far-field points 504
near-field points 0
A,B matrices 13824
total 40016

number of surface row blocks = 1
number of far-field row blocks = 1
number of near-field row blocks = 0

Frequency = 250.000000

SURFACE PRESSURES

Block 1 Right-hand-side 1

real imag area
1 0.784838E+06 0.748495E+06 0.356824E-01
2 0.784546E+06 0.749223E+06 0.104615E+00
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3 0.784558E+06 0.749222E+06 0.166419E+00
4 0.784563E+06 0.749218E+06 0.216882E+00
5 0.784561E+06 0.749202E+06 0.252564E+00
6 0.784564E+06 0.749192E+06 0.271035E+00
7 0.784579E+06 0.749205E+06 0.271035E+00
8 0.784564E+06 0.749206E+06 0.252564E+00
9 0.784554E+06 0.749210E+06 0.216882E+00
10 0.784562E+06 0.749225E+06 0.166419E+00
11 0.784537E+06 0.749215E+06 0.104615E+00
12 0.784839E+06 0.748497E+06 0.356824E-01

Complex Power = (9859209.00,9414540.00) Power(kW) = 9859.20898

FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 -0.256553E+06 0.105407E+07 0.00
2 30 0 -0.256552E+06 0.105407E+07 0.00
3 60 0 -0.256549E+06 0.105406E+07 0.00
4 90 0 -0.256547E+06 0.105405E+07 0.00
5 120 0 -0.256549E+06 0.105406E+07 0.00
6 150 0 -0.256552E+06 0.105407E+07 0.00
7 180 0 -0.256553E+06 0.105407E+07 0.00

Source Level =240.7 DI = 0.0

condition number = 3.2E+00

Frequency = 750.000000

SURFACE PRESSURES

Block 1 Right-hand-side 1

real imag area
1 -0.189111E+06 0.184947E+08 0.356824E-01
2 -0.189098E+06 0.184909E+08 0.104615E+00
3 -0.189162E+06 0.184911E+08 0.166419E+00
4 -0.189192E+06 0.184912E+08 0.216882E+00
5 -0.189173E+06 0.184912E+08 0.252564E+00
6 -0.189140E+06 0.184913E+08 0.271035E+00
7 -0.189130E+06 0.184916E+08 0.271035E+00
8 -0.189151E+06 0.184913E+08 0.252564E+00
9 -0.189168E+06 0.184910E+08 0.216882E+00
10 -0.189151E+06 0.184912E+08 0.166419E+00
11 -0.189100E+06 0.184907E+08 0.104615E+00
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12 -0.189128E+06 0.184948E+08 0.356824E-01

Complex Power = (-2376929.25,232369088.) Power(kW) = -2376.92944

FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 0.189201E+06 -0.184912E+08 0.00
2 30 0 0.189158E+06 -0.184913E+08 0.00
3 60 0 0.189144E+06 -0.184914E+08 0.00
4 90 0 0.189155E+06 -0.184913E+08 0.00
5 120 0 0.189151E+06 -0.184914E+08 0.00
6 150 0 0.189140E+06 -0.184913E+08 0.00
7 180 0 0.189121E+06 -0.184912E+08 0.00

Source Level =265.3 DI =-NaN

condition number = 6.5E+05

TIME IN SUBROUTINES (secs)

QPTGEN 0.002
SURFACEGEN 0.000
GENSURFLDPTS 0.000
SURMATS 0.309
SURPRS 0.004
GENFARFLDPTS 0.000
FFMATS 0.127
FFPRS 0.000

Total Time = 2.003

Looking at the directivity index (DI) corresponding to ka = π shows this answer is incorrect. The
condition number for this case is very high, showing that the A matrix is very ill-conditioned. Let us now
rerun the same problem with three interior points—one located at (0,0,0) and the other two generated
automatically. The input file for this calculation is the same as the previous one, with the interior point
control lines uncommented. The following pages show the output that would be obtained in the .out file for
this example problem. It can be easily verified that the answers for this case are correct.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
6 12 1 3 4 16

ul uu vl vu
0.000000E+00 0.314159E+01 -.523599E+00 0.523599E+00

cc array
0.100000E+01 0.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 12 # interior points = 3

INTERIOR POINTS

x1 x2 x3
1 0.00 0.00 0.00
2 0.42 0.00 -0.33
3 0.26 0.00 0.63

Memory Usage (bytes)

quadrature points 24576
surface pressures 120
far-field pressures 56
near-field pressures 0
point source pressures 0
external pressures 0
dpdn 96
surface field points 864
far-field points 504
near-field points 0
A,B matrices 17280
total 43496

number of surface row blocks = 1
number of far-field row blocks = 1
number of near-field row blocks = 0

Frequency = 250.000000
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FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 -0.256553E+06 0.105407E+07 0.00
2 30 0 -0.256552E+06 0.105407E+07 0.00
3 60 0 -0.256549E+06 0.105406E+07 0.00
4 90 0 -0.256547E+06 0.105405E+07 0.00
5 120 0 -0.256547E+06 0.105406E+07 0.00
6 150 0 -0.256550E+06 0.105407E+07 0.00
7 180 0 -0.256551E+06 0.105407E+07 0.00

Source Level =240.7 DI = 0.0

condition number = 1.4E+00

Frequency = 750.000000

FAR-FIELD PRESSURES

Right-hand-side 1

theta phi real imag dB
1 0 0 -0.136197E+07 -0.433644E+06 0.00
2 30 0 -0.136198E+07 -0.433520E+06 0.00
3 60 0 -0.136199E+07 -0.433473E+06 0.00
4 90 0 -0.136198E+07 -0.433616E+06 0.00
5 120 0 -0.136200E+07 -0.433487E+06 0.00
6 150 0 -0.136200E+07 -0.433543E+06 0.00
7 180 0 -0.136199E+07 -0.433667E+06 0.00

Source Level =243.1 DI = 0.0

condition number = 1.1E+00

TIME IN SUBROUTINES (secs)

QPTGEN 0.002
SURFACEGEN 0.000
GENSURFLDPTS 0.000
SURMATS 0.274
SURPRS 0.004
GENFARFLDPTS 0.000
FFMATS 0.113
FFPRS 0.000

Total Time = 1.994
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Example Problem 6
In this example problem, we consider the plane-wave scattering from a rigid sphere of radius 5 m and

ka = 5, using two methods of geometry generation. Both methods use 6-th order rotational symmetry with
20 subdivisions per symmetry block. The first method generates the geometry using the sphere equations.
The second method generates the geometry using axisymmetric finite element inputs. Figure 10 shows the
target strength versus angle for both methods of geometry generation along with the results of an analytic
series solution.
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Figure 10. Target strength versus angle for a sphere (ka = 5).

The contents of the input file for the spherical geometry input is shown below:

nblks=6
c=1500
a=5
rka=5
freq=rka*c/(2*pi*a)
rotlim=pi/nblks

end*params

rot,nblks
sphere,a
0,pi,-rotlim,rotlim
20,1,4,16
3,0,0,0

end*geom

frequency,freq,freq,0
surface pressures,1
plane wave,1,1,0,0
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far-field,1,3
0,180,2,0,0,0

The input file for the axisymmetric finite element input is exactly the same as above except that the
geometry section is replaced by

rot,nblks
fE_axisymmetric, tc6.crd, tc6.elt, 4, 16
3
end*geom

The contents of the nodal coordinate file tc6.crd are shown below.

1 0.0000E+00 0.5000E+01
2 0.3923E+00 0.4985E+01
3 0.7822E+00 0.4938E+01
4 0.1167E+01 0.4862E+01
5 0.1545E+01 0.4755E+01
6 0.1913E+01 0.4619E+01
7 0.2270E+01 0.4455E+01
8 0.2612E+01 0.4263E+01
9 0.2939E+01 0.4045E+01
10 0.3247E+01 0.3802E+01
11 0.3536E+01 0.3536E+01
12 0.3802E+01 0.3247E+01
13 0.4045E+01 0.2939E+01
14 0.4263E+01 0.2612E+01
15 0.4455E+01 0.2270E+01
16 0.4619E+01 0.1913E+01
17 0.4755E+01 0.1545E+01
18 0.4862E+01 0.1167E+01
19 0.4938E+01 0.7822E+00
20 0.4985E+01 0.3923E+00
21 0.5000E+01 -.2186E-06
22 0.4985E+01 -.3923E+00
23 0.4938E+01 -.7822E+00
24 0.4862E+01 -.1167E+01
25 0.4755E+01 -.1545E+01
26 0.4619E+01 -.1913E+01
27 0.4455E+01 -.2270E+01
28 0.4263E+01 -.2612E+01
29 0.4045E+01 -.2939E+01
30 0.3802E+01 -.3247E+01
31 0.3536E+01 -.3536E+01
32 0.3247E+01 -.3802E+01
33 0.2939E+01 -.4045E+01
34 0.2612E+01 -.4263E+01
35 0.2270E+01 -.4455E+01
36 0.1913E+01 -.4619E+01
37 0.1545E+01 -.4755E+01
38 0.1167E+01 -.4862E+01
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39 0.7822E+00 -.4938E+01
40 0.3923E+00 -.4985E+01
41 -.4371E-06 -.5000E+01

The contents of the element file tc6.elt is shown below.

1 2 3
3 4 5
5 6 7
7 8 9
9 10 11
11 12 13
13 14 15
15 16 17
17 18 19
19 20 21
21 22 23
23 24 25
25 26 27
27 28 29
29 30 31
31 32 33
33 34 35
35 36 37
37 38 39
39 40 41

104



Example Problem 7
In this example problem, we illustrate the plane infinite rigid baffle option. The problem is to compute

the radiation impedance of a half-wavelength diameter circular piston in a plane infinite rigid baffle. The
impedance is to be calculated in CHIEF using four blocks of rotational symmetry with four radial subdivisions
per block. The analytic solution for this problem gave the following result:

z = .952057 × 107 + i.777030 × 107.

To calculate the impedance with CHIEF we use a uniform velocity distribution of 1+i0. The impedance is
then equal to the complex power given in the .out file. The value computed with this breakup is

z = .957883 × 107 + i.780259 × 107,

which agrees with the analytic solution to within about 0.5%. The input file for this run is shown below:

freq=1500/(2*pi)
nblks=4
a=pi/2
rotlim=pi/nblks
end*params

rot,nblks
circ_planar,0
0,a,-rotlim,rotlim
4,1,2,6
3
end*geom

frequency,freq,freq,0

inf baffle

rhs symmetry

velocity,tc7.vel
! or vel(1:4,1,1)=1.0

surface,3

The velocity file tc7.vel is as follows

1 1 1 1. 0.
1 1 2 1. 0.
1 1 3 1. 0.
1 1 4 1. 0.
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Example Problem 8
This example problem shows how to compute near-field pressures. The radiating surface consists of a

circular cylinder with flat circular end pieces. The cylinder radius is 1 m and the height is 2 m. We choose
the origin at the center of the cylinder and let the z-axis coincide with the cylinder axis. The end surface
at z = 1 is given a velocity of 1+i0 and the rest of the surface has zero velocity. We want to compute the
pressure at the two points (0,0,1.25) and (0,0,1.5) on the axis near the piston. In this example, we also set
the available RAM memory to be only 400 KB to force the program to use intermediate disk storage for the
large matrices. The input file for this problem is shown below:

freql=100
frequ=1500
freqinc=1400
nblks=12
ao=1.0
ht=2.0
htd2=.5*ht
rotlim=pi/nblks
end*params

rotational,nblks

circ_planar, htd2
0,ao,-rotlim,rotlim
16,1,4,16
3

circ_cylinder, ao
-htd2,htd2,-rotlim,rotlim
32,1,4,16
3

circ_planar, -htd2
0,ao,-rotlim,rotlim
16,1,4,16
-3,0,0,0

end*geom

memory,400000 ! intentionally set low to force use of intermediate disk storage

freq, freql, frequ, freqinc
rhs symmetry
vel(1:16,1,1)=1.0

surface pressures

nearfield pressures,2,3
0, 0, 1.25
0, 0, 1.5

Note that you only have to input the nonzero velocities. The results from the file tc8.out are shown on
the following page.
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SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
2 16 1 3 4 16

ul uu vl vu
0.000000E+00 0.100000E+01 -.261799E+00 0.261799E+00

cc array
0.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 2

neqn nu nv izaxis iquadu iquadv
4 32 1 3 4 16

ul uu vl vu
-.100000E+01 0.100000E+01 -.261799E+00 0.261799E+00

cc array
0.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 3

neqn nu nv izaxis iquadu iquadv
2 16 1 -3 4 16

ul uu vl vu
0.000000E+00 0.100000E+01 -.261799E+00 0.261799E+00

cc array
-.100000E+01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 64 # interior points = 0
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Memory Usage (bytes)

quadrature points 131072
surface pressures 512
far-field pressures 0
near-field pressures 16
point source pressures 0
external pressures 0
dpdn 512
surface field points 9216
far-field points 0
near-field points 288
A,B matrices 258048
total 399664

number of surface row blocks = 4
number of far-field row blocks = 0
number of near-field row blocks = 1

Frequency = 100.000000

NEAR-FIELD PRESSURES

Right-hand-side 1

x1 x2 x3 real imag
1 0.00 0.00 1.25 0.643337E+05 0.389493E+06
2 0.00 0.00 1.50 0.643251E+05 0.290717E+06

condition number = 1.5E+01

Frequency = 1500.00000

NEAR-FIELD PRESSURES

Right-hand-side 1

x1 x2 x3 real imag
1 0.00 0.00 1.25 -0.163006E+07 -0.110086E+07
2 0.00 0.00 1.50 -0.267511E+07 0.117691E+07

condition number = 1.5E+02

TIME IN SUBROUTINES (secs)
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QPTGEN 0.007
SURFACEGEN 0.001
GENSURFLDPTS 0.000
SURMATS 10.496
SURPRS 0.168
GENNEARFLDPTS 0.000
NFMATS 0.312
NFPRS 0.001

Total Time = 12.420

Example Problem 9
This example problem is like example problem 2 except that both surface and far-field A and B matrices

are output. In this case, it is not necessary to input a velocity distribution. The control section of the input
file for this example is shown below:

freq1=1500/(2*pi)
nblks=12
ai=1.68
ao=2.04
ht=1.2
htd2=.5*ht
reflim=pi/2
end*params

reflective,111

circ_planar, htd2
ai,ao,0,reflim
2,3,4,16
3,0,0,0

circ_cylinder, ao
0,htd2,0,reflim
2,3,4,16
3,0,0,0

circ_cylinder, ai
0,htd2,0,reflim
2,3,4,16
-3,0,0,0

end*geom

freq, freq1, freq1, 0.
a_b matrices
surface matrices
farfield matrices,1,0
0,90,5,0,0,0
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Example Problem 10
The geometry for this problem consists of a cube having sides of length 2. The corners of the cube are

at (1,1,1), (-1,1,1), (-1,-1,1), (1,-1,1), (1,1,-1),(-1,1,-1), (-1,-1,-1), and (1,-1,-1). The geometry is input using
rectangular finite elements. The purpose of this example is to generate a coupling matrix relating finite
element forces and chief pressures. The input file for this example is shown below:

end*param

none

fe_3d,tc10.nde,tc10.elt,4,4
3

end*geom

couple,1

The node file tc10.nde contains

56 1.0 1.0 1.0
22 -1.0 1.0 1.0
3 -1.0 -1.0 1.0
41 1.0 -1.0 1.0
57 1.0 1.0 -1.0
16 -1.0 1.0 -1.0
27 -1.0 -1.0 -1.0
48 1.0 -1.0 -1.0

and the element file tc10.elt contains

56 22 3 41
56 57 16 22
16 27 3 22
27 48 41 3
48 57 56 41
57 48 27 16

Note that CHIEF renumbers the nodes from 56, 22, 3, 41, 57, 16, 27, 48 to 1, 2, 3, 4, 5, 6, 7, 8. The
output for this example is shown below:

SURFACE GEOMETRY INPUT

region 1

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

110



cc array
0.100000E+01 0.200000E+01 0.300000E+01 0.400000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 2

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

cc array
0.100000E+01 0.500000E+01 0.600000E+01 0.200000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 3

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

cc array
0.600000E+01 0.700000E+01 0.300000E+01 0.200000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 4

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

cc array
0.700000E+01 0.800000E+01 0.400000E+01 0.300000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
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0.000000E+00 0.000000E+00 0.000000E+00

region 5

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

cc array
0.800000E+01 0.500000E+01 0.100000E+01 0.400000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

region 6

neqn nu nv izaxis iquadu iquadv
10 1 1 3 4 4

ul uu vl vu
-.100000E+01 0.100000E+01 -.100000E+01 0.100000E+01

cc array
0.500000E+01 0.800000E+01 0.700000E+01 0.600000E+01 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

trns
0.000000E+00 0.000000E+00 0.000000E+00

#areas = 6 # interior points = 0

FE Node Numbers

56 22 3 41 57 16 27 48

Coupling Matrix

0.000000 0.000000 0.000000 0.000000 0.250000 0.000000
0.000000 0.250000 0.000000 0.000000 0.000000 0.000000
0.250000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 -0.250000 0.000000 0.000000 0.000000
0.000000 0.250000 0.000000 0.000000 0.000000 0.000000
0.250000 0.000000 0.000000 0.000000 0.000000 0.000000

112



0.000000 0.000000 -0.250000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 -0.250000 0.000000 0.000000
0.250000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.250000 0.000000
0.000000 0.000000 0.000000 -0.250000 0.000000 0.000000
0.250000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.250000 0.000000
0.000000 0.250000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 -0.250000
0.000000 0.000000 -0.250000 0.000000 0.000000 0.000000
0.000000 0.250000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 -0.250000
0.000000 0.000000 -0.250000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 -0.250000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 -0.250000
0.000000 0.000000 0.000000 0.000000 0.250000 0.000000
0.000000 0.000000 0.000000 -0.250000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 -0.250000

In this case, an analytical evaluation of the integrals verifies that the resulting coupling matrix is correct.
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APPENDIX: BASIC CHIEF THEORY

The principal quantity of interest in classical (linear) acoustics is the acoustic pressure p(x, t) that is a
function of position and time. The acoustic pressure is the excess pressure over the hydrostatic pressure due
to compressional waves in the medium. The acoustic pressure p(x, t) satisfies the wave equation,

�p =
1
c2

∂2p

∂t2
. (1)

Here, � is the spatial Laplacian operator and c is the speed of sound in the fluid medium. In acoustics, it is
often more convenient to work in the frequency domain than in the time domain. By frequency domain we
mean the Fourier transform domain. The Fourier transform P of p is defined by the pair of relations,

p(x, t) =
∫ ∞

−∞
P (x, ω)eiωt df (inverse Fourier transform), (2a)

where

P (x, ω) =
∫ ∞

−∞
p(x, t)e−iωt dt (Fourier transform). (2b)

The transform variable ω is called the angular frequency, and the related quantity f = ω/(2π) is called the
frequency. Note that whereas the pressure p is a real quantity, the transformed pressure P is, in general,
complex. The Fourier-transformed pressure P (x, ω) satisfies the reduced wave equation,

�P + k2P = 0, (3)

where k = ω/c is the acoustic wavenumber.

In scattering problems, the incident pressure pinc is the pressure that would be present if the scattering
object were removed. If the source of the incident pressure is far from the scattering object, pinc is usually
assumed to be a plane wave because the wave is approximately planar in the vicinity of the scatterer. If p
is the total acoustic pressure present in a scattering problem, then the scattered pressure ps is defined by

ps = p − pinc. (4)

Clearly, the incident and scattered pressures also satisfy the acoustic wave equation.

To uniquely determine the pressure, it is necessary to specify some initial and boundary conditions in
addition to the requirement that the wave equation be satisfied. In the time domain, we usually specify
initial conditions throughout the region of interest for p and ṗ as well as boundary conditions on either p or
its normal derivative q. In the time domain, these boundary and initial conditions are sufficient to uniquely
determine p for exterior (unbounded region) problems. In the frequency domain, we usually specify either
the pressure transform P or the transform Q of the normal derivative of p on the boundary. For exterior
problems in the frequency domain, it is necessary to supplement the boundary conditions with a radiation
condition at infinity to eliminate the possibility of waves coming in from infinity. This condition usually
takes the form,

lim
r→∞ r

(
∂P

∂r
+ ikP

)
= 0, (5)

due to Sommerfeld. In effect, this condition says that the pressure field looks locally like an outgoing spherical
wave at large distances from the sound source. This condition can be eliminated if the fluid is assumed slightly
lossy (complex sound velocity). If the incident field in a scattering problem is considered a plane wave, then
neither the incident pressure nor the total pressure satisfies the outgoing radiation condition. Therefore,
in scattering problems, the outgoing radiation condition is applied to the scattered pressure. The normal
derivative of pressure Q is related to the normal surface acceleration a by Q = −ρa and to the normal surface
velocity v by Q = −iωρv.
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The CHIEF method for numerically solving acoustic problems is based on the reduction of a boundary-
value problem for the wave equation in the frequency domain to an equivalent integral equation over the
boundary surface. This integral equation is obtained from the Helmholtz integral relations:

∫
S

[
G(x, ξ)Q(ξ) − P (ξ)

∂G

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩

−P (x) x outside S

− 1
2P (x) x on S

0 x inside S,

(6)

where G(x, ξ) is the free-space Green’s function defined by

G(x, ξ) =
e−ik|x−ξ|

4π|x − ξ| , (7)

n is the outward unit normal to S, and |x − ξ| is the distance between x and ξ. These relations come from
the divergence theorem, the fact that P and G satisfy the wave equation, and the nature of the singularity
of G. A good discussion of these integral relations is contained in [Baker and Copson, 1950]. If the normal
derivative Q is specified on the boundary S, then the middle relation in equation (6) provides an integral
equation for the surface pressure P , i.e.,

1
2P (ζ) −

∫
S

P (ξ)
∂G

∂n
(ζ, ξ) dS(ξ) = −

∫
S

G(ζ, ξ)Q(ξ) dS(ξ) ζ on S. (8)

Once this integral equation is solved for the surface pressure, the pressure at any point in the exterior region
can be obtained using the first relation in equation (6).

For a scattering problem, the scattered pressure satisfies the integral equation (8). It can be shown that
the total pressure satisfies the integral equation

1
2P (ζ) −

∫
S

P (ξ)
∂G

∂n
(ζ, ξ) dS(ξ) = −

∫
S

G(ζ, ξ)Q(ξ) dS(ξ) + Pinc(ζ) ζ on S. (9)

In the remainder of this discussion, we will only consider the integral equation (9) because equation (8) can
be obtained by setting Pinc = 0.

A problem with this reduction to an integral equation on the surface is that there is an infinite discrete
set of frequencies f1, f2, . . . for which the integral equation does not have a unique solution. It turns out that
these frequencies are the resonance frequencies of the interior problem for the boundary condition P = 0
on S. As one might expect, numerical methods based on these integral equations have a problem when
the frequency is close to one of these interior resonance frequencies. Various methods for overcoming this
difficulty can be found in the literature [Benthien and Schenck, 1997]. The resonance frequencies f1, f2, . . .
are not resonances of the problem of interest. There are no resonances of the exterior problem. The exterior
problem has a unique solution at all frequencies. The interior resonance problem is a mathematical difficulty,
not a physical one. What happens at these frequencies is that the integral equation is no longer equivalent
to the original exterior acoustic boundary value problem.

CHIEF uses a piecewise constant approximation to the integral equation (9). In this approximation, the
boundary surface S is subdivided into a finite number of subareas S1, S2, . . . , SN . On each subarea Sn the
pressure is approximated by a single value Pn and the normal derivative of pressure is approximated by a
single value Qn. With this approximation, the integral equation (9) becomes

1
2P (ζ) −

N∑
n=1

Pn

∫
Sn

∂G

∂n
(ζ, ξ) dS(ξ) = −

N∑
n=1

Qn

∫
Sn

G(ζ, ξ) dS(ξ) + Pinc(ζ). (10)

Evaluating equation (10) at a set of reference points, ζ1, ζ2, . . . , ζN (one on each subarea), we obtain the
system of equations

N∑
n=1

AmnPn =
N∑

n=1

BmnQn + Pinc(ζm) m = 1, 2, . . . , N, (11)
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where

Amn = 1
2δmn −

∫
Sn

∂G

∂n
(ζm, ξ) dS(ξ), (12)

Bmn = −
∫

Sn

G(ζm, ξ) dS(ξ), (13)

and δmn is the Kronecker delta defined by

δmn =

{
0 m �= n

1 m = n.
(14)

ζm is taken at the center of the m-th subarea. The system of equations (11) can be written in the matrix
form,

AP = BQ + Pinc, (15)

where P is an N-vector whose n-th component is Pn, Q is an N-vector whose n-th component is Qn, and Pinc
is an N-vector whose n-th component is Pinc(ζn). If the normal derivatives Q1, Q2, . . . , QN are prescribed,
then the system of equations (11) can be solved for the surface pressures P1, P2, . . . , PN .

The expression in equation (6) for the pressure at an arbitrary field point can be approximated using
the same discrete approximations, yielding

P (x) =
N∑

n=1

[An(x)Pn + Bn(x)Qn], (16)

where
An(x) =

∫
Sn

∂G

∂n
(x, ξ) dS(ξ) and Bn(x) = −

∫
Sn

G(x, ξ) dS(ξ). (17)

In the scattering problem P (x) must be replaced by the scattered pressure at x. The surface values Pn and
Qn can be either the total or the scattered values. Equation (16) can be used to calculate the pressure at
an arbitrary field point x once the surface pressures and surface normal derivatives have been determined.
Evaluating equation (16) at a set of field points x1, . . . , xM , we obtain

P (xm) =
N∑

n=1

[An(xm)Pn + Bn(xm)Qn] m = 1, . . . , M. (18)

Equation (18) can be written in the matrix form,

P fld = AfldP + BfldQ, (19)

where P fld is the vector of field pressures, P is the vector of surface pressures, Q is the vector of pressure
normal derivatives, and the field matrices Afld, Bfld are given by

Afld
mn = An(xm) (20)

Bfld
mn = Bn(xm). (21)

CHIEF also contains far-field approximations for these field equations when the field points are far from the
radiating surface. When Pinc = 0 equation (15) can be solved for P to obtain the impedance relation,

F = DP = ZV, (22)

where D is the diagonal matrix of surface subdivision areas and Z is the impedance matrix given by

Z = −iωρDA−1B. (23)
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Substituting equation (22) into equation (19), we obtain

P fld = [AfldD−1Z − iωρBfld]V. (24)

The matrix on the right-hand side of equation (24) is sometimes referred to as the field matrix. In a scattering
problem, P fld must be replaced by the scattered field pressure and V must be replaced by the scattered
velocity since the total pressure and velocity are not related by the impedance relation in equation (22).

In the vicinity of one of the frequencies for which the underlying integral equation does not have a unique
solution, the system of equations (11) becomes numerically ill-conditioned. One method of overcoming this
difficulty is to add some additional equations obtained by evaluating a discretized version of the last relation
in equation (6) at a selected number of interior points. The overdetermined system of equations is then
solved in a least squares sense. A more complete discussion of this approach to solving acoustic problems is
contained in [Benthien, Barach, and Gillette, 1988].

While it is important to maintain the capability of handling quite general surfaces, it is also important to
realize that significant reductions in computation time can be achieved by taking advantage of any symmetries
that might be present in the problem. In the CHIEF approach, symmetry manifests itself in the structure of
the A and B matrices. The previously referenced CHIEF manual shows that each type of symmetry results
in the A and B matrices commuting with the appropriate symmetry operator Σ, for example,

AΣ = ΣA and BΣ = ΣB. (25)

It follows from these commutation relations that the eigenspaces of Σ are invariant under both A and B.
Thus, A and B become block diagonal when expressed in terms of a basis consisting of eigenvectors of Σ.
The sizes of the diagonal blocks are the dimensions of the eigenspaces of Σ.

As an example of how symmetry is treated in CHIEF, consider the special case of one plane of symmetry.
The symmetry operator for one plane of symmetry is

Σ =

⎛
⎝ 0 I

I 0

⎞
⎠ , (26)

assuming that symmetric elements are numbered in the same order. The fact that A commutes with Σ
implies that A has the block form,

A =

⎛
⎝A1 A2

A2 A1

⎞
⎠ . (27)

The matrix X of eigenvectors of Σ is given by

X =

⎛
⎝ I I

I −I

⎞
⎠ . (28)

The inverse X−1 of X turns out to be 1
2X. It is easily verified that X−1AX and X−1BX have the block

diagonal form,

X−1AX =

⎛
⎝ A1 + A2 0

0 A1 − A2

⎞
⎠ , X−1BX =

⎛
⎝ B1 + B2 0

0 B1 − B2

⎞
⎠ . (29)

Thus, the equation AP = BQ can be written as

(X−1AX)P̂ = (X−1BX)Q̂, (30)

where
P̂ = X−1P and Q̂ = X−1Q. (31)
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Equation (30) can be written in the partitioned form,⎛
⎝A1 + A2 0

0 A1 − A2

⎞
⎠

⎛
⎝P̂1

P̂2

⎞
⎠ =

⎛
⎝B1 + B2 0

0 B1 − B2

⎞
⎠

⎛
⎝Q̂1

Q̂2

⎞
⎠ . (32)

Thus, the original system of equations reduces to the pair of smaller systems of equations:

(A1 + A2)P̂1 = (B1 + B2)Q̂1 (33)

(A1 − A2)P̂2 = (B1 − B2)Q̂2. (34)

Once these equations are solved, the solution of the original system of equations is obtained by

P1 = P̂1 + P̂2 (35)

P2 = P̂1 − P̂2. (36)

Since solution time goes roughly as the cube of the number of equations, it is faster by a factor of four to
solve the two smaller systems rather than the one larger system. The symmetry can also be used to reduce
the time needed to generate the matrices. The CHIEF program can take advantage of one, two, or three
planes of symmetry as well as any finite order of rotational symmetry in the surface. CHIEF can also take
advantage of symmetry in the Q distribution when it exists. Table A-1 shows the time-reduction factors for
various types of symmetry.

Table A-1. Time reduction factors in CHIEF for various types of symmetry.

Symmetry Type Solution Using Q symmetry Matrix generation

One plane 4 8 2

Two planes 16 64 4

Three planes 64 512 8

N -fold rotational N2 N3 N

In the point source check and in the automatic generation of interior points, CHIEF needs to check
points to see if they are interior or exterior to the boundary surface. The check is based on a result for
potential problems that is similar to the Helmholtz integral relations. If φ satisfies Laplace’s equation, i.e.,

�φ = 0

interior to the boundary surface S, then

∫
S

[
G0(x, ξ)

∂φ

∂n
(ξ) − φ(ξ)

∂G0

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩

0 x outside S
1
2φ(x) x on S

φ(x) x inside S,

(37)

where G0(x, ξ) is the free-space Green’s function for the Laplace equation defined by

G0(x, ξ) =
1

4π|x − ξ| , (38)

A-5



and n is the outward unit normal to S. Since the constant function φ(x) ≡ 1 satisfies Laplace’s equation
interior to the boundary S and its normal derivative is zero on S, the integral relation (37) yields

−
∫

S

∂G0

∂n
(x, ξ) dS(ξ) =

⎧⎪⎨
⎪⎩

0 x outside S
1
2 x on S

1 x inside S

(39)

or

−
∫

S

∂

∂n

1
|x − ξ| dS(ξ) =

⎧⎪⎨
⎪⎩

0 x outside S

2π x on S

4π x inside S

. (40)

The numerical evaluation of equation (40) is used to determine if a point x is inside or outside of S.

The reader should see the appendix to the original CHIEF manual for more details on the theory behind
the CHIEF program.
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