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INTRODUCTION
The Office of Naval Research (ONR) established the Deployable
Autonomous Distributed System (DADS) program (Figure 1) to demon-
strate the feasibility of increased performance for an advanced tactical/
surveillance system that operates as a field of underwater distributed sensor
nodes. The goal of DADS is to demonstrate the feasibility of a cooperative
field-level detection and data fusion system that increases performance at
a reduced cost. Given limited power, the objectives are to use distributed
detection and data fusion to increase the lifetime of the field (reduced
power consumption), decrease the false alarm rate of the field over that
of the individual nodes, increase the field-level detection, increase the
probability of correct classification, and increase the accuracy of target
position estimates [1, 2, and 3].

A DADS field consists of individual sensor nodes operating autonomously.
Each sensor node uses a set of acoustic and electromagnetic sensors to
provide coverage of a small area of interest. Each DADS sensor node uses
a matched-field tracking algorithm to provide target detections consisting
of position, velocity, and classification information. Once a detection is
constructed at a sensor node, the data are transferred to a DADS master
node where field-level data fusion is performed.

Detection Theory
In the DADS program, a need exists to identify what constitutes target
detections from the field of autonomous sensor nodes. The DADS pro-
gram also requires an optimization algorithm to route communication
messages efficiently, using as little power as possible. A field-level
control/detection scheme is sought to detect targets of interest at a given
field-level probability and to route messages optimally by using a mini-
mal amount of power. Control of an autonomous set of sensor nodes is
needed to meet a desired probability of detection for the field and to
extend the life of the field.

To construct a field-level detection, we now define what is required to
call out a field-level detection. Each sensor node contains an acoustic sen-
sor suite and an electromagnetic sensor suite. To report a detection, both
the acoustic and magnetic sensors must detect a target at a sensor node.
Once one node has detected the target, a second node nearby is cued and
another sensor node must detect the target. Once this second sensor node
detects and reports the target, a field-level detection is called and reported

ABSTRACT
An autonomous field of sensor
nodes must acquire and track
targets of interest traversing the
field. Small detection ranges limit
the detectability of the field. As
detections occur in the field,
detections are transmitted
acoustically to a master node. Both
detection processing and acoustic
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power source. To maximize field
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FIGURE 1.  Field of DADS autonomous
sensor nodes.
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out by the master node for field-level fusion. Each sensor node has a
threshold for the sensor suite given by an operating point on a receiver
operating characteristic (ROC) curve as shown in Figure 2. The operating
points on the figure are labeled R1 and R2 and represent different signal-
to-noise ratio (SNR) levels for the sensor suite. Choosing different oper-
ating points on the ROC curve yields different probabilities of detection
and probabilities of false alarm. A constant field-level probability of
detection is desired for operation of the field of sensor nodes. By adjust-
ing threshold levels at the sensor suite, that is, moving up and down
operating points on the ROC curve at each sensor node, a constant field-
level probability can be achieved.

Besides controlling the thresholds at the individual sensor suites at each
node, another problem is to minimize the power consumption of the
individual sensor nodes while meeting the field-level probability con-
straint. This issue addresses the routing of communication messages
through the distributed field of sensor nodes. As messages are passed
from sensor node to sensor node and finally arrive at the master node, the
battery level is drained by the amount of communication power spent
transmitting and relaying detections acoustically.

A field-level controller will adjust the detection threshold levels at each
sensor node to meet the desired field-level probability of detection and to
perform optimal routing of messages through the field. A typical example
of a point on a ROC curve is shown in Figure 3.

A brief overview of detection theory is provided below [4]. In Figure 3,
two possible hypotheses, labeled H0 and H1, are shown. H0 is the false
alarm hypothesis and H1 is the detection hypothesis. The threshold T is
used to determine whether or not the SNR is high enough to call out a
detection. The SNR in the figure is labeled γ. Under the two Gaussian
curves, a probability of detection and a probability of false alarm can be
determined. Integrating the H0 probability density function (pdf) from T
to ∞, the false alarm probability is calculated. Integrating the H1 pdf
from T to ∞, the probability of detection is calculated. Figure 4 shows
several SNRs from a chosen ROC curve operating point. The objective
of the field-level controller is to adapt the sensor node thresholds to
acquire a target of interest and detect it successfully through the field. In
the figure, the graph labeled nominal is shown to demonstrate a chosen
operating point for the sensor node. The next two graphs show a
decrease in SNR and an increase in SNR, respectively. As SNR levels
vary, a target may become easier or more difficult to detect although the
probability of false alarm remains constant across all three graphs. Only
the probability of detection decreases or increases due to the SNR of the
target. Our task is to adjust thresholds dynamically to make sure the tar-
get is acquired and tracked as it passes through the field. To do this, we
will lower thresholds for subsequent cued detections to increase the
detection range at a sensor node, but at the same time we increase the
number of false alarms from a sensor node. When adjusting these thresh-
olds at each sensor node, we must maintain a constant field-level proba-
bility of detection. A simple example of this threshold adjustment is to
use a bathtub analogy. If one side of the bathtub water is pushed down,
water on the other side of the tub will rise. This example shows what we
will do when adapting thresholds: we will lower a certain set of sensor
node thresholds while raising another set.
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FIGURE 2.  Typical ROC curve.
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FIGURE 4.  Possible detection curves.
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Threshold Adaptation
Figure 5 shows a cookie cutter example of a field of sensor nodes. Each
sensor node has a defined detection range given in red (small circles) for a
high threshold (low false alarm rate, high SNR) and another detection
range shown in blue (large circles) for a low threshold (high false alarm
rate, low SNR). This figure demonstrates the adaptive process that must
occur for the DADS field of sensor nodes to detect
and continue to detect a target as it passes through the
field. 

If the field were static, the small red circles would dic-
tate the area of coverage in which the field could pick
up detectable targets. In the figure, a hypothetical tar-
get has been drawn by a black line with an arrow at
the tip. If the threshold were held at this higher level,
only one possible detection might occur as this target
traversed the field of sensor nodes. By lowering the
thresholds (larger blue circles), which is done by cue-
ing the field, a broader coverage of the field is
achieved. The figure shows that up to four possible
detections on a target of interest can occur by lower-
ing the sensor node thresholds. This improved
detectability concept will improve the overall field-
level data fusion by providing more contact informa-
tion than previously capable with a static set of sensor node thresholds.
By lowering the threshold though, a larger number of false alarms can
occur and cause power to be drained from the sensor nodes. False alarms
also make the data fusion problem at the master node more susceptible to
miscorrelation. Therefore, dropping all of the sensor node thresholds is
not acceptable because it will limit the system operation. As explained
previously, we will lower thresholds and raise thresholds at individual
sensor nodes to maintain the desired field-level probability of detection
while maximizing the life of the field.

2-of-2 Field Detector
To adjust thresholds, we propose to use a baseline model of a 2-of-2
detector. The detector will use communication costs, probabilities of
detection and false alarm, node spacing of the field, and signal processing
parameters used at the sensor node sensor suite. This formulation shows
that false alarms as well as target detections drain the power at each sen-
sor node. We will now present our baseline model equation for field-level
control as derived in [5]. This formulation will allow the complete field
to be controlled by the master node in the DADS system. The baseline
model equation is as follows. The estimated power P̂(n) consumed over a
period of time T at each node n, n = 1,..., N, is given by

FIGURE 5.  Sensor node threshold adjustments via field-level control.
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where ρs is the basic sample rate and T is the time period of the estimated
life of the node. The first term represents the power consumed Con from
the processor in the node. If the sensor node is on, a certain amount of
processing power is drained from the battery. The second term represents
the case that an initial false alarm is generated at node n, where  F1(n),
F2(n) are the probabilities of false alarm that are controlled by thresholds
T1(n) and T2(n), and Ck(n) is the communication power used to transmit
from node n to the next upstream node specified by the current commu-
nication route Rk(n) at time k.  Np is the size of the parameter space over
which the detectors must test, e.g., if the detector must look over a dis-
crete set of speed (say Ns) and closest point of approach (CPA), say
NCPA , thus giving Np = Ns NCPA. This is the second detection required
for declaring a field-level detection from the field. The third term repre-
sents the case of a "downstream" node n� that generates a false alarm and
node n is simply a passthrough; the communication route for node n at
time k is specified by Rk(n). The fourth term represents the case that a
false alarm is generated at node n as the result of being cued by another
node n� in a set of neighboring nodes Bk(n). Specifically, P is the covari-
ance of the track estimate at the time of the detection at the first node;
[1+sD2] is the expansion factor for the track covariance until the second
detection at the next node detection; π(rd

(2))2 is the area of the detection
space for the second sensor node; and D is the length of the sensor field.
The fifth term represents the case of a downstream node n� that generates
a false alarm as a result of being cued, and node n is simply a pass-
through. The last four terms deal with the cases of a target present;  ρT is
the target rate. The sixth term represents a target detection at node n,
where P1(n) , P2(n) are the probabilities of detection, again controlled by
the thresholds T1(n) and T2(n). This is a true target detection and not a
false alarm. The seventh term represents the case of a downstream node
n� detection where node n is simply a passthrough for the initial condi-
tion. The eighth term represents the case that a target detection is gener-
ated at node n as the result of being cued by another node n�. The final
term represents a downstream node n� that generates a target detection as
the result of being cued, and node n is simply a passthrough.

Given the current power P(n) available at each node, the estimated
remaining power is

ε(n)(T) = P(n) – P̂(n)(T) .

The objective function for maximizing the life of the field is

maximize T,
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subject to the constraints that each of the estimates of the remaining
power is positive

ε(n)(T) ≥ 0 , n = 1,..., N

and the field-level probability of detection is specified by

PD = N(ε1, ε2,..., εN)π(rd
2)[1– (1 – P1(1)P2(1))(1 – F1(1)F2(1))Np–1]

�[1– (1 – P1(2)P2(2))(1 – F1(2)F2(2))[ρδNpP(1+sD2)/ �πr
d

2 �]–1]/A(D) 

where N(ε1, ε2,..., εN) is the number of nodes with nonzero power
remaining and π(rd

2)/A(D) is the area covered by an individual node. The
objective is to maximize field life T subject to meeting the field-level con-
straint by adjusting probability of detection /probability of false alarm
threshold levels and varying communication routes (through Rk(n)). By
choosing appropriate thresholds at each sensor suite, the field-level prob-
ability of detection constraint can be met and the field life extended. An
algorithm that will choose thresholds to meet the probability of detection
constraint and extend the field life is discussed in the next section.

Evolutionary Programming
Evolutionary programming (EP) is a stochastic optimization technique
applied in this paper to optimize routing of the sensor node message traf-
fic at minimal power cost and to meet a field-level probability constraint.
EP falls under the domain of Evolutionary Computation that contains
other algorithmic techniques such as genetic algorithms (GAs), genetic
programming, as well as others [6]. One of the main differences between
EP and GAs is that EP performs a mutation operation while GAs per-
form a mutation operation and a crossover operation. Genetic algorithms
also operate from the bottom up when finding a solution. EP is a top
down approach to finding optimal solutions. An evolutionary algorithm
is shown in Figure 6. In simple terms, an evolutionary algorithm starts
out with a population of possible solutions to a problem. A population
consists of parent solutions and their corresponding offspring solutions.
This stochastic optimization technique allows the whole parameter space
to be searched and evaluated for a best-fitting solution. In the figure, the
initial solutions are called parents. Each parent solution can be a good
first guess at the correct answer or a randomly chosen solution that may
be very poor. Each parent has the ability to create a set of offspring solu-
tions by mutation or by crossover if a genetic approach was used. Each
parent solution is mutated by changing its state to form an offspring
solution. This mutation can be Gaussian or some other linear or nonlin-
ear deviation. Once the population of parents has been mutated and the
offspring solutions are created, the population consisting of parents and
offspring solutions is then scored, as shown in the figure. Scoring or eval-
uation of the population for our purpose is done to make sure the sensor
nodes meet a defined field-level probability constraint with their defined
threshold settings. A selection process is then performed whereby the
next generation of parents are selected to evolve better and better solu-
tions. This selection process chooses the solutions that passed the con-
straint in the scoring process by selecting the solutions that yield the
largest amount of field life. 

The standard EP approach consists of several steps (initialization, muta-
tion, scoring, and selection) [6]. Initialization is performed by assigning
thresholds to each sensor in the sensor suite (magnetic, acoustic) and
using these thresholds, the sonar equation, and an error function to evaluate

PARENTS

MUTATION AND CROSSOVER

EVALUATION AND SCORING

SELECTION

FIGURE 6.  Evolutionary algorithm.



DATA ACQUISITION AND EXPLOITATION52

the probability of detection and probability of false alarm of the sensor
node. This is done for each sensor node in the field given by

Pd(n) = 1/2*(1.0 – erf(T(n) – SL(n) + NL(n)))                         (2)

and
Pd(n) = 1/2*(1.0 – erf(T(n) + NL(n)))                                      (3)

where Eq. (2) initializes the probability of detection Pd for sensor node n
given its threshold T, the target source level SL, and the noise level at the
sensor NL. Eq. (3) initializes the probability of false alarm Pfa for sensor
node n given its threshold T, and the noise level at the sensor NL. This is
performed for each sensor node until all thresholds and probabilities of
detection and false alarm have been initialized. This fully initialized field
of sensor nodes is deemed as a parent solution in the EP language and is a
possible solution for the field-life problem. Possible solutions are defined
as parents and are given as

P(k) = S(Pd(n), Pfa(n), T(n), R(n))                                           (4)

where P(k) are the k number of parents in the population solutions. Each
solution S is made up of a field of sensor nodes with independent thresh-
olds T, which dictate a Pd and Pfa for the sensor node, and a routing
table R for communication with other nodes in the field. Once the popu-
lation of parent solutions has been initialized, the EP algorithm is able to
perform the next three steps (mutation, scoring, and selection) iteratively
to converge to the best possible solution given time constraints and mem-
ory requirements of the system. The first step is the mutation process
whereby parent solutions generate offspring solutions. Offspring solu-
tions have the possibility of generating a better solution than their par-
ents. This is the evolutionary step in the EP process. One of the mutation
steps is to change the threshold at each sensor at a sensor node to yield a
better solution. This is defined by

O[T(m,n)] = P[T(k,n)] + N(0,1)                                             (5)

where O[T(m,n)] is the mutated threshold at offspring m for sensor node
n, P[T(k,n)] is the threshold at parent k for sensor node n, and N(0,1) is a
Gaussian random variable with zero mean and unit variance. Eq. (5)
changes each parent's threshold to generate an offspring's threshold.
Another mutation step is to change the routing table for communications
at each node. This is defined by

O[R(m,n)] = P[R(k,n)] �Urv*c (6)

where O[R(m,n)] is the mutated communication routes at offspring m for
sensor node n, P[R(k,n)] is the communication routes at parent k for sen-
sor node n, Urv is a Uniform random variable, and c is the number of
possible nodes for sensor node n to communicate with. The number of
communication routes can increase or decrease according to Eq. (6). Eq.
(6) changes each parent's communication route to generate an offspring's
communication route. Each parent can perform these mutation steps and
generate as many offspring as desired. Once this is done, the new popula-
tion of parents and offspring are scored and evaluated against the system
constraints. For example, if the desired field-level probability of detection
is 0.8, each solution is evaluated using 

PD = Nε1, ε2,..., εN)π(rd
2[1– (1 – P1(1)P2(1))(1 – F1(1)F2(1))Np–1]

�[1– (1 – P1(2)P2(2))(1 – F1(2)F2(2))[ρδNpP(1+sD2)/ �πr
d

2 �]–1]/A(D)   (7)



which is the probability of detection for a field of sensor nodes defined
above. (See 2-of-2 Field Detector.) We will use a simulated annealing
approach to meet this constraint. For example, if 0.8 is desired, we may
allow solutions to lie between (0.7, 0.9) in the beginning and slowly con-
verge toward 0.8 while we iterate. All solutions that pass this field-level
probability constraint are then passed to the selection process. Selection
is done by picking the best k solutions that meet the constraint and mini-
mize the power consumption defined from the baseline model from Eq.
(1). These best k solutions then become the parents for the next iteration.
The process continues until the best solution is found. This evolutionary
process extends the field life by optimizing the thresholds of the field and
planning the optimal routes for message passing.

RESULTS
Now we present some results of our EP solution to the adaptive thresh-
old control problem. These results are for a complete field of sensor
nodes. Each node has a set of thresholds solved for by the EP algorithm
as well as the optimal routes for communication to extend field life.

Simulation Overview
As stated previously, the claim of this paper is that it can be shown that
field life can be doubled by using a field-level controller to dynamically
adjust thresholds and routing structures, as compared to a fixed field that
uses static thresholds and routing structures.

The EP software written for this paper generates solutions that are repre-
sentative of a field under the control of a field-level controller. To make
the comparison to a fixed field, a fixed-field implementation had to be
generated.

The Fixed Field
The fixed field required a nominal routing structure and a set of sensor
thresholds, which would meet the field-level probability of detection. To
generate the nominal routing structures, a field initialization scheme was
emulated. The emulation of this field initialization scheme consists of the
following steps:

1. The Master Node broadcasts a Wakeup Message.

2. Any node that can hear responds with a Wakeup Response mes-
sage. In this case, any node within the cookie cutter range can hear.

3. Nodes that responded to the Master Node will be direct communi-
cation routes. This means that these nodes will relay their packets 
directly to the master node.

4. Nodes that heard the Master Node will broadcast to their neighbors.

5. Any node that can hear within the cookie cutter range will 
respond.

6. If the node that responds does not have a destination node yet, 
the node that broadcast will become the destination node.

7. This sequence is repeated until every node in the field has been 
assigned exactly one destination node.

The above sequence generated a nominal routing structure for a fixed
field as shown in Figure 7. In conjunction with the routing structures,
sensor thresholds that met the field-level probability of detection were
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required. To obtain these thresh-
olds, the EP model was run, and 
the thresholds from the optimal
solution were used.

The Controlled Field
In the simulations, two types of
results are generated for the con-
trolled field. The first type is
referred to as a "single optimized"
solution. This solution is generat-
ed using the EP software. Once
the EP algorithm finds an optimal
combination of thresholds and
routing structures, it uses that
solution for the life of the field.
Figure 8 shows the optimal routes
found for the single optimized
solution. 

The second type of a controlled
field solution is referred to as a
"vector-optimized" solution. As
with the single optimized solution,
the EP algorithm finds a solution
set, which maximizes field life.
However, in this solution, the
routes and thresholds can be
adjusted every 24 hours, thus
resulting in a vector of solutions.
Because the control algorithm is
run each day and the routes are
potentially changed, it is not possible to show each daily graphical solu-
tion in this paper.

Field Laydown
Simulations were run for two field laydowns. In each laydown, the field
consists of 30 sensor nodes and 1 master node arranged in a (56 by 28)
unit grid. The difference between the two laydowns is the placement of
the master node. In the first field laydown, the master node is a square
box on the edge of the field as shown in Figures 7 and 8. In the second
laydown, the master node is in the center of the field of sensor nodes.

Detector Types
The objective function defined previously (see 2-of-2 Field Detector) is
for a 2-of-2 detector. This paper also defined an objective function for a
1-2 detector. The 1-2 detector requires an initial detection from the mag-
netic sensor on one node followed by a confirmed detection from the
acoustic sensor on a second node. Results for both the 2-of-2 detector
and the 1-2 detector are reported below.

Simulation Results
The results from the simulation are given in Table 1. The results are pro-
vided in units of days.

MASTER
NODE

28 units

56 units

FIGURE 8.  Single optimized field routes.
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MASTER
NODE

28 units

56 units

FIGURE 7.  Fixed-field routes.



Figure 9 shows the results from
running the fixed-field simula-
tion. In the fixed field, the rout-
ing assignment was performed
by using the minimum number
of hops between the master node
and each node in the field. This
result is for the 2-of-2 detector
processing for the second field
laydown. It shows that running
no optimization algorithm and
just a greedy algorithm to assign a route for the field
only yields a field life of 74 days. As shown in Figure
9, one single node begins to lose its power immediately.
This node is the main communication node to the mas-
ter node. Once one node in the field loses all of its
power, the field is considered to be dead.

Figure 10 shows the results from the single optimized
field simulation. The routes for this result were calcu-
lated by running the EP algorithm once for the whole
life of the field. This optimization result yielded a field
life of 106 days for the 2-of-2 detector for the second
field laydown. As shown in this figure, a single node
still drives the field to death, but there are several other
sensor nodes that are also losing power at a similar
rate. 

The field life was extended over the fixed-field imple-
mentation by using at least one planned optimal route
for the whole simulation.

Figure 11 shows the results from the vector-optimized
field simulation. This result has its routes recalculated
each day by running the EP optimization algorithm.
This optimization result yielded a field life of 154 days
for the 2-of-2 detector for the second field laydown.
As shown in this figure, a group of sensor nodes all
lose power similarly at the same rate. Approximately
one-third of the sensor nodes in the field died on day
154. This result more than doubled the life of the field
over the fixed-field result of Figure 9. It also increased
the life of the field from 106 days for the single opti-
mized solution shown in Figure 10 to 154 days for the
vector-optimized solution.

Observations
The following observations are made regarding the
simulation results:

1. The vector-optimized solution more than doubled 
field life as compared to the fixed-field solution.

2. The 2-of-2 detector has a longer life than the 1-2 
detector. This is because the 2-of-2 detector has 
stringent initial detection rules, which translates to 
fewer reports and less communication as shown in 
Table 1.

TABLE 1.  Simulation results in days.

Field Laydown

           1

 

           2

Detector

  1-2

  2-of-2

  1-2

  2-of-2

Vector-Optimized

         45

       118

         55

       154

Single Optimized

         32

         70

         45

       106

Fixed Field

      21

      40

      26

      74
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FIGURE 9.  Fixed-field life.
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FIGURE 10 .  Single optimized field life.
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FIGURE 11.  Vector-optimized field life.
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3. Field life increased when the master node was moved from the edge 
of the field to the center of the field for the second field laydown. 
This is because when the master node is in the center of the field, 
there are more direct routes to the master node, which spreads out 
battery drain.

4. The vector-optimized solution has a longer field life than the single 
optimized solution. This is because changing the routes every 24 
hours allows the battery drain to be spread more evenly across the 
field. With the vector-optimized solution, approximately one-third of
the field will die on the same day. 

CONCLUSIONS
In this paper, we have applied a stochastic optimization technique to
adapt the thresholds of an autonomous sensor field and plan the commu-
nication routes. This stochastic optimization algorithm is known as evo-
lutionary programming. The evolutionary program adapted the thresholds
of a 2-of-2 detector for a set of sensors as well as a 1-2 detector. The
algorithm is an evolutionary computation technique where an analytic
solution is not attainable mathematically. Each sensor node in the 2-of-2
detector contained two thresholds to adapt, yielding four total thresholds
to compute. The four thresholds are combined to meet a field-level prob-
ability of detection constraint and extend the life of a field of sensor nodes.
Results show the benefits of adaptive threshold control in an autonomous
sensor field by reducing communication costs and extending the life of
the field by two.
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Use of One-Point Coverage Representations,
Product Space Conditional Event Algebra,
and Second-Order Probability Theory 
for Constructing and Using Probability-
Compatible Inference Rules in Data-Fusion
Problems
I. R. Goodman
SSC San Diego

INTRODUCTION

Programmatics
This paper documents one aspect of the ongoing FY 01 In-house
Laboratory Independent Research Project CRANOF (a Complexity-
Reducing Algorithm for Near-Optimal Fusion), Project ZU014,
with Principal Investigator, Dr. D. Bamber, and co-investigator,
Dr. I. R. Goodman (both SSC San Diego), and with associate support
from Dr. W. C. Torrez (SSC San Diego) and Prof. H. T. Nguyen
(Department of Mathematical Sciences, New Mexico State University
and U.S. Navy American Society for Engineering Education Fellow
during summers at SSC San Diego). A preliminary version of this
paper can be found in [1, section 3.3].

Background on Underconstrained Conditional Probability Problems
Philosophy of Approach and General Motivations
To improve the timeliness and accuracy of decision-supported human
decision-making, one is faced with an array of crucial problems, including
how to handle large amounts of incoming and uncertain information from
disparate sources. These sources can be human-based or mechanical-
based, and the information can arrive in different forms, such as qualita-
tive and linguistic, numerical and statistical-probabilistic, or some mixture
of both. At SSC San Diego, the CRANOF project addresses such crucial
issues solely within the realm of statistics and probability. The issue of
underconstrained or underspecified probabilities is treated by a novel 
use of second-order probabilities (i.e., probabilities of probabilities) in
Bayesian framework. Underconstrained probabilities arise in a wide vari-
ety of problems, including quantitatively formulated rule-based systems,
tracking and correlation, assessment of network intrusions, information
retrieval, and simulation of human behavior in war games. This paper
serves as a beginning extension of the capabilities of CRANOF to include
linguistic-based information.

ABSTRACT
This paper covers issues relating
to the establishment of a sound
and conditional probability-
compatible rationale for generating
linguistic-based inference rules
concerning a population. By
extending previous preliminary
results, we detail, in a fully
rigorous manner and within the
confines of traditional probability
theory, that a comprehensive
technique can be derived that con-
verts linguistic-based conditional
information, couched only in
fuzzy-logic terms, into naturally
corresponding conditional proba-
bilities. In turn, we demonstrate
how such typically undercon-
strained conditional probabilities
can be combined for suitable
conclusions and decision-making,
via a new use of second-order
probability logic. This research
is part of the ongoing SSC San
Diego In-house Laboratory
Independent Research FY 01
project CRANOF (a Complexity-
Reducing Algorithm for Near-
Optimal Fusion).
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Quantitatively Formulated Rule-Based Systems
Consider quantitatively formulated rule-based systems, with the rules or
conditional relations symbolized typically as (a1 | b1), (a2 | b2),...—read "if
b1, then a1" (or equivalently, "a1, given b1," etc.), "if b2, then a2,"..., where
events or sets a1, b1, a2, b2,... may themselves represent quite complicated
logical combinations of simpler events or sets, and where it may or may
not be known what logical relations exist among such events. Each such
rule is also assigned quantitative reliability in the form of naturally corre-
sponding conditional probabilities. Thus, for some otherwise unspecified
probability measure P, rule (a|b) is assigned value P(a|b) = P(ab)/P(b), the
conditional probability of a given b, using standard Boolean and probabil-
ity notation and assuming antecedent probability P(b) > 0. Because typical
rule (a|b) is not perfect, in general P(a|b) < 1, but, on the other hand, one
would expect P(a|b) to be reasonably high. A common problem that such
rule-based systems address is: Consider incoming information in the form
of events, d1,..., dn, possibly gleaned from different sources, such as d1 =
"visibility is up to 1 mile," d2 = "winds between 15 mph and 30 mph," d3
= "enemy movement detected last night in Sector C,"..., dn = "political
situation with enemy country Q at level R," and a collection of reason-
ably related rules, such as (a1|b1), (a2|b2),..., (am|bm), where the aj, bj
involve not only parts or all of the dj (or various logical combinations of
them), but possibly other related events (or logical combinations of such).
Then, one wishes to test for viability of possible decisions, based upon
this information, such as c1 = "fully successful attack by us can be accom-
plished by attacking in Sectors C or D," c2 = "partially successful attack
by us can be accomplished by attacking Sectors D or H,"... . Symbolically,
one is considering the validity or degree of validity of the entailment
schemes Gi = [(a1|b1),..., (an|bn); (ci|d)], i = 1, 2,... , where d = d1&...&dn
(conjunction of all data), and where ((a1|b1),..., (an|bn)) can be considered
the premise set of Gi and (ci|d) its potential conclusion. Ideally, one would
like to know just what each P(ci|d) would be, based on having either, say,
the exact threshold situation holding, i.e., P(aj|bj) = tj, j = 1,..., n, or, the
lower bound threshold situation holding, i.e., having P(aj|bj) ≥ tj, where all
the thresholds tj are known or estimable in either situation. However, in
general, it is readily demonstrated that the n equalities (or inequalities) are
not enough to determine P and/or P(ci|d) completely. Thus, one is faced
with the problem of best estimating, in some sense, just what P and/or
P(ci|d) should be.

Adams’ Approach to Analyzing Quantitatively Formulated Rule-Based Systems
In a series of papers [2, 3], E. W. Adams proposed, in effect, the estimate 
of P(cj|d) to be a pessimistic one in the form of his "minimum conclusion" 
function, using multivariable abbreviation tJ for (tj)j in J, (a|b)J for (aj|bj)j in J, 
P(a|b)J ≥ tJ for P(aj|bj) ≥ tj, j in J, 1J for column vector of all 1’s indexed 
by J, etc.,

estimateHPL of (P(ci|d) from Gi)
= minconc(Gi)(tJ) = inf{P(ci|d): for all possible probability measures P such that P(a|b)J ≥ tJ},   (1)
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with P(ci|d) for the exact threshold situation analogously estimated. The
subscript ( )HPL is used to indicate "High Probability Logic," since Adams
also introduced the idea of an entailment scheme being HP-valid or HP-
invalid, which, in the case of any Gi here simply means for the former
that 

Gi is HPL-valid     iff     limit(minconc(Gi)(tJ)) = 1. (2)
(tJ↑1J)

But, unfortunately, both the minconc function and its limiting forms to
test for HPL-validity/invalidity produce a number of results very much at
odds with commonsense reasoning, including the fact that three very fun-
damental entailment schemes, transitivity (or hypothetical syllogism) [(a|b),
(b|c); (a|c)] (the heart of any rule-based system); contraposition [(a|b);
(b�|a�)]; and strengthening of antecedent [(a|b); (a|bc)] are all HPL-invalid.
In fact, one can find P’s that satisfy their premise thresholds for any
choice of tJ close to (but not exactly equal to) 1J, but for which the corre-
sponding conclusion probabilities are arbitrarily close to (or actually
equal to) 0. Moreover, more generally, Eq. (2) can be complemented by
the fact that any

Gi is HPL-invalid    iff     limit(minconc(Gi)(tJ)) = 0. (3)
(tJ↑1J)

Finally, Adams pointed out another type of validity, CPL (Certainty
Probability Logic), that, although still based on the minconc function, can
be characterized as "too optimistic" in contrast with HPL, whereby the
criterion is

Gi is CPL-valid    iff     minconc(Gi)(1J)) = 1. (4)

Close connections exist between CPL validity/invalidity (the latter satis-
fying a relation analogous to that of Eq. (3)) and that of CL (classical
logic) validity or invalidity, noting 

Gi is CL-valid     iff      &(b�� ab)J � d�� cid. (5)

(For further analysis, criticism, and extension of Adams’ ideas, see [3].)

CRANOF Approach to Analyzing Quantitative Rule-Based Systems and 
Other Underconstrained Probability Problems
The previous conclusions show that the minconc function is not a reason-
able measure (for reasonably high thresholds) of the degree of validity/
invalidity of an entailment scheme and also show that the HP-validity/
invalidity test is too stringent. Therefore, it seemed natural to replace the
extremal minconc function by the more moderating meanconc function
(well-justified from decision analysis in the form of conditional expecta-
tion and justified as always admissible, least-squares error, etc.—see any
standard texts such as Rao [4] or Wilks [5]) within a Bayesian framework,
where the unknown probability measure P here is treated as a random
quantity with some appropriately assigned prior distribution, subject to
the given premise set threshold constraints. Utilizing additional new theo-
retical results [6], an "optimal" choice of prior or priors essentially must
come from the well-known Dirichlet family of distributions. It should be
noted that, unlike the minconc function, the meanconc function in the
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unity-limiting threshold case can take on nontrivial values and, in a natu-
ral sense, at any fixed threshold level, provides a reasonable measure of
degree of validity of that entailment scheme under consideration. In par-
ticular, in full agreement with commonsense reasoning, transitivity, con-
traposition, and strengthening of antecedent are all SOPL-valid, where
SOPL stands for Second-Order Probability Logic and where one defines
validity of any Gj as

Gi is SOPL-valid        iff      limit(meanconc(Gi)(tJ)) = 1, (6)
(tJ↑1J)

SOPL-validity depending on some degree, of course, on the particular
choice of prior for P. However, it has been pointed out (Bamber [7] and
personal communications) that the limit in Eq. (4) remains the same as if
the prior of P is a uniform distributional one, when the corresponding
probability density function is bounded uniformly above and below
(from zero) over its natural domain (again, see references).

Also, see [8] for additional background on both the theoretical structure
of the meanconc function and its practical implementational form
CRANOF—whereby a significant reduction in the complexity of com-
puting meanconc(Gi)(tJ) is achieved by, in effect, reducing the premise set
of Gi to a single constraint, also taking into account the unity-limiting
threshold behavior of meanconc ([7]). Finally, Table 1 is presented below
to illustrate a few typical evaluations of meanconc(G) for relatively simple
entailment schemes G with P assigned a uniform prior distribution [8].

TABLE 1.  Abridged table of calculations of degree-of-entailment functions, minconc and meanconc, for fixed threshold levels, and a
comparison of CPL-, SOPL-, and HPL-validities for different types of entailment schemes.

D is 
HPL- 
valid?

YES
 
 

NO

NO
 

NO
 
 

NO
 
 

NO

D is 
SOPL-
valid?

YES
 
 
 
YES
 
 

YES
 

YES
 
 

NO
 
 

NO

D is 
CPL- 
valid?

 

YES
 
 

YES
 
 

YES
 

YES

YES
 
 

NO

meanconc(D)(tJ), 
assuming uniform 
prior for P's (exact 
threshold form)
 

> max(s+t-1,0)
   

= st + (1–t)/2 – p(s,t)/q(s,t),
p(s,t) = s(1–s)(2s–1)t(1–t2),
q(s,t) = t+2t2+
             (s(1–s)(1–t)(2+3t–t2)
  
1/t +  
    
   
(1+t)/3 + [((1+t)(2–t)/(3t)) θ(t)],
  θ(t)
= (t2/4)[log((2–t)/t)]/(1–t)
– ((1–t)2/4)•log((1+t)/(1–t)) 

1/2
 
  

If s > t : t/(2s),

If s < t : 

minconc(D)(tJ) 
(inequality 
threshold form)

 

> max(s+t-1,0) 
 

0
  

0
  

0 
 
 

0
 
  

0 

Given Levels 
of Premises: 
P(a|b)J = tJ, 
for otherwise 
arbitrary 
prob. meas. P 

P(a|b) = s, 
P(c|b) = t
  

P(a|b) = s, 
P(b|c) = t 

 

P(a|b) = t 
 

P(a|b) = t, 
P(a|c) = t
 

P(ab|c) = s, 
P(d|a) = t, 
P(d |b) = t 

P(a|b) = s, 
P(a) = t 

Name of 
Entailment Scheme 
D = [(a|b)J; (c|d)] 

Cautious
Monotonicity: 
[(a|b),(c|b); (a|bc)]

Transitivity: 
[(a|b), (b|c); (a|c)]

 

Contraposition: 
[(a|b); (b |a )] 

Positive 
Conjunction: 
[(a|b),(a|c); (a|bc)]
  

Nixon Diamond: 
[(ab|c),(d|a),(d |b); (d|c)]
 

Abduction: 
[(a|b), a; b] 

(1– t)log(1– t)
t2

– –

–
t3 s(1– t)2

2(t2 – 2st + s)2

' '

'
'
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EXTENDING APPLICABILITY OF CRANOF TO LINGUISTIC-BASED 
SYSTEMS
In considering linguistic-based information in rule-based systems and in
formulating the linguistic analogue of the underconstrained conditional
(including unconditional) probability problem, the role of fuzzy logic
comes immediately to mind. This is based in part on the great practical
success of fuzzy logic in running systems such as elevators, washing
machines, etc., and on the now very large body of scientific literature sup-
porting the modeling of linguistic information, relations, and decision
processes via fuzzy logic. (See, e.g., past Proceedings of IEEE Interna-
tional Conferences on Fuzzy Systems or the Proceedings of the Joint
Conference on Information Sciences, as well as basic texts, such as Dubois
& Prade’s now classic treatise [9] and Nguyen & Walker’s [10].) 

On the other hand, there still exists a lively controversy considering the
merits of using probability theory and techniques in place of fuzzy logic
and vice versa. (See Goodman’s summary and listing of literature papers
directly involved in this controversy [11].) This leads to the following area
in which this author and H. T. Nguyen have played some role over the
past several years: the issue of the possible direct connection between fuzzy
logic and probability theory [12, 13, and 1]. Until this is completely
resolved, it is this author’s opinion that a comprehensive view of data
fusion, which both theoretically and practically integrates linguistic-based
information with probabilistic-based information, will not be achieved. In
particular, this applies to rule-based systems, where the fuzzy logic com-
munity has developed a common approach that is claimed to be more sat-
isfactory than any probability approach. 

This paper once again points out the existence of deep, but tractable, rela-
tions among fuzzy logic, linguistic-based principles, probability theory,
and commonsense reasoning mainly through the use of two basic mathe-
matical tools: SOPL/CRANOF (as briefly described in the first section),
and the representation theory of fuzzy sets by the one-point coverages of
random sets (see [12, 13]) in conjunction with other recently developed
mathematical tools (conditional and relational event algebra [14; 15, sec-
tion 3]). In particular, homomorphic-like relations were established, con-
necting fuzzy-logic concepts and corresponding random-set concepts,
where each fuzzy-set membership function involved is, in effect, inter-
preted as the weakest way to specify any of a class of corresponding ran-
dom subsets of the fuzzy set’s domain. These relations include natural
random-set interpretations of various combinations of fuzzy-logic opera-
tors and Zadeh’s well-known "extension theorem." This time, these con-
nections are extended to include the formulation and use of inference
rules obtained from a population of interest. The results presented here
extend preliminary efforts provided in Goodman & Nguyen [1], where it
was demonstrated that one type of fuzzy-logic approach to the modeling
of inference rules for a population, relative to a given collection of attrib-
utes, using the ratio of fuzzy cardinalities or averaged membership level of
the attributes, could also be interpreted in a probability framework. In
addition, by using similar techniques, it is shown how other fuzzy-logic
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concepts, commonly thought of as not directly relating to probability,
may now also be put into a complete probabilistic setting, including the
illustration for normalization of membership functions.

MATHEMATICAL RESULTS ESTABLISHING GENERAL FUZZY LOGIC 
POPULATION CONDITIONING PROBLEM AS AN UNDERCON-
STRAINED CONDITIONAL PROBABILITY PROBLEM TREATABLE 
VIA SOPL/CRANOF
As in the previous sections, standard Boolean algebra and probability 
theory notation will be employed, with [0,1] indicating unit interval; {0,1}
indicating the two element set containing 0, 1; R indicating the real (or
Euclidean) line and Rm indicating the real (or Euclidean m-space), P(D)
indicating the power class of D (sometimes written 2D––the class of all
subsets of D), etc. "Equal by definition" is denoted as =d. For background
on copulas, see Schweizer & Sklar [16] and the recent excellent mono-
graph by Nelsen [17]. Recall that copulas are any joint cdf’s (cumulative
probability distribution functions), all of whose one-dimensional marginal
cdf’s correspond to identical uniformly distributed rv’s (random variables)
over [0,1]. 

Theorem 1. Modification of Goodman [18] 
Let D be a finite set, f, g:D→[0,1] any two fuzzy-set membership func-
tions, and cop: [0,1]D×D→[0,1] any copula with that domain, with (x,y)-
marginal copulas indicated by, e.g., copx,y, x, y in D, etc. Then:

(i) There is a probability space (�,B,P) and a joint collection of 
0-1-valued rv’s, Zf,x, Zg,y:�→{0,1}, for all x, y in D with overall joint cdf
Ff,g,cop = copo((Ff,x)x in D, (Fg,y)y in D): RD×D→[0,1] (via Sklar’s Theorem
[16]), and, indicating the joint marginal (x,y)-components of cop, as
copx,y, the joint cdf of (Zf,x, Zg,y) is, correspondingly, Ff,g,cop,x,y(., ..) =
copx,yo(Ff,x(.), Fg,y(..)), where o indicates functional composition and Ff,x,
Fg,y are each one-dimensional cdf’s corresponding to mass-point probability
functions hf,x, hg,y, respectively, where 

P(Zf,x = 1) = hf,x(1) = f(x);  P(Zf,x = 0)  = hf,x(0) = 1-f(x); 
P(Zg,y = 1) = hg,y(1) = g(y); P(Zg,y = 0) = hg,y(0) = 1-g(y); (7)

whence

0, if s < 0,                              0, if s < 0,
Ff,x(s)=�1-f(x), if 0 � s < 1,  Fg,y(s)=�1-g(y), if 0 � s <1,  all x, y in D (8)

1, if 1 � s;                             1, if 1 � s;

(ii) Define random sets S(f, cop), S(g, cop):�→P(D), S(f, g, cop):
�→P(D) ×P(D) as follows, for each ω in �:

S(f, g, cop)(ω) = S(f, cop)(ω)× S(g, cop)(ω) = {(x,y): x, y in D, Zf,x(ω) Zg,y(ω) = 1};
S(f, cop)(ω) = {x: x in D, Zf,x(ω) = 1};    S(g, cop)(ω) = {y: y in D, Zg,y(ω) = 1}; (9)

whence, by straightforward combinatoric considerations, the entire 
probability distributions of the marginal random subsets of D, S(f, cop),
S(g, cop), as well as the joint random subset of D×D, S(f, g, cop), are com-
pletely determined.
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(iii) For any x, y in D, the following equality of one-point coverage events
hold:

(x in S(f, cop))  = (Zf,x = 1) ;  (y in S(g, cop))  =  (Zg,y= 1); (10)

((x,y) in S(f, g, cop)) = (x in S(f, cop)) & (y in S(g, cop)) = (Zf,x = 1) & (Zg,y= 1). (11)

(iv) For any x, y in D, the following one-point coverage representations
for f, g hold:

P(x in S(f, cop))  = P(Zf,x = 1) = f(x) ;  P(y in S(g, cop))  = P(Zg,y= 1) = g(y); (12)

P((x in S(f, cop)) & (y in S(g, cop))) = P((Zf,x = 1) & (Zg,y= 1))
= 1- P(Zf,x = 0) - P(Zg,y = 0) + P((Zf,x = 0) & (Zg,y= 0))
= 1- P(Zf,x = 0) - P(Zg,y = 0) + P((Zf,x≤ 0) & (Zg,y≤ 0))
= 1- (1-f(x)) – (1-g(y)) + Ff,g,copx,y(0, 0)
=  f(x) + g(y) – 1 + copx,y(1-f(x), 1-g(y))
=  f(x) + g(y) – cocopx,y(f(x), g(y))
=d copx,y∧ (f(x), g(y)), (13)

where we use the relation
Ff,g,copx,y(0, 0) = copx,yo(Ff,x(0), Fg,y(0))

= copx,yo(hf,x(0), hg,y(0))
= copx,yo(1–f(x), 1–g(y))

and where the functions cocop, cop∧ are called the cocopula, survival cop-
ula, respectively, of cop (the latter apparently being the special designation
of Nelsen for modular transform [17, section 2.6]), where, for any s, t in
[0,1]:

cocop(s, t) =d 1 – cop(1-s, 1-t)  ;  cop∧ (s, t) =d s+t – cocop(s,t). (14)

(v) Specializing (iv) for x = y in D arbitrary,

P(x in S(f, cop) ∩ S(g, cop)) = P((x,x) in S(f, g, cop)) = copx,y
∧ (f(x), g(x)). (15)

(vi) As copula cop is allowed to vary arbitrarily, the full solution set of
distribution-distinct random subsets of D that are one-point coverage
equivalent to f, g, respectively in the sense of Eq. (12), is exhausted.     ■

Remark 1.  Note first that cocop is the DeMorgan transform of cop—so
that if one thinks of cop as a generalized conjunction or "and" operator—
as in fuzzy logic (with the usual desirable properties of being nondecreas-
ing in its arguments and having appropriate boundary properties when
one of the arguments is 0 or 1), then, naturally, cocop can be thought of as
a general disjunction or "or" operator. Nelsen [17, section 2], shows that
the survival copula is always a legitimate copula and shows the characteri-
zation

cop∧ = cop   iff   cop  is radially symmetric, (16)

where the latter means that the joint r.v. Y represented by cop is such that
Y – (1/2, 1/2) and (1/2, 1/2) – Y have the same distribution. In particular,
radial symmetry––and hence the validity of Eq. (16)––holds for all
Gaussian copulas Ψρ (Ψ-1(.), Ψ-1(..)), where Ψρ is the joint cdf of

distribution Gaussian (02, �1  ρ�) and Ψ is the cdf of the standardized
ρ 1
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one-dimensional Gaussian distribution Gaussian (0,1) and all of Frank’s
Archimedean copula family [17], [19] (i.e., associative, commutative with
cop(s,s) < s, for 0 < s < 1)––which includes the copulas prod and minsum,
as well as the special copula min, where for all s, t in [0,1], min, prod are
the usual arithmetic minimum and product of s, t, respectively, while min-
sum(s,t) is given as

minsum(s,t) = min(s+t-1, 0). (17)
■

Theorem 2. Extension of Goodman & Nguyen [13]
Suppose that D is a finite set, f, g:D→[0,1] are any two fuzzy set member-
ship functions, cop: [0,1]D×D→[0,1] is any copula with that domain, and
w:D→[0,1] is a probability function. Define 

((f|g)cop,w =d � ( w(x)·cop∧ (f(x), g(x))) / � ( w(x)·g(x)). (18)
xinD xinD

Then, in the sense of Theorem 1, there is a probability space (Ω,B,P) and
random sets S(f, cop), S(g, cop): Ω →P(D), S(f,g, cop): with the one-point
coverage relations holding as in Eqs. (12), and, without loss of generality,
there exists a random variable V:Ω→D, independent of S(f, g, cop), and
hence of S(f, cop), S(g, cop), such that the probability function of V is w,
so that

(f|g)cop,w = P(af, cop | bg, cop), (19)

an ordinary conditional probability, where events af,cop , bg,cop in B are
defined as the two-stage randomization events

af, cop =d (V in S(f, cop)) ,  bg, cop = (V in S(g cop)) , (20)

so that in reduced form,

P(af, cop | bg, cop) = P(af, cop& bg, cop | bg, cop) = P(V in S(f, cop)∩ S(g, cop)) / P(V in S(g cop)). (21)

Proof: Use the usual conditioning property of probabilities, independence
of V, and Eq. (11) at each outcome of r.v. V,

P(V in S(f,cop) and V in S(g, cop)) = EV(P(V in S(f,cop) and V in S(g, cop) | V))
= EV(cop^(f(V), g(V))) = � ( w(x)·cop^(f(x), g(x))). (22)

xinD

Similarly (and more simply), now using Eq. (12) in place of Eq. (13),

P(V in S(g, cop)) = Ev(P(V in S(g,cop) | V)) = Ev(g(V)) =� ( w(x)·g(x)). (23)
xinD

The desired results hold by dividing Eq. (22) by Eq. (23). ■

Remark 2 and an Example. In Theorem 2, for the special case of w cor-
responding to a uniform distribution over population D, canceling the
1/card(D) factor, and usually––but not always choosing cop to be either
min or prod––the numerator of the quantity (f|g)cop, w reduces to the
popular fuzzy-logic concept of the fuzzy cardinality of f "and" g for pop-
ulation D, i.e., to what extent the entire population D has characteristics
described by f "and" g, while, similarly, the denominator represents the
fuzzy cardinality of g (by itself) for population D. In turn, the arithmetic
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division of these, i.e., the quantity (f|g)cop,w becomes the relative fuzzy
cardinality of f "and" g for D compared to fuzzy cardinality of g for D,
i.e., the overall fuzzy conditioning of f to g with respect to population D.
The latter, beginning with Zadeh’s ideas [20, 21], followed by Dubois &
Prade’s modifications [22], and Kosko’s related concept of fuzzy subset-
hood [23], are used ubiquitously in the fuzzy-logic community for rea-
soning. In this process, one considers the premise set of a particular
linguistic entailment of interest, the latter being formally the same as the
probability-framed previous Gi = [(a|b)J; (ci|d)], but now where each (aj|bj)
is replaced by a fuzzy conditional—in its general form the same as
(fj|gj)cop,w —formed as in Eq. (18), now with f replaced by fj, g by gj (for
possibly pre-logically compounded fuzzy-set membership functions), j in
J; and with similar remarks applicable to the potential conclusion (ci |d)
replaced by (fo,i|go)cop,w, for some fuzzy sets fo,i, go, etc. But, Theorem 2
(with suitable modifications, where required) essentially shows that any
such (fj|gj)cop,w = P(afj, cop | bgj,cop), with a similar relation holding the
potential conclusion. Moreover, the variability of P subject to whatever
arbitrary but fixed levels tJ are set for the premise collection holds in the
same meaningful manner as in the case where one began the problem in a
probability framework, i.e., for typical entailment schemes of the form Gi.
As an application of this, suppose one considers the transitivity scheme,
which Zadeh has also considered and modeled his premise set as indicated
above, but has used a method solely developed within fuzzy logic for
determining what the appropriate conclusion should be [21]. Thus, three
attributes are present, where, e.g., population D here is the set of all
enemy ships in area A, "ships with type 1 weapons onboard" corresponds
to known or estimated fuzzy-set membership function f over D; "ships
with elongated hulls" corresponds to known or estimated fuzzy-set mem-
bership function g over D; "ships with signature pattern Q" correspon-
ding to known or estimated fuzzy-set membership function h over D.
Moreover, other truth modifiers may be present, such as "it is mostly
true," "it is somewhat true," etc. Here, for simplicity, suppose for the
premise set, one actually has "it is highly true that the enemy ships in A
with signature pattern Q have elongated hulls," "it is moderately likely
that an enemy ship in A with an elongated hull has type 1 weapons
onboard." Can one conclude "it is x-likely that an enemy ship in A with
signature pattern Q has type 1 weapons onboard," where the degree of
truth x is to be determined? Assume that "it is highly true" is represented
by a known or estimated fuzzy-set membership function M over [0,1],
which is monotone increasing, "it is moderately likely" is also represented
by a (different—not as steep toward 1 as M, etc.) known or estimated
fuzzy-set membership function N over [0,1], where M(r) = N(r) = r, for r
= 0 or 1. Hence, for any arbitrary levels s, t in [0,1], the conditional fuzzy
relations here are, for some choice of copula and population weighting
function w, 

M((f|g)cop,w) = s , N((g|h)cop,w) = t  iff   (f|g)cop,w = M-1(s) , (g|h)cop,w = N-1(t) 
iff, using Theorem 2,  P(af, cop | bg,cop) = M-1(s), 

P(bg, cop | ch,cop) = N-1(t). (24)
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Thus, for any given levels s, t, one can now consider the SOPL-estimate
of the potential conclusion for transitivity, P(af, cop | bg,cop), with respect
to the premise set above at thresholds s, t, where the entire entailment
scheme is

G = [(af, cop | bg,cop), (bg, cop | ch,cop); (af, cop | ch,cop)]; (25)

meanconc(G)(M-1(s), N-1(t)) = EP(P(af, cop | ch,cop)

P(af, cop | bg,cop) = M-1(s) , P(bg, cop | ch,cop) = N-1(t)). (26)

In turn, Table 1 shows that under a uniform distributional assumption on
what P could be, subject to its constraints in the premise set of G, for any
given s, t in [1/2, 1]

meanconc(G)(M-1(s), N-1(t)) =  ρ(M-1(s), N-1(t)), 

where, for any s, t in [1/2, 1],

ρ(s,t) =d st + (1-t)/2 – p(s,t)/q(s,t);  p(s,t) =d s(1-s)(2s-1)t(1-t2);  
q(s,t) =d t+2t2 + (s(1-s)(1-t)(2+3t-t2)),                (27)

where,

ρ(s,t) ≈  ρο(s,t) =d st + (1-t)/2 , for values of s, t sufficiently close to 1. (28)

Hence, the posterior conditional (given the premise constraints for any 
s, t) is approximately equal to ρο(Μ−1(s), N-1(t)), which can be interpreted
also as a truth modifier with respect to two variables, noting its limit is
unity as s, t approach unity, etc. Of course, all of the above applies to any
fuzzy-logic entailment scheme relative to the original premise sets utiliz-
ing overall fuzzy conditioning for some population D.

Remark 3.  In the same spirit of Theorem 2, other fuzzy-logic concepts
can now be fully interpreted. Due to space limitations, only the example
of fuzzy normalization will be considered here. In this situation, a fuzzy
membership function, say, f:D→[0,1] is given, followed by its normaliza-
tion function norm(f):D→[0,1], which is now obviously a legitimate prob-
ability function over finite population D, where

norm(f) = (1/�(f(x)) )·f . (29)
xinD

But, if one considers, à la Theorem 1, for any choice of copula cop, a
probability space (Ω,B,P), for which, without loss of generality, there is
both a random set S(f, cop):Ω→P(D) and an independent random variable
V:Ω→D uniformly distributed over D, with the one-point coverage rela-
tion holding 

P(x in S(f, cop)) = f(x), all x in D, (30)

for any x in D, specializing Eq. (23) with g replaced by f,

P(V = x | V in S(f, cop)) = P(V = x and x in S(f, cop)) / P(V in S(f, cop))
= ((1/card(D))·f(x)) /� (1/card(D))·g(x)) =  norm(f)(x), (31)

xinD
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showing fuzzy normalization is actually a simple conditional probability
restriction of the two-stage randomization for one-point coverages. A
future paper will deal with related issues.
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ABSTRACT
We define Knowledge
Amplification by Structured
Expert Randomization (KASER).
A KASER can automatically
acquire a virtual rule space
exponentially larger than the
actual rule space and with an
exponentially decreasing nonzero
likelihood of error. The KASER
cracks the knowledge acquisition
bottleneck in intelligent systems
by amplifying user-supplied
knowledge. This enables the
construction of an intelligent
system, which is creative, fail-
soft, learns over a network, and
otherwise has enormous potential
for automated decision-making.

On Knowledge Amplification by Structured
Expert Randomization (KASER)
Stuart H. Rubin
SSC San Diego

FIGURE 1.  The comparative costs of
knowledge acquisition.
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INTRODUCTION TO RANDOMIZATION
The theory of randomization was first published by Chaitin and
Kolmogorov [1] in 1975. Their work may be seen as a consequence of
Gödel's Incompleteness Theorem [2] in that it shows were it not for
essential incompleteness, a universal knowledge base could, in principle,
be constructed––one that need employ no search other than referential
search. Lin and Vitter [3] proved that learning must be domain-specific to
be tractable. The fundamental need for domain-specific knowledge is in
keeping with Rubin's proof of the Unsolvability of the Randomization
Problem [4]. This paper went on to introduce the concept of knowledge
amplification. Production rules are expressed in the form of situation
action pairs. Such rules, once discovered to be in error, are corrected
through acquisition. Conventionally, a new rule must be acquired for
each correction. This is linear learning.

The acknowledged key to breakthroughs in the creation of intelligent
software is cracking the knowledge acquisition bottleneck [5]. Learning
how to learn is fundamentally dependent on representing the knowledge
in the form of a society of experts. Minsky's seminal work here led to the
development of intelligent agent architectures [6]. Furthermore, Minsky
[7] and Rubin [4] independently provided compelling evidence that the
representational formalism itself must be included in the definition of
domain-specific learning if it is to be scalable.

A KASER is defined to be a knowledge amplifier that is based on the
principle of structured expert randomization. A Type I KASER is one
where the user supplies declarative knowledge in the form of a semantic
tree using single inheritance.

A Type II KASER can automatically induce this tree through the use of
randomization and set operations on property lists, which are acquired
by way of database query and user-interaction. An overview of a Type II
KASER is provided below. Unlike conventional intelligent systems,
KASERs are capable of accelerated learning in symmetric domains.

Figure 1 plots the knowledge acquired by an intelligent system vs. the
cost of acquisition. Conventional expert systems will generate the curve
below break-even. That is, with conventional expert systems, cost
increases with scale and is never better than linear. Compare this with
KASERs where cost decreases with scale and is always better than linear
unless the domain has no symmetries (i.e., it is random). Note that such
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domains do not exist with scale in practice. Similarly, purely symmetric
domains do not exist with scale in practice either. The more symmetric
the operational domain, the less the cost of knowledge acquisition and
the higher the curve appears in the graph. It is always the case that the
virtual rule space >> the real rule space.

INDUCING PROPERTY LISTS
We will define a production system that can automatically acquire a vir-
tual rule space that is exponentially larger than the actual rule space with
an exponentially decreasing non-zero likelihood of error. Moreover, the
generalization mechanism will not only be bounded in its error, but other
than for a straightforward user-query process, it will operate without any
a priori knowledge supplied by the user.

To begin, define a production rule (e.g., using ANSI Common LISP) to
be an ordered pair––the first member of which is a set of antecedent
predicates, and the second member of which is an ordered list of conse-
quent predicates. Predicates can be numbers (e.g., [1..2] � [10..20]) or
words [8].

Previously unknown words or phrases can be recursively defined in
terms of known ones. For example, the moves of a Queen in chess (i.e.,
unknown) can be defined in terms of the move for a Bishop (i.e., known)
union those for a Rook (i.e., known). This is a union of property lists.
Other basic set operations may likewise be used (e.g., intersection, differ-
ence, not, etc.). The use of fuzzy set operators here (e.g., "almost the
same as") pertains to computing with words [8].

In a Type I KASER, words and phrases are entered through the use of
pull-down menus. In that manner, semantically identical concepts (e.g.,
Hello and Hi) are not ascribed a distinct syntax, which would otherwise
serve to dilute the efficiency of the learning mechanism. In a Type II
KASER, distinct syntax may be equated to yield the equivalent normal-
ized semantics. To better visualize this, think of a child who may ask,
"What is a bird?" to which the reply is, "It is an animal that flies," to
which the question is, "What is an animal?" to which the reply is, "It is a
living thing," to which the question is, "What is a living thing?" to which
the reply (often) is, "Eat your soup!" (i.e., a Type I delimiter, or stop
marker gene).

Two sample rules and their representation follow.

Hydrogen 	 Oxygen 	 Spark → Steam

R1: ({Hydrogen, Oxygen, Spark} (Steam))

Hydrogen 	 Oxygen 	 Match → Steam

R2: ({Hydrogen, Oxygen, Match} (Steam))

R1 and R2 may be generalized, since the consequent predicates are identi-
cal (i.e., the right-hand sides [RHSs] are equivalent) and the antecedent
terms differ in exactly one predicate. This is termed a level-1 generaliza-
tion because it is one level removed from ground truth. In a level-i gener-
alization, i is the maximum level of generalization for any antecedent
predicate. The need for a generalization squelch arises because contexts
may be presented for which there is no matching rule in the real space.
Generalizations can be recursively defined.
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The advocated approach captures an arbitrary rule's context––something
that cannot be accomplished through the use of property lists alone. If
veristic terms such as "Warm" are generalized to such terms as "Heat"
for example, then qualitative fuzziness will be captured.

A1: ({Heat} {Spark, Match}(X001 Explosive-Gas-Igniter))

Generalization, A1, tells us that antecedent predicate, "Heat" is more
general than either a Spark or a Match. We may also write this as Heat >
{Spark, Match}. Note that the relation ">>" is used to denote ancestral
generalizations (and vice versa). The general predicate is initially specified
as X00i, but this is replaced after interactive query with the user, where
possible. Otherwise, the next-level expansions will need to be printed for
the user to read. Also, "redundant, at-least-as-specific" rules are always
expunged.

The common property list follows the set of instances. Here, the list
informs us that a spark or a match may be generalized to Heat because
both share the property of being an Explosive-Gas-Igniter. Properties are
dynamic. They must be capable of being hierarchically represented, aug-
mented, and randomized. In addition, property lists are subject to set
operations (e.g., intersection). Properties can be acquired by way of data-
base and/or user query.

User-queries can be preprocessed by a companion veristic mining system.
Similarly, system-generated queries can be post-processed by companion
systems. Companion systems can also play a role in imparting tractability
to the inference engine.

Consequent terms, being sequences, are taken to be immutable. The idea
here is to automatically create a hierarchy of consequent definitions to
maximize the potential for rule reuse. Begin by selecting a pair of rules
having identical left-hand sides (LHSs), where possible. Consider:

R3: ({Hydrogen, Oxygen, Heat} (Steam))

R4: ({Hydrogen, Oxygen, Heat} (Light, Heat))

Next, an attempt is made to generalize the consequent sequences with the
following result.

C1: ((Energy) ((Steam) (Light Heat))(X002 Power-Source))

Here, the properties of Steam intersect those of Light and Heat to yield
the property, Power-Source. Thus, a property of Energy, in the current
context at least, is that it is a Power Source. Rules R3 and R4 are now
replaced by their valid generalization, R5:

R5: ({Hydrogen, Oxygen, Heat} (Energy))

A key concept is that further learning can serve to correct any latent
errors. In addition, notice that as the level of randomization increases on
the LHS and RHS, the potential for matching rules, and thus inducing
further generalizations, increases by way of feedback. Consequent ran-
domization brings the consequents into a normal form, which then serves
to increase the possibility of getting antecedent generalizations, since
more RHSs can be equated. Antecedent randomization is similar.

Next, consider R5, where R6 is acquired and appears as follows after sub-
stitution using C1.

R6: ({Candle, Match} (Energy))
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The system always attempts to randomize the knowledge as much as pos-
sible. Using A1 and C1 leads to the level-1 conjecture, R7, which replaces
R6.

R7: ({Candle, Heat} (Energy))

R7 is not to be generalized with R6. This is because {Match, Heat} is the
same as {Match, Spark, Match}, which of course reduces to Heat and is
already captured by R7.

At this point, learning by the system can be demonstrated. Suppose the
user asks the system what will happen if a spark is applied to a candle.
While this is a plausible method to light a candle, this method will not
usually be successful. Thus, the user must report to the system the cor-
rect consequent for this action:

R8: ({Candle, Spark} (No-Light))

R8 is a more-specific rule than is R7 because the former is a level-1 gen-
eralization, while the latter is at level-0. Thus, R8 will be preferentially
fired when possible by using a most-specific agenda mechanism. It, too,
will be subject to subsequent generalization. Notice that the new conse-
quent will protect against similar error.

The learning process has not completed. We still need to correct the
properties list so that Matches and Sparks can be differentiated in the
context of lighting a candle. The following property (i.e., LISP) list is
obtained.

P1: (Match Explosive-Gas-Igniter Wick-Lighter)

P2: (Spark Explosive-Gas-Igniter)

Now, since Heat is a superclass of Match, its property list is unioned
with the new property(s): Wick-Lighter. Suppose, at this point, the user
poses the same question, "What will happen if a spark is applied to a can-
dle?" Rule R7 informs us that it will light; whereas, R8 informs us that it
will not. Again, the inference engine can readily select the appropriate
rule to fire because of specialization. However, here there is yet more to
learn. Here is what is known: R7 and R8 differ on the LHS in exactly one
predicate and prop (Energy) ∩ prop (No - Light) = ∅ . The reason that the
candle lights for a match, but not for a spark can be delimited by com-
puting, prop (Match) - prop (Spark) = prop(P1) - prop(P2) = (Wick-
Lighter). Rule R7 is now replaced by R7':

R7': ({Candle, (X003 Wick-Lighter)} (Energy))

that is, a property list named X003 has been substituted for Heat. Notice
that X003 is necessarily a subclass of Heat. Then, anything that has (all)
the properties on the property list (i.e., X003) can presumably light a can-
dle (e.g., a torch). Observe that the human in the loop need not know
why a list of properties is relevant, since the reasons will be automatically
discovered. Notice that a Spark can no longer light a candle and only
those items having at least Wick-Lighter in their property classes can
light a candle. Observe the nonlinear learning that has been enabled here!

Consider now the rule:

R9: ({Candle, Match} (Energy))

Clearly, this rule is correct as written. Candles do indeed produce steam,
light, and heat. The usefulness of induction follows from the fact that the
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system has no knowledge that a candle is a hydrocarbon and hydrocar-
bons produce steam as a byproduct of combustion.

Antecedent predicate generalizations can be rendered more class-specific
as necessary to correct overgeneralizations by increasing the number 
of levels of available generalization. The rule consequents will not be
affected. For example:

A2: ({Car} {Ford, Fiat})

yields:

A3: ({Car} {Family-Car, Sports-Car})

A4: ({Family-Car} {Ford})

A5: ({Sports-Car} {Fiat})

Property lists can be automatically organized into a hierarchical config-
uration through the use of simple set operations. This means that rules
can be generalized or specialized through the use of the disjunctive or
conjunctive operators, respectively. Such property lists can be associatively
retrieved through the use of a grammatical randomization process [9].
Moreover, matching operations then need to incorporate searching sub-
classes and superclasses as necessary.

Finally, we note that this system can incorporate fuzzy programming
[10]. Fuzzy programming will enable the system to explore a space of
alternative contexts as delimited by optional consequent filters and
ranked by the level of generalization used to obtain a contextual match
(see below).

GRAMMATICAL RANDOMIZATION
Consider the following three property lists:

P3: (Ice A B C)

P4: (Water B C D)

P5: (Steam C E)

Here, ice, water, and steam share a common property, C, which, for
example, might be that they are all composed of H2O. Also, only ice has
property A (e.g., frozen); only water has property D (e.g., liquid); and
only steam has property E (e.g., gaseous). Observe that only ice and
water share property B (e.g., heavier-than-air).

The use of a hierarchical object-representation is fundamental to the
specification of property lists, antecedent sets, or consequent sequences.
For example, when one specifies the object, "aircraft carrier," one implic-
itly includes all of its capabilities, subsystems, and the like. One cannot
and should not have to specify each subsystem individually. We proceed
to develop a randomization for the sample property lists; although, it
should be clear that the same approach will work equally well for the
antecedent and consequent predicates. Perhaps the most relevant distinc-
tion is that one needs to distinguish object sequence dependence from
independence in the notation. Of course, property lists are sequence-
independent.

As the example stands now, to specify the properties of ice or water, one
need state the three properties of each (in any order). This may not seem
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too difficult, but this is only because the list-size is small. Consider now
the randomized version of the property lists:

P3: (Ice A Precipitation)

P4: (Water Precipitation D)

P5: (Steam C E)

P6: (Precipitation B C)

Here, the property of precipitation has been randomized from the prop-
erty data. Observe, that if the user states property B, then the system will
offer the user exactly three choices (e.g., by way of a dynamic pull-down
menu): B, Precipitation, or Random. The Random choice allows the user
to complete the specification using arbitrary objects. In other words, an
associative memory has been defined. Similarly, if the user selects
Precipitation, then the system will offer the user exactly four choices
(e.g., again by way of a dynamic pull-down menu): Precipitation, Ice,
Water, or Random.

Suppose that in keeping with the previously described nomenclature con-
ventions, we had the following property list specifications:

P3': (X004 A Precipitation)

P4': (X005 Precipitation D)

In this case, if the user selects Precipitation, then the system will offer the
user the following four choices: Precipitation, A, D, or Random. In other
words, it attempts to pattern-match and extrapolate the set.

In practice, randomization is based on known classifications––not arbi-
trary ones. Thus, in the previous example, the randomization of P3 and
P4 requires that P6 be known a priori. Again, this still allows for the use
of integer identifiers.

Next, it can be seen that the usefulness of randomization is a function of
its degree. The relevant question then pertains to how to realize the maxi-
mal degree of randomization. First, recall that as rules are generalized, the
possibilities for further predicate generalization are increased. This, in
turn, implies that the substitution and subsequent refinement of property
lists for predicates is increased. Finally, as a result, the virtual space of
properly mapped contexts (i.e., conjectures) grows at a rapid rate.
Experimental evidence to date indicates that this rate may be exponential
for symmetric domains.

Next, we turn our attention to the inference engine, which is common to
Type I and II KASERs. Basically, in a Type I KASER, conflict resolution
is accomplished through the use of a hierarchical tree of objects evolved
by a knowledge engineer, which define generalization and specialization
(see below); whereas, in a Type II KASER, conflict resolution is the same
as in a Type I KASER, but where the system, instead of the knowledge
engineer, evolves hierarchical property lists, which serve to increase the
size of the virtual contextual space––without sacrificing convergence in
the quality of the response. In effect, declarative knowledge is random-
ized to yield procedural knowledge.

ACTIVE RANDOMIZATION
Active randomization is a symbiosis of property lists and grammatical
randomization. Property lists are really just predicates that are subject to
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grammatical randomization. Moreover, randomized predicates allow the
user to specify contexts and associated actions by using minimal effort
[9]. Next, suppose that we had:

(A B C D) (i.e., the properties of A are B, C, D)

Here, A is the randomization of B, C, D. Similarly, we may have

(B E F)

and the two rules (i.e., antecedent differentiation):

R10: A S → W

R11: X S → W

Then, we can create a randomization:

(Q A X)

which, since valid, leads to the following replacement of R10 and R11:

R12: Q S → W

This replacement allows for the possibility of new rule pairings and the
desired process then iterates. Thus, we have

(Q: A � X) {expanding A, X}

These are active transforms [9] in the sense that whenever A or X change
their membership, the properties of Q may change. Evidently, this is a
converging process. However, if subsequently we had

R13: A S → T

R14: X S → G

where, T and G have no properties in common (i.e., neither is a subse-
quence of the other), then it becomes clear that A cannot substitute for X
and vice versa. In other words,

R13: (A-X) S → T

R14: (X-A) S → G

Thus, we have

(A: A - X) {contracting A}

(X: X - A) {contracting X}

These are active transforms, and again, this is a converging process. Next,
suppose that T and G are such that G is a subsequence of T without loss
of generality. Then, it follows that A is a subset of X and

(A: A � X) {contracting A}

(X: X � A) {expanding X}

These are active transforms. This is not, however, necessarily a converg-
ing process. That is not to say that it will diverge without bounds. It is
just not stable. We do not view this as a problem. It is to be viewed as an
oscillatory system that, in some ways, may mimic brain waves. The com-
plexity of interaction will increase as the system is scaled up. The eventual
need for high-speed parallel/distributed processing is apparent. The case
for consequent differentiation is similar. Here though, one is processing
sequences instead of sets.

OBJECT-ORIENTED TRANSLATION MENUS
The Type I KASER requires that declarative knowledge be (dynamically)
compiled in the form of object-oriented hierarchical phrase translation
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menus. Each class (i.e., antecedent and consequent) of bipartite predicates
can be interrelated through their relative positions in an object-oriented
semantic tree. A declarative knowledge of interrelatedness provides a
basis for commonsense reasoning, as will be detailed in the next section.
The subject of this section pertains to the creation, maintenance, and use
of the object-oriented trees as follows.

1. The phrase-translation menus serve as an intermediate code (as in a
compiler) where English sentences can be compiled into menu com-
mands by using rule-based compiler bootstraps. KASERs can be
arranged in a network configuration where each KASER can add
(post) to or delete from the context of another. This will greatly
expand the intelligence of the network with scale and serves to define
Minsky's "Society of Mind" [6]. Furthermore, the very-high-level
domain-specific language(s) used to define each predicate can be com-
piled through a network of expert compilers. Alternatively, neural
networks can be used to supply symbolic tokens at the front end.

2. Each antecedent or consequent phrase can be associated with a textual
explanation, Microsoft's Text-to-Speech engine (Version 4.0), an
audio file, a photo, and/or a video file. Images may be photographs,
screen captures, scans, drawings, etc. They may also be annotated
with arrows, numbers, etc. Voice navigation may be added at a later
date.

3. Antecedents and consequents can be captured by using an object-
oriented approach. The idea is to place descriptive phrases in an
object-oriented hierarchy such that subclasses inherit all of their
properties from a unique superclass and may include additional prop-
erties as well. Menus can beget submenus, and new phrases can be
acquired at any level. 
Consider the partial path, office supply, paper clip and the partial
path, conductor, paper clip. Here, any subclass of paper clip will have
very different constraints depending on its derivation. For example,
anything true of paper clips in the context of their use as conductors
must hold for every subclass of paper clips on that path. Unique
antecedent integers can be set up to be triggered by external rules.
Similarly, unique consequent integers can be set up to fire external
procedures. All we need do is facilitate such hooks for future expan-
sion (e.g., the radar-mining application domain). 
Each project is saved as a distinct file, which consists of the
antecedent and consequent trees, the associated rule base, and possi-
bly the multimedia attachments.

4. A tree structure and not a graph structure is appropriate because the
structure needs to be readily capable of dynamic acquisition (i.e., rela-
tively random phrases) and deletion, which cannot be accomplished
in the presence of cycles due to side effects. Note that entering a new
phrase in a menu implies that it is semantically distinct from the exist-
ing phrases, if any, in that menu.

5. A tree structure is mapped to a context-free grammar (CFG), where
the mapping process needs to be incremental in view of the large size
of the trees. Each node or phrase is assigned a unique number, which
serves to uniquely identify the path.

6. Each phrase may be tagged with a help file, which also serves the pur-
poses of the explanation subsystem. This implies that conjuncts are
not necessary to the purpose of the antecedent or consequent trees.
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7. Each menu should be limited to on the order of one screen of items
(e.g., 22). Toward this end, objects should be dynamically subdivided
into distinct classes. That is, new submenus can be dynamically created
and objects moved to or from them.

8. Three contiguous levels of hierarchy should be displayed on the
graphical user interface (GUI) at any time, if available.

9. A marker gene or bookmark concept allows the user to set mark
points for navigational purposes.

10. A list of recently visited menus serves to cache navigational paths for
reuse.

11. A global find mechanism allows the user to enter a phrase and search
the tree from the root or present location and find all matches for the
phrase up to a prespecified depth. The path, which includes the
phrase, if matched, is returned.

12. Entered phrases (i.e., including pathnames) can be automatically
extrapolated where possible. This "intellisense" feature facilitates key-
board entry. It can also assist with the extrapolation of pathnames to
facilitate finding or entering a phrase. Pathname components may be
truncated to facilitate presentation.

13. A major problem in populating a tree structure is the amount of typ-
ing involved. In view of this, copy, paste, edit, and delete functions
are available to copy phrases from one or more menus to another
through the use of place-holding markers. Phrase submenus are not
copied over because distinct paths tend to invalidate submenu con-
tents in proportion to their depth. Again, new integers are generated
for all phrases. Note that the returned list of objects still needs to be
manually edited for error and/or omissions. This follows from ran-
domization theory. This maps well to natural language translation.

14. Disjuncts in a menu serve as analogs and superclasses serve as general-
izations for an explanation subsystem. In addition, help files and
pathnames will also serve for explanative purposes.

15. An "intellassist" feature allows the system to predict the next node in
a contextual, antecedent, or consequent tree. Each node in a tree
locally stores the address (number) of the node to be visited next in
sequence. If a node has not been trained, or if the pointed-to address
has been deleted without update, then a text box stating "No
Suggestion" pops up, and no navigation is effected if requested.
Otherwise, potentially three contiguous menus are brought up on the
screen, where the farthest right menu contains the addressed node.
Navigation is accomplished by clicking on a "Suggest" button.
Otherwise, all navigation is manually performed by default. The user
can hop from node to node by using just the suggest button without
registering an entry. The use of any form of manual navigation
enables a "Remember" button immediately after the next term, if any
is entered. Clicking on this enabled button will result in setting the
address pointed to by the previously entered node to that of the
newly entered node. The old pointer is thus overwritten. Note that
this allows for changing the item selected within the same menu.
Note, too, that if a node (e.g., Toyota) is deleted, then all pointers to
it may be updated to the parent class (e.g., car menu) and so on up the
tree (e.g., vehicle type menu). 
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A pull-down menu will enable one of two options: (1) Always
Remember (by default) and (2) Remember when Told. The
Remember button is not displayed under option (1), but the effect
under this option is to click it whenever it would have otherwise been
enabled. The system always starts at the root node of the relevant
tree.

16. It does not make sense to retain a historical prefix for use by the 
intellassist feature. That is, there is no need to look at where you were
to determine where you want to go. While potentially more accurate,
this increase in accuracy is more than offset by the extra training time
required, the extra space required, and the fact that it will take a rela-
tively long time to reliably retrain the nodes in response to a dynamic
domain environment.

AN A* ORDERED SEARCH ALGORITHM
Expert compilers apply knowledge bases to the effective translation of
user-specified semantics [11]. The problem with expert compilers is that
they use conventional expert systems to realize their knowledge bases. A
KASER is advocated because it can amplify a knowledge base by using
an inductively extensible representational formalism.

Here, we present a relatively high-level view of the KASER algorithm.
We claim that it represents a great advance in the design of intelligent sys-
tems by reason of its capability for symbolic learning and qualitative
fuzziness:

1. Click on antecedent menus to specify a contextual conjunct.
Alternatively, a manual "hot button" will bring up the immediately
preceding context for reuse or update. Renormalization is only neces-
sary if a generalization was made––not for term deletion (see below).
Iteratively normalize the context (i.e., reduce it to the fewest terms)
by using the tree grammar. Note that contextual normalization can be
realized in linear time in the number of conjuncts and the depth of
search. Here are the reduction rules, which are iteratively applied in
any order––allowing for concurrent processing:

a. S → A | B | C … then replace A, B, C … with S just in case all of
the RHS is present in the context. This step should be iteratively
applied before moving on to the next one.

b. S → A … and A → B … and B → C … then if S, A, B, C are all
present in the context, then remove A, B, C since they are sub-
sumed by S. It is never necessary to repeat the first step after con-
clusion of the second.

2. Compute the specific stochastic measure. Note that the specific sto-
chastic measure does not refer to validity––only to the creative novelty
relative to the existing rules while retaining validity. For example,
given the antecedent grammar: C5 → C3 | C4; C4 → C1 | C2:

a. {C3 C1} {{C3}, {C2 C3},} covers and matches the first {C3} at level
0. Note that the first covered match, if any, that does not have a
covered superset is the one to be fired––a result that follows from
the method of transposition.

b. {C3 C1} {{C5}, {C2 C3},} matches nothing at the level 0 expansion,
so we expand the RHS with the result, {C3 C1} {{*C5 (C3 C4)},
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{*C2 *C3},} where the C2 C3 are both primitives and *Ci can be
matched, but not expanded again. (..) is used to denote disjunc-
tion. Here, {C5} is matched at level 1. Note that at any level, only
one term inside the parentheses (e.g., C3) need be covered to get a
match of any one disjunct.

c. {C3 C6} {{C2}, {C5 C6},} matches nothing at the level 0 expan-
sion, so we expand the RHS with the result, {C3 C6} {{*C2},
{*C5 (C3 C4), *C6}}, which matches at level 1 because we matched
(C3 OR C4) AND C6. Note that C6 was never expanded because
it was pre-matched by the existing context. This economy is possi-
ble as a result of pre-normalizing the context.

d. The result of applying the method of transposition to the above
step is {{C5 C6}, {C2},}.

e. Each matched {…} fires a consequent, which, if not primitive,
matches exactly one row header (i.e., a unique integer) and step
(2) iterates.

f. Maintain a global sum of the number of levels of expansion for
each row for each consequent term. The specific stochastic meas-
ure is taken as the maximum of the number of levels of expansion
used for each consequent term.

3. Exit the matching process with success (i.e., for a row) or failure
based on reaching the primitive levels, a timer-interrupt, a forced
interrupt, and/or by using the maximum allocated memory.

4. If a sequence of consequent actions has been attached, then the
sequence is pushed onto a stack in reverse order such that each item
on the stack is expanded in a depth-first manner. A parenthesized
sequence of actions will make clear the hierarchy. For example,
((Hold Writing Instrument (Hold Pencil with Eraser)) (Press
Instrument to Medium (Write Neatly on Paper))). Here, the sub-
classes are nested. Such a representation also serves explanative
purposes. Thus, here one has, Hold Writing Instrument, Press
Instrument to Medium, at the general level, and Hold Pencil with
Eraser, Write Neatly on Paper, at the specific level. A companion
intelligent system could transform the conceptual sequences into
smooth natural language (e.g., Pick up a pencil with an eraser and
write neatly on a sheet of paper.) Set the general stochastic measure
(GSM) to zero. Note that the stochastic measures for each predicate
are computed and held in a data structure. The data will be used by
the inference engine.

5. If a match is not found, then since we already have an expanded
antecedent {…}, we proceed to expand the context in a breadth-first
manner (i.e., if enabled by the level of permitted generalization).
Compute the general stochastic measure. Initialize the general sto-
chastic measure to GSM. Note that the general stochastic measure is a
measure of validity. Set the starting context to the context.

a. A specialized match was sought in step (2), and a generalized match
is sought here. Expanding the context can lead to redundancies. For
example, {*C1 *C2 *C3 *C4 C1 C2}. Here, the solution is to sim-
ply not include any term that is already in the (expanded) context.
Stochastic accuracy is thus preserved. Any method that does not
preserve stochastic accuracy is not to be used.
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b. {C5} {{*C3}, {*C2 *C3},} failed to be matched in step (2), so a
level 1 expansion of the context is taken: 

{*C5 C3 C4} {{*C3}, {*C2 *C3},} where C3 is matched at level 1.

c. {C5 C6} {{*C1}, {*C2 *C3},} matches nothing at level 0, so a level
1 expansion of the context is taken: 

{*C5 C3 C4 *C6} {{*C1}, {*C2 *C3},} matches nothing at level 1,
so a level 2 expansion of the context is taken: 

{*C5 *C3 *C4 C1 C2 *C6} {{*C1}, {*C2 *C3},} matches C1 OR
C2 AND C3 at level 2. The first covered set is the one to be fired
(i.e., even though both sets are covered), since it does not have a
covered superset. Next, the method of transposition is trivially
executed with no resulting change in the logical ordering.

d. Each matched {…} fires a consequent, which, if not primitive,
matches exactly one row header (i.e., a unique integer) and step
(2) iterates.

e. One should maintain a count of the maximum number of levels of
expansion for the context below the initial level. The general sto-
chastic measure is defined by GSM plus the maximum number of
levels that the context minimally needs to be expanded to get the
"first" (i.e., method of transposition) match. This stochastic is
represented by the maximum depth for any expansion.

f. If the context fails to be matched, then generalize each term in the
starting context one level up in the tree. Remove any redundan-
cies from the resulting generalization. If the generalized context
differs from the starting context, then add one to GSM and go to
step (5). Otherwise, go to step (6). For example, the starting con-
text {C2 C3} is generalized to yield {C4 C5}. If this now covers a
{..}, then the general stochastic measure is one. Otherwise, it is
subsequently expanded to yield {*C4 C1 C2 *C5 C3 C4} at the
first level. Notice that the second C4 has a longer derivation, is
redundant, and would never have been added here. Note, too, that
C4 is also a sibling or analog node. If this now covers a {..}, then
the GSM remains one, but the specific stochastic measure is incre-
mented by one to reflect the additional level of specialization. 

For another example, Toyota and Ford are instances of the class
car. If Toyota is generalized to obtain car, which is subsequently
instantiated to obtain Ford (i.e., an analog), then the general and
specific stochastic measures would both be one. The general sto-
chastic measure represents the number of levels of expansion for a
term in one direction, and the specific stochastic measure repre-
sents the number of levels of expansion from this extrema in the
opposite direction needed to get a match. The final general (spe-
cific) stochastic is taken as the maximum general (specific) sto-
chastic over all terms.

g. Conflict resolution cannot be a deterministic process as is the case
with conventional expert systems. This is because the number of
predicates in any match must be balanced against the degree of
specialization and/or generalization needed to obtain a match.
Thus, a heuristic approach is required. The agenda mechanism
will order the rules by their size, general stochastic, and specific
stochastic with recommended weights of 3, 2, and 1 respectively.
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6. Exit the matching process with success (i.e., for the entire current
context for a row) or failure based on reaching the primitive levels, a
timer-interrupt, a forced interrupt, and/or by using the maximum
allocated memory. Note that a memory or primitive interrupt will
invoke step (5f). This enables a creative search until a solution is
found or a timer-interrupt occurs. Note, too, that it is perfectly
permissible to have a concept appear more than once for reasons of
economy of reference, or to minimize the stochastic measures (i.e.,
provide confirming feedback). The stochastic measures also reflect
the rapidity with which a concept can be retrieved.

7. Knowledge acquisition:

a. Note that new rules are added at the head.

b. If exit occurs with failure, or the user deems a selected consequent
(e.g., in a sequence of consequents) in error (i.e., trace mode on),
then the user navigates the consequent menus to select an attached
consequent sequence, which is appropriate for the currently nor-
malized context.

c. If the user deems that the selected "primitive" consequent at this
point needs to be rendered more specific, then a new row is
opened in the grammar, and the user navigates the consequent
menus to select an attached consequent sequence.

d. A consequent sequence can pose a question, which serves to
direct the user to enter a more specific context for the next itera-
tion (i.e., conversational learning). Questions should usually only
add to the context to prevent the possibility of add/delete cycles.

e. Ask the user to eliminate as many specific terms (more general
terms will tend to match more future contexts) from the context
as possible (i.e., and still properly fire the selected consequent
sequence given the assumptions implied by the current row).
A context usually consists of a conjunct of terms. This tends to
delimit the generality of each term as it contributes to the firing of
the consequent. However, once those antecedent terms become
fewer in number for use in a subsequent row, then it becomes
possible to generalize them while retaining validity. The advantage
of generalization is that it greatly increases reusability. Thus, we
need to afford the user the capability to substitute a superclass for
one or more terms. Note that this implies that perfectly valid
rules that were entered can be replayed with specific (not general)
stochastics greater than zero. This is proper, since the specific sto-
chastic preserves validity in theory. Thus, the user may opt to
generalize one or more contextual terms by backtracking their
derivational paths. If and only if this is the case, step (1) is applied
to normalize the result. An undo/redo capability is provided.
Validated rule firings are only saved in the rule base if the associ-
ated generalization stochastic is greater than zero. The underlying
assumption is that rule instances are valid. If a pure rule instance
proves to be incorrect, then the incorrect rule needs to be updated
or purged, and the relevant object class menu(s) may be in need
of repair. For example, what is the minimal context to take
FIX_CAR to FIX_TIRE? A companion intelligent system could
learn to eliminate and otherwise generalize specific terms (e.g.,
randomization theory).
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f. The system should verify for the user all the other {…} in the 
current row that would fire or be fired by the possibly over-
generalized {...} if matched. (Note that this could lead to a
sequence of UNDOs.) 

For example, ({C5} A2) {({C5} A1) ({C5 C6} A2) ({C5 C7} A2,
A3)} informs the user that if the new C5 acquisition is made, then
A2 and not A1 is proper to fire. If correct, then the result is {{C5}
A2 {C5 C7} A2, A3}. {C5 C6} A2 has been eliminated because it is
redundant. Also, {C5 C7} A2, A3 is fired just in case C5 AND C7
are true––in which case, it represents the most specific selection
since it is a superset of the first set. If the elimination of one or
more specific terms causes one or more {…} to become proper
supersets, then warning message(s) may be issued to enable the
user to reflect on the proposed change(s). If the elimination
and/or generalization of one or more specific terms enables the
firing of another rule in the same row in preference to the general-
ized rule, then the generalization is rejected as being too general.
Note that there is no need to normalize the results, as they would
remain in normal form. Also, any further normalization would
neutralize any necessary speedup.

g. A selected consequent number may not have appeared on the
trace path with respect to the expansion of each consequent ele-
ment taken individually. Checking here prevents cycle formation.

h. It should never be necessary to delete the least frequently used
(LFU) consequent {…} in view of reuse, domain specificity,
processor speed, and available memory relative to processor
speed. Nevertheless, should memory space become a premium,
then a hierarchy of caches should be used to avoid deletions.

8. A metaphorical explanation subsystem can use the antecedent/conse-
quent trees to provide analogs and generalizations for explanative
purposes. The antecedent/consequent paths (e.g., ROOT, FIX_CAR,
FIX_TIRE, etc.) serve to explain the recommended action in a way
similar to the use of the antecedent and consequent menus. The
antecedent/consequent menus will provide disjunction and "user-
help" to explain any level of action on the path. Note that the system
inherently performs a fuzzy logic known as computing with words
[4] (i.e., based on the use of conjuncts, descriptive phrases, and tree
structures). The virtual rule base is exponentially larger than the real
one and only limited by the number of levels in the trees, as well as
by space-time limitations on breadth-first search imposed by the
hardware.

9. A consequent element could be a "do-nothing" element if need be
(i.e., a Stop Expansion). The provision for a sequence of consequents
balances the provision for multiple antecedents. The selected conse-
quent(s) need to be as general class objects as can be to maximize the
number of levels and, thus, the potential for reuse at each level. The
consequent grammar is polymorphic since many such grammars can
act (in parallel via the Internet) on a single context with distinct,
although complementary results. Results can be fused as in a multi-
level, multicategory associative memory. Multiple context-matched
rules may not be expanded in parallel because there can be no way to
ascribe probabilities to partially order the competing rules and
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because any advantage would be lost to an exponential number of
context-induced firings. The consequent {…}s cannot be ranked by
the number of matching terms (i.e., for firing the most specific first)
because the most specific terms are generally incomparable. However,
a covered superset is always more specific than any of its proper sub-
sets. Thus, the first covered set that does not have a covered superset
in the same row is the one to be fired. If it does have a covered super-
set, then the superset is fired only if it is the next covered one to be
tested in order. It is not appropriate to tag nodes with their level, use
a monotonically increasing numbering system, or any equivalent
mechanism to prevent the unnecessary breadth-first expansion of a
node(s) because the menus are dynamic, and it would be prohibitively
costly to renumber, for example, a terabyte of memory. Note that
node traversal here is not synonymous with node visitation. Even if
parallel processors could render the update operation tractable, the
search limit would necessarily be set to the depth of the deepest
unmatched node. Here, the likelihood of speedup decreases with
scale. The contextual terms should only be *’d if this does not inter-
fere with their expansion––even if normalized. Let the context be
given as {C5 C6} and the RHS be {C5 C7}, {C1 …},. Clearly, if the
context had *C5, then the C1 might never be matched.

10. Unlike the case for conventional expert systems, a KASER cannot be
used to backtrack consequents (i.e., goal states) to find multiple can-
didate antecedents (i.e., start states). The problem is that the pre-
image of a typical goal state cannot be effectively constrained (i.e.,
other than for the case where the general and specific stochastics are
both zero) in as much as the system is qualitatively fuzzy. Our
answer is to use fuzzy programming in the forward-chained solution.
This best allows the user to enter the constraint knowledge that
he/she has into the search. For example, if the antecedent menus are
used to specify CAR and FUEL for the context and the consequent is
left unconstrained for the moment, then the system will search
through all instances, if any, of CAR crossed with all instances of
FUEL (i.e., to some limiting depth) to yield a list of fully expanded
consequents. Generalization-induced system queries, or consequents
that pose questions, if any, will need to be answered to enable this
process to proceed. Thus, in view of the large number of contexts that
are likely to be generated, all interactive learning mechanisms should
be disabled or bypassed whenever fuzzy programming is used. Note
that CAR and FUEL are themselves included in the search. Each
predicate can also be instantiated as the empty predicate in the case of
the antecedent menus, if user-enabled. If the only match occurs for
the case of zero conjuncts, then the consequent tree is necessarily
empty. A method for fuzzy programming is to simply allow the user
to split each conjunct into a set of disjuncts and expand all combina-
tions of these to some fixed depth to obtain a list of contexts. This use
of a keyword filter, described below, is optional. For example, the
specification (A � A�� !A�) 	 (B � B�) 	 (C) yields 23 candidate 
contexts––including the empty predicate (i.e., if one assumes that A�
is primitive and allows for redundancy), which excludes the empty
context. The exclamation mark, "!", directs the system to expand the
nonterminal that follows it to include (i.e., in addition to itself) all of
the next-level instances of its class. For example, !CAR would yield
(CAR TOYOTA FORD MAZDA HONDA ... � ). Here, lambda
denotes the empty predicate and is included as a user option.
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A capability for expanding to two or more levels if possible (e.g., "!!") is
deemed to be nonessential but permissible (e.g., for use with relatively
few conjuncts). This follows because the combinatorics grow exponen-
tially. One can always take the most successful context(s) produced by a
previous trial, expand predicates to another level by using "!s" where
desired, and rerun the system. Note that, in this manner, the user can
insert knowledge at each stage––allowing for a far more informed, and
thus, deeper search than would otherwise be possible. Moreover, the
fuzzy specialization engine will stochastically rank the generalized
searches to enable an accurate selection among contexts for possible
rerun.

The search may be manually terminated by a user interrupt at any time.
The search is not to be automatically terminated subsequent to the pro-
duction of some limit of contexts because to do so would leave a neces-
sarily skewed distribution of contexts––thereby giving the user a false
sense of completeness. We would rather have the user enter a manual
interrupt and modify the query subsequently. A terminated search means
that the user either needs to use a faster computer, or more likely, just
narrow down the search space further and resubmit. For example, if we
have the antecedent class definitions:

(CAR (FORD TOYOTA)) (FUEL (REGULAR_GAS HIGH_TEST
DIESEL)) (AGE (OLD (TIRES …)) (NEW (TIRES …)))

and the contextual specification:

(!CAR) 	 (!FUEL) 	 (NEW),

then we would have the following 35 contexts allowing for the empty
predicate. Note that the use of the empty predicate is excluded by
default, since its use is associated with an increase in the size of the search
space and since it may not be used with the consequent menus (see
below).

CAR
DIESEL
FORD
FUEL
HIGH_TEST
NEW
REGULAR_GAS
TOYOTA
CAR DIESEL
CAR FUEL
CAR HIGH_TEST
CAR NEW
CAR REGULAR_GAS
DIESEL NEW
FORD NEW
FUEL NEW
HIGH_TEST NEW
REGULAR_GAS NEW
TOYOTA FUEL
TOYOTA DIESEL
TOYOTA HIGH_TEST
TOYOTA NEW
TOYOTA REGULAR_GAS
CAR DIESEL NEW
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CAR FUEL NEW
CAR HIGH_TEST NEW
CAR REGULAR_GAS NEW
FORD DIESEL NEW
FORD FUEL NEW
FORD HIGH_TEST NEW
FORD REGULAR_GAS NEW
TOYOTA DIESEL NEW
TOYOTA FUEL NEW
TOYOTA HIGH_TEST NEW
TOYOTA REGULAR_GAS NEW

The user may also have used the consequent menus to specify an optional
conjunctive list of key phrases, which must be contained in any generated
consequent. Those generated consequents, which contain the appropriate
keywords or phrases, are presented to the user in rank order––sorted first
in order of increasing generalization stochastic and within each level of
generalization stochastic in order of increasing specialization stochastic
(i.e., best-first). For example, (general, specific) (0, 0) (0, 1) (1, 0) (1, 1) …
Recall that only the specific stochastic preserves validity.

The specified antecedent and consequent classes should be as specific as
possible to minimize the search space. Neither the antecedent nor conse-
quent terms specified by the user are ever generalized. For example, if we
have the consequent class definitions:

(COST_PER_MILE (CHEAP MODERATE EXPENSIVE)) 
(MPG (LOW MEDIUM HIGH))

then we can constrain the space of generated consequents in a manner
similar to the way in which we constrained the space of generated
antecedents. Thus, for example we can write:

(!CAR) 	 (!FUEL) 	 (NEW) �	 (!COST_PER_MILE) 	 (!MPG)

This is orthogonal programming; that is, reusing previous paradigms
unless there is good reason not to reuse them. Each candidate solution
has been constrained so that it must contain at least one phrase from the
four in the COST_PER_MILE class and at least one phrase from the
four in the MPG class––including the class name, but excluding the
empty predicate of course. IF an asterisk, "*" is placed after the arrow,
then the compiler is directed not to filter the produced consequents in
any way.

The user can make changes wherever (i.e., to the antecedents, the conse-
quents, or both) and whenever (e.g., interactively) appropriate and rerun
the system query. This represents computing with words because fuzzi-
ness occurs at the qualitative level. It is not really possible for distinct
classes to produce syntactically identical phrases because pathnames are
captured using unique identifiers. That is, the identifiers are always
unique even if the represented syntax is not.

It is not necessary to weight the consequent phrases because instance
classes preserve validity (i.e., at least in theory) and because it would be
otherwise impossible to ascribe weights to combinations of words or
phrases. For example, "greased" and "lightning" might be synonymous
with fast, but taken together (i.e., "greased lightning"), an appropriate
weight should be considerably greater than the sum of the partial
weights. The degree to which the conjunctive weight should be increased
does not lend itself to practical determination. Moreover, one is then
faced with the indeterminable question (i.e., for ranking) as to which is
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the more significant metric: the weight or the two stochastics. Besides, if
one follows the dictates of quantum mechanics or veristic computing, it
suffices to rank consequent phrases by group as opposed to individually.

Feedback produced, in the form of implausible generalizations, serves to
direct the knowledge engineer to modify the involved declarative class
structures by regrouping them into new subclasses so as to prevent the
formation of the erroneous generalizations. This, too, is how the system
learns. The iterative pseudocode for accomplishing the combinatorial
expansion follows.

1. Initialize the list of Candidate Contexts to λ.
2. Each conjunct––e.g., (A � A� � !A�)––in the starting list––e.g., (A � A� �

!A�) 	 (B � B�) 	 (C) will be processed sequentially.
3. Note that !A� means to expand the disjunct to include all members of

its immediate subclass, if any. Similarly, !!A� means to expand the dis-
junct to a depth of two. The provision for multilevel expansion is
implementation-dependent and is thus optional. Each expanded con-
junct is to be augmented with exactly one � if and only if the user has
enabled the �-option. This option is disabled by default.

4. Expand the first conjunct while polling for a manual interrupt. Here,
the result is 
(A � A� � A� � A�.a � A�.b � λ) .

5. Note that the fully expanded list of conjuncts for illustrative purposes
appears: 
(A � A� � A� � A�.a � A�.b � λ) 	

(B � B� � λ) 	 (C � λ) 
6. Initialize a buffer with the disjuncts in the first conjunct. Here, the

first six buffer rows are populated.
7. Copy the contents of the buffer to the top of the list of Candidate

Contexts;
8. Current Conjunct = 2;
9. Note that there are three conjuncts in this example.

10. WHILE (Current Conjunct <= Number of Conjuncts) and NOT
Interrupt DO
{

11. Expand the Current Conjunct while polling for a manual interrupt.
12. Let d = the number of disjuncts in the Current Conjunct;
13. Using a second buffer, duplicate the disjuncts already in the first

buffer d times. For example, here, the second conjunct has three dis-
juncts and would thus result in the buffer: A, A, A, A�, A�, A�, A�, ... ,
λ , λ, λ.

14. FOR each element i in the buffer WHILE NOT Interrupt DO
15. FOR each Disjunct j in the Current Conjunct WHILE NOT 

Interrupt DO
{

16.  Buffer [i] = Buffer [i] || Current Disjunct [j].
17.  (For example, AB, AB�, A λ, A�B, A�B�, A� λ, ..., λB, λB�, λλ .)

}
18. IF the �-option has been enabled THEN

Append the contents of the buffer to the bottom of the list of
Candidate Contexts while polling for a manual interrupt.
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19. Current Conjunct++
}

20. An interrupt may be safely ignored for the next two steps.
21. IF the �-option has been enabled THEN

Final Contexts = Candidate Contexts - λ
22. ELSE 

Final Contexts = contents of the buffer.
23. Duplicate contexts are possible due to the use of � and possible dupli-

cate entries by the user. Searching to remove duplicate rows is an
O(n2) process. Thus, it should never be mandated, but rather offered
as an interruptible user-enabled option.

The iterative pseudocode for constraining the generated consequents
follows.
1. Expand each conjunct—e.g., (A � A�� !A�)—in the starting list—e.g., 

(A � A� � !A�) 	 (B � B�) 	 (C). Note that the  λ-option is disabled.
2. Here, the result is

(A � A�� A� � A�.a � A�.b) 	 (B � B�) 	 (C).
3. FOR each consequent sequence (i.e., rule) WHILE NOT Interrupt

DO
{

4. match = FALSE;
5.  FOR each expanded conjunct (i.e., required key concept) 

WHILE NOT Interrupt DO
{

6. FOR each predicate in an expanded conjunct (i.e., PEC) 
WHILE NOT Interrupt DO
{

7. FOR each predicate in a consequent sequence (i.e., 
PICS) WHILE NOT Interrupt DO
{

8. IF PEC = PICS THEN
{

match = TRUE;
BREAK;
BREAK;
(Each BREAK transfers 
control to the next statement 
outside of the current loop.)

}
}

}
9. IF NOT match THEN BREAK

}
10. IF NOT match THEN remove current rule 

from the candidate list
11. ELSE the rule is saved to the set of candidate 

rules, which is sorted as previously described.
}
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SUGGESTED NAVAL APPLICATIONS
Figure 2 presents a screen capture of a Type I KASER
for diagnosing faults in a jet engine. Observe that the
general and specific stochastics are both one. This
means, in the case of the general stochastic, that the
KASER needed to use a maximum of one level of
inductive inference to arrive at the prescribed action.
Similarly, the specific stochastic indicates that a maxi-
mum of one level of deduction was necessarily
employed to arrive at this prescribed action.
Contemporary expert systems would not have been
able to make a diagnosis and prescribe a course of
action, since they need to be explicitly programmed
with the necessary details. In other words, the
KASER is offering a suggestion here that is open
under deductive process. Simply put, it created new
and presumably correct knowledge. Here are the two
level-0 rules, supplied by the knowledge engineer
(i.e., R15 and R16), that were used in conjunction with the declarative
object trees to arrive at the new knowledge, R18:

R15: If Exhaust Flaming and Sound Low-Pitched Then Check Fuel 
Injector for Carbonization

R16: If Exhaust Smokey and Sound High-Pitched Then Check Fuel 
Pump for Failure

R17: If Exhaust Smokey and Sound Low-Pitched Then Check Fuel 
Pump for Failure

Upon confirmation of R17, R16 and R17 are unified as follows.

R18: If Exhaust Smokey and Sound Not Normal Then Check Fuel 
Pump for Failure

The KASER finds declarative antecedent knowledge, which informs the
system that the three sounds that an engine might make, subject to
dynamic modification, are high-pitched, low-pitched, and normal. By
generalizing high-pitched sounds one level to SOUNDS (see Figure 3)
and then specializing it one level, one arrives at the first-level analogy:
low-pitched sounds. This analogy enables the user context to be
matched and leads to the creation of new knowledge. Figure 4 depicts
the consequent tree and is similar to the antecedent tree shown in
Figure 3. The consequent tree is used to generalize rule consequents so
as to maximize reusability. Object reuse may simultaneously occur at
many levels, even though this example depicts only one level for the
sake of clarity. There are many more algorithms, settings, and screens
that may be detailed.

Another application is the automatic classification of radar signatures.
Basically, the radar data are assigned a feature set in consultation with an
expert. Next, a commercial data-mining tool is applied to the resulting
very large database to yield a set of rules and associated statistics. These
rules are manually fed into the Type I KASER, which interacts with the
knowledge engineer to create the antecedent and consequent trees, as
well as a fully generalized rule base and miscellaneous sundry. Upon
completion of the manual acquisition, the KASER is given a procedure

FIGURE 2.  Screen capture of an operational Type I kaser.

FIGURE 3.  Screen capture of an
antecedent tree.

FIGURE 4.  Screen capture of a
consequent tree.
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to link it through open database connectivity (ODBC) to an external
electronic intelligence (ELINT) database. This database supplies the radar
signatures in approximately real time. The signatures are then automati-
cally classified by the KASER's virtual rule space and the generated sto-
chastics provide an indication of reliability. The KASER, having a virtual
rule space >> real rule space can produce erroneous advice if the general
stochastic is greater than zero. In this event, the user is requested to sup-
ply a corrective consequent(s), which may be "radioed" to the base com-
puter for subsequent update on a daily basis, followed by uploading the
more learned KASER. The main benefit here is that the KASER can sup-
ply solutions to complex signature-identification problems that would
not be cost-effective to supply otherwise (see Figure 1). A Type II
KASER should be able to automatically acquire the feature set.

CONCLUSIONS
This project seeks to demonstrate (1) a strong capability for symbolic
learning, (2) an accelerating capability to learn, (3) conversational learning
(i.e., learning by asking appropriate questions), (4) a metaphorical expla-
nation subsystem, (5) probabilistically ranked alternative courses of
action that can be fused to arrive at a consensus that is less sensitive to
occasional errors in training, and (6) a capability to enunciate responses.
It is argued that the intelligent components of any Command Center of
the Future (CCOF) cannot be realized in the absence of a strong capabil-
ity for symbolic learning.

Randomization theory holds that the human should supply novel knowl-
edge exactly once (i.e., random input), and the machine should extend
that knowledge by way of capitalizing on domain symmetries (i.e., expert
compilation). In the limit, novel knowledge can only be furnished by
chance itself. This means that, in the future, programming will become
more creative and less detailed, and thus, the cost per line of code will
rapidly decrease. According to Bob Manning [12]: "Processing knowl-
edge is abstract and dynamic. As future knowledge management applica-
tions attempt to mimic the human decision-making process, a language is 
needed that can provide developers with the tools to achieve these goals.
LISP enables programmers to provide a level of intelligence to knowledge-
management applications, thus enabling ongoing learning and adaptation
similar to the actual thought patterns of the human mind."

Moreover, according to Erann Gat at the Jet Propulsion Laboratory,
California Institute of Technology, working under a contract with the
National Aeronautics and Space Administration [13]: "Prechelt concluded
that 'as of JDK 1.2, Java programs are typically much slower than programs
written in C or C++. They also consume much more memory.' "

Gat states that "We repeated Prechelt's study by using Franz Inc.'s
Allegro Common LISP 4.3 as the implementation language. Our results
show that LISP's performance is comparable to or better than C++ in
execution speed; it also has significantly lower variability, which trans-
lates into reduced project risk. The runtime performance of the LISP
programs in the aggregate was substantially better than C and C++ (and
vastly better than Java). The mean runtime was 41 seconds versus 165 for
C and C++. Furthermore, development time is significantly lower and less
variable than either C++ or Java. This last item is particularly significant
because it translates directly into reduced risk for software development.
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Memory consumption is comparable to Java. LISP thus presents a viable
alternative to Java for dynamic applications where performance is
important."

In conclusion, the solution to the software bottleneck will be cracking
the knowledge-acquisition bottleneck in expert systems (compilers).
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ABSTRACT
This paper documents progress 
to date on a research project, the
goal of which is wartime event
prediction. The paper describes
the operational concept, the data-
mining environment, and the
data-mining techniques that use
Bayesian networks for classifica-
tion. Key steps in the research
plan are (1) implement machine
learning, (2) test the trained net-
works, and (3) use the technique
to support a battlefield com-
mander by predicting enemy
attacks. Data for training
and testing the technique can be
extracted from the object-oriented
database that supports the
Integrated Marine Multi-Agent
Command and Control System
(IMMACCS). The class structure
in the IMMACCS data model is
especially well suited to support
attack classification.

Establishing a Data-Mining Environment
for Wartime Event Prediction with an
Object-Oriented Command and Control
Database
Marion G. Ceruti
SSC San Diego

S. Joe McCarthy
Space and Naval Warfare Systems Command

INTRODUCTION
The ability to predict attacks and other hostile events during times of
conflict is important to military commanders from the standpoint of
readiness. The more advanced the notice and the more widespread the
notification, the better able all echelons are to respond to threats effi-
ciently and with the correct combination of forces.

The literature is replete with recent research results on data mining and
data classification. (See, for example, [1, 2, 3, and 4].) Data mining, data
classification, and data correlation are related to data fusion. As these
techniques mature, better tools become available to model and to corre-
late data from complex operational scenarios. The purpose of this
research is to create and extend a method to predict attacks on the U.S.
Marine Corps using an object-oriented command and control database
and data-mining techniques [5].

Data Mining
Data mining is the search for and extraction of hidden and useful pat-
terns, structures, and trends in large, multidimensional, and heteroge-
neous data sets that were collected originally for another purpose. (See,
for example, [4].) Data mining is an art that is supported by a consider-
able body of science, engineering, and technology. For example, data
mining uses techniques from such diverse areas as data management, sta-
tistics, artificial intelligence, machine learning, pattern recognition, data
visualization, and parallel and distributed computing. Data mining is pos-
sible today because of advances in these many fields; however, this multi-
diciplinary characteristic also makes data mining a difficult subject to
teach and learn. Whereas the Structured Query Language (SQL) is inade-
quate to answer many complex queries, data mining can support searches
for patterns in temporal and spatial databases in a more efficient manner.
Data mining is important to the military because commanders and the
analysts who support them cannot anticipate all future uses of informa-
tion at the time of data collection.

Limitations of Data Mining
Whereas the goal of data mining is to identify hidden patterns, the search
algorithms chosen for the particular task may miss an important and
interesting pattern or even a class of similar patterns. A systematic
method to preclude this problem is not available.
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Similarly, there is no guarantee that any given data-mining effort will
yield something new and useful, regardless of how many well-designed
data-mining tools are used. This is because the data may not contain the
desired patterns. Data mining is a search for observational data and the
relationships between them, rather than the measurement of experimental
data.

CONCEPT OF OPERATIONS
The concept of operations for a future system based on this research is
(1) to use data-mining and data-classification algorithms to detect patterns
associated with attacks (e.g., to identify factors that indicate an imminent
attack) and (2) to correlate these patterns with current events with a view
toward supplying military commanders with a prediction of the next
attack and a confidence level that pertains to that prediction. A consider-
able amount of data associated with events that have preceded known
attacks is required to model attacks, to search for common features, and
to find these patterns in new data.

Success in this effort depends on a characterization of the circumstances
that translate to well-defined observables that preceded past attacks. The
more detailed the available knowledge, the better the resulting model, and
the greater the probability that data instantiating critical variables can be
collected. We expect that such detailed data for all variables will not be
available prior to future attacks and that all available data may not be use-
ful in predicting attacks (i.e., will function as "noise" in the analysis).
Thus, the task involves identification of algorithms that can detect pre-
attack features in clutter and the use of pattern recognition. Modern
methods of statistical pattern recognition are sufficiently computationally
oriented to use a larger dimensional space and are less sensitive to noise
than older methods. Success in attack prediction will depend, at least in
part, on how well these methods can be implemented with the available
data.

GENERAL APPROACH
Hostile events can be characterized with respect to as many relevant vari-
ables as are deemed necessary and available to predict future attacks. An
object-oriented message-traffic database can be analyzed for the occur-
rence of telltale signs of pending attacks. Our objective is to generate an
event prediction (in terms of a probability) with a confidence value asso-
ciated with it. Therefore, it is necessary to determine the combinations of
events and observations that will have a higher probability of indicating a
future attack. A baseline can be modeled from normal operational scenar-
ios and from military events during times of conflict that do not consti-
tute attacks per se.

The attack alarm-generation process and the reduction of false positives
can be approached using constraints from models of known attacks. The
identification of the appropriate features (and groups of features) that can
flag imminent attacks is the most challenging part of the process. One
approach is to explore the generation of a knowledge base encoded in
Bayesian networks.

A literature search was conducted for publications on various subjects
that relate to data mining, including algorithms and their applications.
Data-mining algorithms can be used to identify complex patterns in the



data that correlate well to hostile events. Criteria can be developed for
sufficient correlation and confidence levels in data associations. For
example, one metric that could be used is correlation strength, which is
the ratio of the joint probability to the individual probability of observ-
ing a pattern [1].

BAYESIAN NETWORKS
Bayesian networks can be used to classify data into categories. Bayesian
networks are:
· probabilistic networks,
· directed acyclic graphs that encode certain dependences between nodes 

that represent random variables,
· knowledge bases with knowledge in the network's structure and in its 

conditional probability table, and
· structures that can be used to infer causality.

Naive Bayesian Networks
A naive Bayesian network is a very simple structure in which all random
variables representing observable data have a single, common parent
node—the class variable. The naive Bayesian classifier has been used
extensively for classification because of its simplicity, and because it
embodies the strong independence assumption that, given the value of
the class, the attributes are independent of each other. 

Naive Bayesian networks work remarkably well considering that this
independence assumption may not be valid from a logical standpoint.
The performance of a naive Bayesian network can be improved with the
addition of trees that provide augmenting edges to a naive Bayesian net-
work by representing correlations between the attributes.

Tree Augmented Naive (TAN) Bayesian Classification Algorithm
SSC San Diego has access to SRI International's classifier algorithms
developed under the Defense Advanced Research Projects Agency's
High Performance Knowledge Base Program. For example, SRI's Tree
Augmented Naive (TAN) Bayesian Classification Algorithm is a classifier
algorithm based on Bayesian networks with the advantages of robustness
and polynomial computational complexity [2 and 3].

Bayesian networks have some drawbacks that SRI has addressed in the
TAN algorithm. In ordinary naive Bayesian networks, the variables (data)
are assumed to be conditionally independent given the class. Logically,
this is not always true. For example, suppose enemy troops are observed
at location X and enemy tanks are observed at location Y. When using
naive Bayesian networks, one assumes that these events are independent.
However, both events may be part of the overall enemy battle plan. In
the TAN algorithm, the trees provide edges that represent correlation
between the variables.

Bayesian networks, especially with tree augmentation, are a suitable tech-
nology for data-mining classification and event prediction for the follow-
ing reasons:

· First, one need not provide all joint probability values to specify a 
probability distribution for collections of independent variables [6].

· Second, one could mix modeling (e.g., explicit knowledge engineering 
for knowledge elicited from experts) with statistical data induction and 
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adaptivity. This mix would require fewer data values to induce better 
quality models.

· Third, one could use these models to compute the value of information.
For example, having seen signs "A" and "B" of an imminent attack, 
what is the best information to collect next to confirm that hypothesis?

· Fourth, one could characterize explicitly the kinds of attacks. For 
example, given an attack of type "air attack," what are the most likely 
signals? These signals could be collected regularly to fill the database 
used as input into the TAN algorithm.

The TAN algorithm makes some tradeoffs between accuracy and compu-
tation. It approximates a probability distribution using some constraints
on the complexity of the representation; however, it is extremely fast
(low polynomial), efficient (one pass over the data), and robust (low-
order statistics).

The TAN algorithm accepts data sets as input and induces Bayesian net-
works as output. Specifically, the TAN algorithm is intended to be used
as a classification algorithm, which means that the input would be a file
with tuples of the form {x1, x2, x3, ..., xn, c} where the xi, are values that
variable Xi takes and c is the value that a class (C) variable can take. To
set the range of each variable, the TAN algorithm needs an auxiliary file
that contains a description of each variable, including the range of values
representing the degree of intensity. 

The TAN algorithm's output is a Bayesian network encoding of P(C,
Xn,...,X1) in an efficient manner. To use TAN as a classifier, one simply
computes P(C|x'n,....,x'1). Given a new vector X'n,...,X'1 and having a
probability distribution over c, one can select the event with highest
probability as the one to classify. To compute the confidence in this
value, the bootstrap method can be used [7].

The TAN algorithm outperforms naive Bayesian networks while main-
taining its robustness and computational simplicity (polynomial vs. expo-
nential complexity).

The TAN algorithm captures the best of both discrete and continuous
attributes. Therefore, the TAN algorithm achieves classification perform-
ance that is at least as good as, and in some cases better than, models that
use purely discrete or purely continuous variables. Studies at SRI have
demonstrated that the TAN algorithm performs competitively with other
state-of the-art methods.

TAN, and similar algorithms, can be made to perform the classification of
certain battlefield situations for the Marine Corps. Much work needs to
be done in this area, particularly with regard to data-set selection, data
cleansing, and the refinement of the algorithm to meet specific needs.

In addition to the TAN algorithm, SRI has more general algorithms for
inducing Bayesian networks that do not make the compromises that the
TAN algorithm does. These algorithms try to fit the best distribution
possible with no constraints. The disadvantage is that the computation of
these models is slower; however, this may be acceptable and desirable in
some cases. Algorithms can be implemented with the same data and the
results compared.

GaussMeasurePredict Program
The GaussMeasurePredict program was developed by Nir Friedman to
measure the performance of an induced TAN model. (See, for example, [2]).



The input of GaussMeasurePredict consists of the following items: (1) an
induced Naive Bayesian network from TAN, (2) the name of the variable
to predict, and (3) a test data set that contains instance information.
When testing the Bayesian network model, the variable to predict is spec-
ified and known to be correct. Usually this will be the outcome of the
class variable.

GaussMeasurePredict also has the option to calculate and display the
probability of each class value for each instance in the input file. This fea-
ture is particularly useful for receiver operating characteristic (ROC)
curves as well as for determining other statistics [8]. Thus, with this
option, GaussMeasurePredict can output the probability distribution for
each instance in addition to a summary.

The output of GaussMeasurePredict is a prediction of the accuracy of the
network in the TAN Bayesian network .bn file. It can be used to predict
the accuracy of other classifier algorithms as long as the output file
matches the format of TAN's Bayesian network file. 

GaussMeasurePredict is intended to be used to measure the accuracy of
predictions and not to generate predictions for unlabeled instances. Unlike
the TAN algorithm, GaussMeasurePredict does not accept instances
with "?" for missing values in an instance input file. All variables must
have filled values in each instance. However, because GaussMeasurePredict
compares the induced Bayesian network to the test data set, it also can
be used to infer the class of an unknown instance by filling in the class
(Outcome) variable with a guessed value. Using the option described
above, GaussMeasurePredict can output a predicted class probability for
each class value. The class with the highest probability is the predicted
class for that instance.

Fortunately, in the simplest case of attack predictions, only two values are pos-
sible for the class variable: ATTACK_LIKELY and ATTACK_NOT_LIKELY.
In more detailed cases of attack predictions in which specific attack types
are listed in the data-definition input file, the class variables may assume
2N values where N is the total number of attack types considered in the
class. (The 2N arises from including the negation of the likelihood of an
attack of each type.)

SOFTWARE IMPLEMENTATION AND PLANS
Data-mining software was tested for correct operation with clean data
sets designed specifically for testing. The programs described below are
included in the research environment. The software includes the TAN
algorithm and the GaussMeasurePredict that uses the output of the TAN
algorithm. Inputs to GaussMeasurePredict must be complete. Plans
include the acquisition of additional algorithms that are designed to
operate on incomplete data sets.

TAN 2.1 Availability
The TAN version 2.1 software and user's manual are available for down-
load via file transfer protocol (FTP) from SRI's Web site:
http://edi.erg.sri.com/tan/TANintro.htm. The user is required to register
with a name and password. To obtain the TAN algorithm, Netscape is
recommended and may be required. The Solaris CDE Web browser,
HotJava, is not recommended to download TAN. The TAN user manual
is included with the software (See, for example, [8]).
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The TAN software was downloaded from SRI's Web site onto a Solaris
SPARC Station 20 computer running the Solaris 2.7 UNIX operating
system and using the Common Desktop Environment (CDE).

TAN 2.1 constitutes the main data-mining tool in the research environ-
ment of this project. TAN can be used as a base classifier and also as a
method to fuse the output of other data-mining and classification algo-
rithms. When algorithms have been tested and programmed, data visuali-
zation tools can be identified, tested, and used to view the data and to
continue the pattern-recognition process.

GaussMeasurePredict Availability
The GaussMeasurePredict program is available along with the TAN soft-
ware from SRI's Web site. The program is included with the TAN package
and can be executed when files are "unzipped" and when the appropriate
input files are available.

OBJECT-ORIENTED DATA IMPLEMENTATION
The object model, on which the Integrated Marine Multi-Agent
Command and Control System (IMMACCS) database is based, is a
detailed representation of the battlespace with objects derived from the
March 1998 Urban Warrior Advanced Warfighting Exercise [9 and 10].
Object attributes and their associations, as well as class inheritance, are
also described in [10]. The IMMACCS database uses the Unified
Modeling Language symbolic representation method [10].

The IMMACCS database includes in its structure the following topics of
interest to the Marine Corps: aircraft; ground vehicles; sea-surface vehi-
cles; weapons and weapon systems; electronic devices of many kinds; ter-
rain; bodies of water; logistics information; transportation infrastructure;
various specialized units; personnel data; and most importantly for this
application, military events. Class inheritance paths and allowed values
are specified [10]. The use of an object-oriented database and the repre-
sentation of military entities in object form provide a degree of interoper-
ability and extensibility that allows multiple services to use and add to
this common tactical picture [9].

The data sets for this data-mining effort will come from IMMACCS. The
class structure in the IMMACCS data model is especially well-designed
for adaptation to the attack/non-attack classification task. When data fill
becomes available, especially for the attributes and object classes of inter-
est, the IMMACCS database will be a very desirable data source for rea-
sons described in the next subsection.

CONSTRUCTION OF TRAINING DATA SETS
The following discussion illustrates the strategy for constructing training
data sets using certain IMMACCS object-oriented data classes as exam-
ples. The data-mining classification task is to identify the value of the
Bayesian-network class variable of an unknown data set. Initially, two
Bayesian-network class variables will be considered, "imminent attack
likely" or "imminent attack not likely." To train the TAN algorithm, the
value of the Bayesian-network class variable will be identified in the
training data sets for both classes.

Various types of attacks and defenses are listed as allowed values (among
others) in the MILITARY_EVENT object class in the IMMACCS database.



These are AIR_ATTACK, GROUND_ATTACK, AIR_DEFENSE,
GROUND_DEFENSE, and SMALL_SCALE_ATTACK. Only instances
that correspond to attacks from hostile forces on the Marine Corps will
be considered. Any attack launched by the Marine Corps on hostile
forces will not be counted in the "attack" category. In contrast, defenses
by the Marine Corps against hostile attacks, whether the attacks are
launched from the air or the ground, are likely to play a role in the over-
all model when they influence subsequent enemy attacks. For example,
enemy commanders may select a battle plan that does not involve an air
attack on an area with a strong Marine Corps air defense.

Several naive Bayesian networks can be induced, one for each attack type
and one for the combined data for all attack types. For the combined
attacks, the class variable can take multiple values, corresponding to the
likelihood of a particular attack type and the likelihood that this attack
type will NOT occur. Initially, all attack types will be assumed to be
independent, although this is rarely true in actual battles. For example,
ground attacks are more likely to follow air attacks at the same location
than vice versa.

For the non-attack training instances, data associated with the other val-
ues of the MILITARY_EVENT object class will be used, such as WITH-
DRAWAL_EVENT, DELAYING_ACTION, AIR_REINFORCEMENT,
or DRILL_EVENT. Other non-attack training instances also can be
derived, for example, from the AIR_DEFENSE and GROUND_
DEFENSE values, provided the instances pertain to events associated
with enemy air defenses and ground defenses.

The date-time groups (DTGs) associated with each instance, both of
attack and non-attack situations, will be noted and other data objects
with the same DTGs (and with DTGs just prior to the event) will be
included in the training data sets. The training data also could include
objects present in the same vicinity as the attack or non-attack event that
do not have DTGs. This will provide as comprehensive a description of
the battlespace at the time and place of the attack as is possible, given the
level of data granularity. This method of formulating training data sets
can be extended by including in each data set the data that pertain to
DTGs several days prior to the event to ascertain whether this will yield
better results. The exact time span that each data set should cover is an
open research issue.

Design Considerations in the Construction of Test Data Sets
Changes can be made in the test data sets, depending on the desired out-
come of the test. For example, to determine how far in advance an attack
can be predicted, the instances that pertain to an entire day immediately
prior to the attack can be omitted systematically from test data sets. If the
algorithm still makes the correct prediction, one can conclude, at least as
far as that test data set is concerned, that an attack can be predicted 24
hours in advance. Similarly, if 2-days worth of data immediately preced-
ing the attack can be omitted without a significant decline in the predic-
tion accuracy, this is an indication that attacks can be predicted 48 hours
in advance.

We expect, however, that omitting more and more data that pertain to the
days just prior to an attack will cause the attack-prediction accuracy to
degrade. The exact functionality of this degradation (linear, exponential,
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logarithmic, etc.) is another open research question. This type of testing
can enable researchers to determine the number of days to include in the
data collection and the specific data elements to be collected necessary to
formulate as accurate a prediction as possible. 

Test and training data sets will be formulated according to an n-fold
cross-validation procedure. For example, to implement the first cycle of a
five-fold cross validation with a data set consisting of 1,000 records, the
first 800 records can be selected for training, with the last 200 records
being reserved for testing. During the second phase of training and test-
ing, the first 600 records and the last 200 records together will comprise
the test data set, and the remaining records will be used for testing. In the
third phase, the first and last 400 records will be used for training and the
middle 200 for testing, etc. The advantage of this procedure is that it can
be used to identify anomalies in the testing and training so that if the
results are comparable for all five tests, a higher level of confidence in the
method is obtained.

CONCLUSION
This paper describes a data-mining environment designed to support
wartime event prediction using Bayesian networks to perform a data-
classification task. The TAN algorithm was selected to induce a network
using data extracted from an object-oriented database that contains infor-
mation from exercise message traffic. Future work could include a user-
friendly interface designed on top of the algorithms to provide automated
input of selected data sets to the algorithm of choice. Success in this
research project will pave the way for a more precise indication-and-
warning system for the U.S. Marine Corps.
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ABSTRACT
An array of thermal emitters
has been developed for use in a
portable test set to enable field-
testing of low-performance
infrared imaging systems and
seekers. It is not known if this
technology can be used to evaluate
the performance of state-of-the-
art thermal imagers. This paper
describes the preliminary meas-
urements of thermal pixel array
(TPA) performance. The radiant
output of TPA was measured as a
function of pattern size and drive
voltage. Simple models were
developed that agree with many
aspects of the experimental data.
Spatial and temporal noise
characteristics of the TPA have
been ascertained through three-
dimensional noise analysis.
Detection algorithms were used
to compare images of test patterns
produced by the TPA to images of
similar test patterns produced by
a standard blackbody.
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INTRODUCTION
Infrared scene projection (IRSP) technology has advanced rapidly in the
last few years in an effort to support testing of missiles and other munitions
that use infrared seekers. Existing infrared scene generation technology is
very expensive, with available scene generators falling in the million-dollar
price range. These infrared scene projectors are prohibitively expensive
for most infrared (IR) sensor test and evaluation applications. Low-cost
alternative technologies would open the door to a much greater range of
test applications. 

A thermal imager test set using IRSP technology would have several
advantages over traditional test sets consisting of a blackbody source and
target wheel. Portable thermal imager test sets have a small number of
target wheel positions. Test patterns must be installed to match sensor
test requirements. IRSP technology eliminates the need for physical test
patterns and allows the operator to generate test patterns appropriate for
each sensor. Target wheels are generally too large to be effectively cooled.
Blackbody sources can be controlled to maintain a constant temperature
difference, but changes in the ambient temperature produce temperature
changes that lie outside the camera's dynamic range. The IRSP arrays
under investigation in this study are small and can be cooled with ther-
moelectric coolers. The use of IRSP technology in place of the black-
body/target wheel allows control of both the source and background
temperatures and guarantees that the scene lies within the camera's
dynamic range. The thermal imager testing community is developing
improved methods of testing thermal imagers that do not use traditional
test patterns. IRSP technology provides the tester with the flexibility to
generate the test patterns appropriate to these alternative test procedures.

SSC San Diego has been funded through the Office of Naval Research to
develop a low-cost thermal pixel array (TPA) for portable test set appli-
cations that provides a path to built-in test applications. The Real-Time
Infrared (RTIR) TPA is a micro-electromechanical systems (MEMS)
device consisting of a two-dimensional array of miniature IR heater ele-
ments (thermal pixels). In contrast to other IRSP technologies, the RTIR
TPA is a silicon-based, micro-machined Complementary Metal Oxide
Semiconductor (CMOS) array. This process yields a single chip device
that is significantly less expensive than alternative approaches. Each IR



heater is suspended over a micro-machined cavity and
surrounded by pixel-specific electronics that allow
rapid loading and retention of the image data. The
micro-machined cavity thermally isolates the heater
from the parent substrate, allowing each pixel to be
individually set and maintained at a temperature dif-
ferent from that of its neighbors. Four heater ele-
ments are shown in Figure 1(A). Each heater element
can be addressed independently of any other heater
element. This allows the operator to vary both the
shape and location of test patterns. This capability is
shown in Figures 1(B), 1(C), and 1(D).

The RTIR TPA specifications were selected to meet
dynamic scene requirements for missile testing and
were not intended for use in a thermal imager test set.
Minimum resolvable temperature difference (MRTD)
is an important thermal imager figure of merit and is
routinely measured during sensor evaluations. State-
of-the-art thermal imagers have MRTDs of a few tens
of milliKelvin at low spatial frequencies. Characterization of these
imagers requires blackbodies with temperature resolutions that exceed
those of the imager. Temperature resolutions of this scale exceed the
RTIR TPA design specifications by at least an order of magnitude. In
spite of the drawbacks of the RTIR TPA design, it was felt that it would
be beneficial to compare the performance of this technology to a tradi-
tional thermal imager test set. This approach would provide insight into
the feasibility of the RTIR TPA technology, help identify unknown prob-
lems, and provide a basis for developing thermal imager test set TPA per-
formance specifications.

INSTRUMENTATION
The standard blackbody used in this comparison was furnished by Santa
Barbara Infrared (SBIR). The telescope has a 6-inch aperture and a 30-
inch focal length. Differential temperature resolution is �3 milliKelvin
when the unit is operated in the temperature difference mode. The ther-
mal pixel array test set is shown in Figure 2. The RTIR TPA is a 128 by
128 array with pixel pitch of 88.6 microns.

The temperature range of the TPA is approximately
250°C with a thermal resolution of 0.250°C. The TPA
area fill factor is 15%, and its emissivity is approxi-
mately 60%. The collimating telescope has a total
transmission of 91% in the 3- to 5-micron band, a
focal length of 233 mm, and a 50-mm aperture. The
losses due to the fill-factor, emissivity, and telescope
transmission result in an efficiency of 0.082 and an
effective temperature resolution of 20 milliKelvin. A
pixel non-uniformity correction capability is planned
but is not currently available.

An Amber Galileo thermal imager with a 75-mm
focal-length lens was used for these measurements.
The Galileo is capable of extremely high frame rates;
however, for this analysis, images were acquired at

FIGURE 1.  (A) Four micro-machined heater elements, (B) four-bar
pattern in center of array, (C) square in lower left-hand corner, and
(D) square moved to upper right-hand corner.
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FIGURE 2.  TPA blackbody.
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the standard 30 Hz. The thermal imager was mounted
on a rotation stage as shown in Figure 3. The thermal
imager focus was adjusted to image the bar patterns
from the SBIR blackbody. The imager was then rotated
90 degrees to view the TPA blackbody. The focus of
the TPA bar patterns was achieved by adjusting the
position of the TPA. This configuration allowed rapid
collection of both TPA and SBIR images. Images
were digitized with a Matrox Pulsar frame grabber
with 8 bits of resolution.

PATTERN SIZE AND VOLTAGE EFFECTS
Traditional test sets consist of a thermal source, a col-
limator, and a target wheel that holds the test patterns
or masks. The wheel is physically separated from the
blackbody source and its temperature is unaffected by
changes in the temperature of the source. Changing the wheel's position
does not affect the temperature difference between the blackbody and
mask; therefore, temperature differences are independent of the pattern
size. This is not necessarily true for a TPA blackbody. The thermal insu-
lation provided by the micro-machined cavity does not completely isolate
the heater from the parent substrate. Thermal conduction through the
substrate affects the background temperature of the array and decreases
the effective temperature difference (Figure 4). This effect may depend on
both pattern size and control voltage.

The first characterization task was to examine the relationship between
pattern size and radiometric temperature. Three test patterns (two
squares and a four-bar pattern) were selected for the analysis. The squares
were generated by heating 30-pixel by 30-pixel and 6-pixel by 6-pixel
regions on the array. The bar pattern consisted of four bars each 21 pixels
long by 3 pixels wide. This pattern is consistent with the 7:1 aspect ratio
of bar patterns used in MRTD measurements. Two measurements were

THERMAL
IMAGER

ROTATION STAGE

TELESCOPE

TPA BLACKBODY

SBIR BLACKBODY

TELESCOPE

TPA

FIGURE 3.  Diagram of experimental apparatus.
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FIGURE 4.  40-pixel by 40-pixel heated area.
It is apparent that the heat is not confined
to the pattern area but is conducted into
the surrounding area.

FIGURE 5.  (A) Signal/pixel for three patterns (30 x 30 square, 6 x 6 square, and 21 x 3-bar pattern). Pattern size effects are evident. (B) Fit to
data based on simplistic heating model. Model has three parameters and a nonlinear fit is used to achieve best fit. Good agreement is achieved
between 2.5 and 6 V.
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made with the bar pattern on separate days to evaluate TPA temporal sta-
bility. Images of each pattern were obtained as a function of voltage. The
values of the pixels in each pattern were summed to produce a total signal.
The signal was divided by the number of pixels comprising the pattern to
produce a signal/pixel value. The signal/pixel values were compared for
the three patterns. The results are plotted in Figure 5(A). A temperature
dependence on pattern size is clearly evident. In contrast, the four curves
would overlap if a traditional blackbody/target wheel test set had been
used. It was encouraging that the two four-bar pattern curves (red and
black) were in excellent agreement and that the shapes of the curves were
similar for all three patterns. A simplistic model, relating the radiometric
energy measured to voltage, was developed and used to fit the data. The
model, which had three unknown parameters, was in excellent agreement
with the data from 2.5 to 6 V (Figure 5(B)). 

Thermal imagers suffer from blurring due to a reduction of the modula-
tion transfer function with an increase in pattern spatial frequency. A tra-
ditional blackbody does not affect the pattern fidelity; therefore, any loss
of fidelity can be attributed to the thermal imager. The blurring due to
thermal conduction in the TPA test set results in a loss of pattern fidelity
that must be separated from the degradation in image quality due to the
thermal imager. 

The investigation of the impact of thermal conduction on pattern fidelity
was continued by examining the shape of square test patterns as a func-
tion of size and voltage. The results are summarized in Figure 6. Hori-
zontal line profiles were taken through the center of the heated area. Line
profiles of a 40 by 40 square as a function of voltage are plotted in Figure
6(A). Figure 6(B) compares line profiles for squares with sides of 10, 15,
20, 30, and 40 pixels at a constant 6 V. A parabolic curve, described by
the equation below, was plotted through the peak of each curve.

S = Sxc – ap,V (V –VT)(x – xc )2

where S is the pixel value, Sxc is the peak pixel value, xc is the pixel loca-
tion at which the peak pixel value occurs, VT is a threshold voltage (~3
V), and ap,V is a coefficient that can depend on pattern size and voltage.
The curves shown in Figure 6 are generated by setting ap,V equal to a
constant independent of pattern size or voltage. The curves appear to
represent a reasonable fit to the data. This relatively simple relationship
was unexpected and suggests that thermal conduction distortions can be
readily understood, which is encouraging given the complexity of the
TPA structure.

THERMAL MODELS
The results from the previous section suggested that a simple thermal
conduction model might predict the effects of pattern size and control
voltage on the array's temperature distributions. A finite-element analysis
model was used to predict array temperature distributions. The TPA is a
very complex structure, but for the first attempt, a simplistic model of the
TPA was constructed. The TPA was assumed to be a homogeneous,
isotropic material with a constant thermal conductivity and emissivity. It
was further assumed that cooling occurs only through the bottom surface
of the array and that the thermoelectric cooler maintains this surface at a
fixed temperature. The objective of this analysis was to generate curves
with trends similar to those shown in Figure 6. In particular, four features
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in Figure 6 were of interest: (1)
the increase in peak temperature
with pattern size, (2) the long tail
in the unheated region, (3) the
sharp transition between the
heated area and the tail, and (4)
the flat tops of the small squares.
A typical result is shown in
Figure 7.

The model results do show the
increase in peak temperature
with pattern size and the long
tail in the unheated areas. The
transition between the heated
and unheated areas is not as
sharp, and the tops of the small
squares are more rounded than
experimentally measured. A
more complex model of the TPA
is being constructed that should
replicate these features.

NOISE BEHAVIOR
Noise is an important factor in
thermal imager performance
especially for tasks involving
detection threshold measure-
ments such as MRTD. The three-
dimensional (3-D) noise model
[1] provides an effective method
of determining the noise charac-
teristics. Image sequences of 30
frames were obtained from both
the TPA and the reference black-
body. Thermal conduction
through the TPA substrate dis-
tributes heat throughout the entire array. This low-
frequency background is not apparent in the black-
body. For this reason, the low-frequency noise com-
ponents were suppressed by means of a polynomial
fit prior to the 3-D noise analysis. The results are
summarized in Table 1.

The intrinsic noise of the blackbody should be small
compared to that of the Galileo, and it is safe to
attribute blackbody noise components in Table 1 to
the Galileo. Inherent TPA noise is indicated by the
increase between blackbody and TPA noise compo-
nents. The magnitudes of the TPA and blackbody
noise components are remarkably similar, with σtvh
and σvh being the most significant noise components
for both sources. This behavior is typical of staring
thermal imagers, such as the Galileo.
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FIGURE 6.  (A) Horizontal line profiles for a 40-pixel by 40-pixel pattern over a range of
control voltages. (B) Horizontal line profiles at a fixed 6 V for square patterns of 10, 15,
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HUMAN VISION MODELS
In recent years, significant advances have occurred in
the field of vision research to model the response of
the human visual cortex. While human vision is far
from solved, the principal mechanisms are under-
stood. The visual cortex can be modeled as a collection
of filters each sensitive to a restricted spatial frequency
bandwidth. The model can be extended to compare
filtered responses of two similar images and compute
probabilities that a human observer will detect differ-
ences between the images. A visual cortex model
developed by one of the authors [2] was used to com-
pare high- and low-contrast bar patterns from a tradi-
tional blackbody and the TPA. A full description of
the model and the analysis is beyond the scope of this paper; however,
the model indicated that at low contrast the TPA and traditional black-
body images were indistinguishable to a human observer. 

CONCLUSIONS
An assortment of measurements has been performed during the initial
phase of the TPA characterization. In general, the results were extremely
promising. Noise characteristics were in better agreement with a tradi-
tional blackbody than expected. Use of human vision models provided a
novel characterization tool and indicated that TPA and blackbody images
are very similar at low contrast. Crude estimates based on low-contrast
images yield TPA MRTD measurements two to four times higher than
MRTD measurements made with a traditional blackbody. This was better
than expected, considering the poor temperature resolution of the RTIR
TPA. Pattern blurring from thermal conduction is an important differ-
ence between TPA and traditional blackbodies. The effects of thermal
conduction on pattern contrast must be understood or eliminated before
a TPA-based thermal imager test set will be achievable. Simple thermal
conduction models reproduce some of the experimentally measured fea-
tures, but a more complete model is needed. Understanding the important
factors affecting thermal conduction will help develop TPAs less suscepti-
ble to thermal distortions. Further investigation and development of the
TPA is required, but the results are extremely promising and indicate that
the TPA technology is a potential candidate for use in a thermal imager
test set.

This technology may be the subject of one or more invention disclosures assigna-
ble to the U.S. Government, including N.C. #82901. Licensing inquiries may be
directed to:
Harvey Fendelman
Office of Patent Counsel D0012
SSC SAN DIEGO
53510 Silvergate Avenue Room 103
San Diego, CA 92151–5765
(619) 553–3001

TABLE 1.  3-D noise analysis results.

Sigma tvh

Sigma tv

Sigma th

Sigma vh

Sigma v

Sigma h

TOTAL

Blackbody (counts)

          1.43

          0.23

          0.16

          1.21

          0.37

          0.29

          1.96

TPA (counts)

     1.48

     0.24

     0.22

     1.28

     0.29

     0.32

     2.04
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ABSTRACT
This paper highlights SSC San
Diego contributions to the
research and development of
hyperspectral technology. SSC San
Diego developed the real-time,
onboard hyperspectral data
processor for automated cueing of
high-resolution imagery as part of
the Adaptive Spectral Reconnais-
sance Program (ASRP), which
demonstrated a practical solution
to broad area search by leveraging
hyperspectral phenomenology.
SSC San Diego is now implement-
ing the ASRP algorithm suite on
parallel processors, using a
portable, scalable architecture
that will be remotely accessible.
SSC San Diego performed the
initial demonstrations that led to
the Littoral Airborne Sensor
Hyperspectral (LASH) program,
which applies hyperspectral
imaging to the problem of sub-
marine detection in the littoral
zone. Under the In-house Lab-
oratory Independent Research
(ILIR) program, SSC San Diego
has developed new and enhanced
methods for hyperspectral analysis
and exploitation.

Hyperspectral Imaging for Intelligence,
Surveillance, and Reconnaissance
David Stein, Jon Schoonmaker, and Eric Coolbaugh
SSC San Diego

INTRODUCTION
The optical spectrum is generally considered to include the ultraviolet
(200 to 400 nm), the visible (400 to 700 nm), the near infrared (700 to
1100 nm), and the short-wave infrared (1100 to 2500 nm). Sensors operat-
ing in these bands detect reflected light which is used to discriminate an
object from its background and to classify it based on spectral character-
istics. Spectral sensors capitalize on the color difference between objects
and the background. A color video camera that divides the reflected light
into red, green, and blue components is thus a simple spectral sensor.
More complicated sensors break the spectrum into finer and finer bands
and/or selectively tune to bands appropriate for a specific object or back-
ground. In general, a multispectral sensor, illustrated in Figure 1, is
defined as a sensor using two to tens of bands, while a hyperspectral sen-
sor, illustrated in Figure 2, is defined as a sensor using tens to hundreds
of bands. Spectral sensors are divided into four types or approaches.
Currently, the most common type is the "pushbroom" hyperspectral sen-
sor. In this approach (Figure 2), a single line is imaged through a dispers-
ing element so that the line is imaged in many different bands (colors)
simultaneously. A second spatial dimension is realized through sensor
motion. A second type is a multispectral filter wheel system in which a
scene is imaged consecutively in multiple bands. A third type images
multiple bands simultaneously using multiple chips (or multiple areas on
the same chip). This approach uses multiple apertures or a splitting tech-
nique, such as a series of dichroic prisms or a tetrahedral mirror or lens.
The fourth approach is the use of a Fourier transform spectrometer. The
product of any of these sensors is an image cube as illustrated in Figure 3.

Hyperspectral Imaging at SSC San Diego
SSC San Diego has supported a number of hyperspectral programs over
the last several years for a variety of government agencies, including the
Defense Advanced Research Projects Agency (DARPA), the Spectral
Information and Technology Assessment Center (SITAC), the Office of
Naval Research (ONR), the Office of the Secretary of Defense (OSD),
and the High Performance Computing Management Office (HPCMO).
We have worked on DARPA’s Adaptive Spectral Reconnaissance
Program (ASRP), the goal of which was to demonstrate the detection of
concealed terrestrial military targets and the cueing of a high-resolution
imager. For ONR, we have been involved with maritime applications of



Hyperspectral Imaging for Intelligence, Surveillance, and Reconnaissance 109

hyperspectral sensors. Under
OSD sponsorship, we have
demonstrated the capabilities of
hyperspectral remote sensing for
search and rescue applications.
For SITAC, we have provided
ground truth measurements of
ocean optical properties and illu-
mination required for controlled
experiments, and we have analyzed
the bands required for optimal
ocean imaging. The HPCMO is
sponsoring our work to develop
scalable and portable implementa-
tions of the ASRP algorithms.
Under ONR and SSC San Diego
In-house Laboratory Independent
Research (ILIR) funding, we have
developed new and enhanced
methods for hyperspectral analy-
sis and exploitation. Highlights of
these efforts are described in more
detail below. 

Terrestrial Hyperspectral
Remote Sensing 
The DARPA ASRP successfully
demonstrated the capability to
detect military targets of interest
in real time by using an airborne
hyperspectral system to cue high-
resolution images for ground
analysis. SSC San Diego led all
research, development, coding,
and implementation of the end-
to-end processing and critical
hyperspectral detection and
recognition algorithms. The algo-
rithms and processing architecture
developed are applicable to a
broad scope of missions, targets
of interest, and platform architec-
tures. ASRP pushed the state of
the art beyond simple detection of
targets in the open, making detec-
tion of difficult, realistically posi-
tioned targets possible at low false
alarm rates. Figure 4 shows the
difficult environment, used by
ASRP for real-time hyperspectral
system demonstrations, that may
be encountered during military
operations. The variety of natural
and man-made materials and the
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FIGURE 1.  Schematic of three-band multispectral imaging camera.
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variability of illumination com-
bine to form a highly complex
spectral detection challenge.
Figure 5 compares the visibility
of two targets in high-resolution
imagery (top), in a red-green-blue
(RGB) image (middle), and in the
output of a detection statistic 
(bottom). These detections exem-
plify the ability of the hyperspectral
system to identify target positions
even when they may not be evi-
dent in traditional high-resolution
imagery. 

The High Performance Computing
Management Office (HPCMO)
has funded SSC San Diego, as part
of the Hyperspectral Information
Exploitation Project, to imple-
ment the ASRP hyperspectral
algorithm suite and end-to-end
processing on high-performance
computer (HPC) platforms in a
portable, scalable architecture
accessible by a wide variety of
Government users. Parallel pro-
cessing capabilities will provide a
new dimension for hyperspectral
processing, allowing multiple
hyperspectral algorithms to opti-
mize target detection and recogni-
tion on massive data sets.

Maritime Sensor Systems
SSC San Diego has been instru-
mental in initiating and demon-
strating the use of hyperspectral
imagery for surveillance of the lit-
toral. In 1996, SETS Technology,
working with SSC San Diego, flew
the SETS Technology Advanced
Airborne Hyperspectral Imaging
System (AAHIS) over submarines
at the Pacific Missile Range
Facility northwest of Kauai. The
results of these flights led to the
Littoral Airborne Sensor Hyper-
spectral (LASH) program. 

LASH is an integrated optical sen-
sor system that uses pushbroom
scanning for the detection of sub-
marines in the littoral environment.
The LASH system consists of a

FIGURE 4.  Three-color image of an ASRP
hyperspectral image.

FIGURE 5.  These figures show a high-resolution panchromatic
imager (6-inch ground sample distance [GSD]) [top], and RGB
image created from three hyperspectral bands (1-meter GSD)
[middle], and one hyperspectral algorithm detection statistic image
[bottom] for two different targets hidden along tree lines in shadow.



Hyperspectral Imaging for Intelligence, Surveillance, and Reconnaissance 111

passive hyperspectral imager (HSI) assembly, an image processor, a data
storage (archival) unit, a data display unit for operator use that incorpo-
rates the system monitoring, and control functions. The system is inte-
grated into a modified ALE-43 (chaff cutter and dispenser pod) and
mounted on a standard pylon at wing station 12 (Figure 6). All principal
elements of the LASH system are contained within the pod. The units
installed within the aircraft itself are limited to the system display proces-
sor, the power interface to the aircraft, the operator controls, and a global
positioning system (GPS) antenna. This design was established to provide
a system that could be considered independent of the individual aircraft
tail number. It is estimated that all of the internal aircraft mounted units
could be installed in less than 2 hours if necessary. 

The passive and stabilized hyperspectral sensor collects both spatial (770
pixels) and spectral data (up to 288 pixels) on each instantaneous image
increment. The data are binned by 2 spatially and 6 spectrally to give 385
spatial and 48 spectral channels. This imaged data is framed at 50 Hz,
with each frame covering a 40-degree lateral field of view and approxi-
mately a 0.06-degree (1 milli-radian) field of view in the direction of
flight. The data are simultaneously recorded in the archival storage sys-
tem, processed by the image processor, and presented in a pseudo-color
waterfall display to the operator. The processing system evaluates the
data sensed in near real time using both spectral and spatial processing,
and it provides a "frozen" display of the target along with its position in
longitude and latitude. A stabilization system automatically adjusts the
sensor so that it compensates for aircraft roll, pitch, and yaw. A "point to
track" option forces the stabilization system to point the sensor along a
predetermined track (otherwise the sensor points directly down). 

These sensors can perform a wide range of ocean sensing tasks. Targets
range from submarines and sea mines for military applications, to chlorophyll
and sediment load in physical oceanographic applications, to schools of
dolphins and whales in marine biology applications. Figure 7 demon-
strates the ability of the sensor to image a pod of humpback whales. In
these applications and others, a common goal is to detect an extremely
low-contrast target in a high-clutter background.

Ocean Environmental Measurements
Hyperspectral systems such as LASH are being developed that use spec-
tral and spatial processing algorithms to discern objects and organisms
below the sea surface. The performance of such systems depends on envi-
ronmental and optical properties of the sea. An instrument suite, the
Portable Profiling Oceanographic Instrument System (PorPOIS), was
developed to ascertain and quantify these environmental and hydro-optic
conditions. Profiling of the downwelling irradiance leads to a value of the
diffuse attenuation coefficient, kd, for the water column. Measurements
of the beam absorption, a, and attenuation, c, provide information about
the non-pure water absorption and scattering characteristics of the water.
Measurement of the backscatter at different wavelengths determines what
fraction of the downwelling photons is scattered back toward space.
These and a number of other measurements made by PorPOIS allow for
a thorough characterization of the water body. These data are used in the
LASH program to optimize parameters of the processing algorithms and
to predict the performance of the sensor by using modeling software that
requires these oceanographic data as inputs. 

FIGURE 6.  LASH pushbroom hyper-
spectral imager mounted on the wing of
a P3 aircraft.

FIGURE 7.  A pod of humpback whales
imaged using the AAHIS sensor,
a precursor to LASH.
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The PorPOIS system is deployed on two submersible cages and a surface
data-gathering station. The instruments are controlled and the data col-
lected on a laptop computer running a Windows-based control and data
acquisition software package, the Sensor Interface Display (SID), developed
at SSC San Diego. The instruments (Figure 8) used to measure surface
conditions and ship location include a wind transducer (anemometer),
a magnetic compass, a surface irradiometer, and a GPS receiver. There are
currently seven instruments used to measure optical and environmental
conditions below the sea surface. These instruments include a down-
welling and upwelling irradiometer (Biospherical Instruments PER600
and PER700), an upwelling radiometer (PER600), a transmissometer
(Seatech), an absorption and attenuation meter (WETLabs ac-9), a
conductivity-temperature-depth (CTD) (SeaBird Electronics SBE-19), a
fluorometer (WETStar), and a backscattering meter (HobiScat-6). The
devices are bundled in a single beehive-type stainless-steel profiling cage
as shown in Figure 9. The cage is suspended from a davit via the under-
water cable. The SeaBird SBE-32 carousel water sampler (Figure 10)
holds twelve 2.5-liter bottles and the SBE-19 CTD. It uses the same
underwater cable as the profiling cage. Deployment of the cage is nearly
identical to that of the instrument cage. A deck unit mounted in the con-
trol rack translates the CTD information from the carousel and transfers
the data to SID. This allows the user to capture water samples from target
depths by monitoring the position of the carousel as it travels through
the water column. New instruments can be added to the configuration as
required.

Sample PorPOIS products are shown in Figures 11 and 12. Figure 11
shows downwelling irradiance at 490 nm measured off San Clemente
Island, CA. These data are used to determine the rate of attenuation of
irradiance at 490 nm, k490, as shown in Figure 12. Optical depth, 1/kλ,
is defined as the depth at which surface irradiance of wavelength λ
diminishes by 1/e. System performance is parameterized in terms of
optical depth.

SSC San Diego ILIR and ONR-sponsored
Research on Hyperspectral Algorithms
Pre-processing transforms are a common initial step in the processing of
hyperspectral imagery that is performed in order to determine spectra of
the fundamental constituents of the scene or for data compression. The
principal component transform is based on minimizing loss in mean-
square error, and the vector quantization (VQ) transform is based on
minimizing the worst-case angle error between a datum and its projection
onto a subspace. These transforms may have unintended consequences on
the signal-to-noise ratio (SNR) of a target of interest. We have evaluated
the loss in SNR that may result from applying a linear transform and
developed several new transforms that use different knowledge of the sig-
nals of interest to reduce the loss in SNR in comparison with commonly
applied transforms. Figures 13 and 14 illustrate the detectability of an under-
water target in data that has been transformed using vector quantization 
and one of the newly defined transforms, whitened vector quantization
(WVQ), that uses no signal information. Clearly, the WVQ algorithm can
reduce the dimension of the data and preserve the target SNR for these

FIGURE 9.  Submersible cage containing
instruments used to measure ocean
optical properties.

FIGURE 8.  The Biospherical Instruments
PRR-610 surface irradiometer, the
NEXUS wind transducer, and the
NEXUS magnetic compass are used
to measure surface conditions.

FIGURE 10.  Submersible cage containing
a CTD and water collection bottles used
to measure absorption and scattering as
a function of depth.
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FIGURE 12.  Rate of attenuation of downwelling irradiance at 490 nm
derived from PorPOIS measurements of downwelling irradiance.
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FIGURE 11.  Plot of downwelling irradiance at 490 nm as a function
of depth as measured using PorPOIS in waters off San Clemente
Island, CA.

data. The transformed data are processed here
with the Reed-Xioali (RX) quadratic anomaly
detector. The enhanced discrimination of the
target at lower dimension using the WVQ
algorithm arises from the fact that the per-
formance of quadratic detectors improves
for a given SNR if the dimension is reduced. 

Linear unmixing and image segmentation are common means of analyz-
ing hyperspectral imagery. Linear unmixing models the observed spectra
as

d d
yij = � ak

ijek , such that � ak
ij ≤ 1 and 0 ≤ ak

ij ≤ 1.
k=1 k=1

The spectral vectors, ek are known as endmembers, and ak
ij is the abun-

dance of the kth material at pixel (i,j). There are several means available
for estimating the endmembers. The abundances are usually estimated by
solving the constrained least-squares problem. 

Image segmentation typically models the observation vector as arising
from one of several classes, such that each class has a multi-variate normal
distribution. The number of classes, d, is selected and the mean and
covariance of the classes {(
�k, Σk) | 1 ≤ k ≤ d} are estimated from the
hyperspectral data. The expectation maximization and the stochastic
expectation maximization algorithm are two methods of estimating these
parameters. Given the parameters and the probability of each class, the
data may be classified by assigning yij to the class that, conditioned on
the observation, is most likely. This computation is carried out using
Bayes Law. 
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We have generalized the linear unmixing and image segmentation
approaches in the development of the stochastic compositional model.
We assume an A×B image of multivariate date: yij �Rn, 1 ≤ i ≤ A, 1 ≤ j ≤ B.
The stochastic compositional approach models each observation vector as
a constrained linear combination of normally distributed random variables.
Let d be the number of classes, and let N(
k, Σk), 1 ≤ k ≤ d denote the
normal distribution with mean 
k and covariance Σk then

d d
yij = � aij xij such that xij ~ N(
k, Σk), 0 ≤ aij ≤ 1, and � aij = 1. (1)

k=1  k   k k k k=1  k

To account for scalar variation in the illumination, we also consider the
model that uses an inequality constraint:

d d
yij = � aij xij such that xij ~ N(
k, Σk), 0 ≤ aij ≤ 1, and � aij ≤ 1. (2)

k=1  k   k k k k=1  k

For given parameters (
k, Σk), 1 ≤ k ≤ d, and given abundances
d

� =(a1,…,ad), let (dropping the pixel indices) 
(�) = � ak 
k, and
d k=1 

Σ(�) = � ak
2Σk. Then, yij ~ N(
(�),Σ(�)). Maximum likelihood abundance

k=1

estimates are thus obtained by solving

^ 1                 -1
�ij = arg(max(––––––––––––––exp�––(yij–
(�))Σ(�)-1(yij–
(�))�. (3)

|Σ(�)|0.5 (2�)
n/2 2

FIGURE 13.  The RX algorithm applied to VQ-transformed 48-band
hyperspectral imagery transformed to 48, 36, 20, 12, 9, and 7
dimensions (A through F, respectively).
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FIGURE 14.  The RX algorithm applied to WVQ-transformed 48-band 
hyperspectral imagery transformed to 48, 36, 24, 8, 4, and 2
dimensions (A through F, respectively).
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Let X = (x1,…,xd); the maximum likelihood estimates of the decomposi-
tion of the observation into contributions, xk from the classes is obtained
by solving 

^
X = arg(max(p(X | y,�,
k,Σk)))

d
1                   -1=arg� max�
 –––––––––––––exp�––(xk - 
k)�Σk

-1(xk - 
k)���
k=1 (2�)

n/2 |Σk |1/2          2

d
such that y = � akxk .                                                                 (4)

k=1

The stochastic compositional model and deterministic linear unmixing
have been compared by using simulated hyperspectral imagery. Class sta-
tistics were estimated from hyperspectral imagery by using the stochastic
expectation maximization algorithm. Using these parameters, a set of
simulated hyperspectral imagery was generated so that the mixing pro-
portions of the classes were known. The test data were then unmixed by
using both deterministic unmixing (with the class means as endmembers)
and by stochastic compositional modeling, such that the class parameters
were estimated using the expectation maximization algorithm. Figure 15
compares the error in the abundance estimates of one of the classes using
the two methods. In this example, the stochastic compositional model
reduces the abundance estimation error by a factor of two to three. Work
is ongoing to compare the performance of detection algorithms emanat-
ing from the segmentation, linear unmixing, and stochastic compositional
models. 
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FIGURE 15.  A comparison of the absolute error in the abundance
estimate using linear unmixing and stochastic compositional
modeling.
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SUMMARY
SSC San Diego has been involved in many aspects of hyperspectral
imaging. We are making important contributions in the areas of real-time
processing implementations, system design for a variety of missions,
environmental characterization, and the development of new models and
methods. SSC San Diego is continuing to work across the Department of
Defense (DoD)/Intelligence communities to bring mature hyperspectral
technologies to the warfighter, making this unique source of critical
information more widely available and user friendly.
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ABSTRACT
The SSC San Diego Advanced
Technology Branch and the Jet
Propulsion Laboratory have been
developing a novel technology
that can be applied to multiband
imaging. The surface plasmon
tunable filter (SPTF) uses color-
selective absorption by a surface
plasmon at a metal-dielectric
interface to achieve its optical
selectivity. If an electro-optic
material is used as the dielectric
and a voltage is applied to change
the surface plasmon resonance, the
reflected light can be modulated,
i.e., the photons at surface
plasmon resonance will be
absorbed and the photons out of
the resonance will be totally
reflected. Therefore, the applied
voltage controls the reflection
spectrum, and an electrically
tunable color filter is formed.
This paper details progress in
developing SPTF technology as
a replacement for discrete filters.
This technology will allow multi-
band or hyperspectral imaging
with a single filter/camera
system. 

Surface Plasmon Tunable Filter for Multiband
Spectral Imaging
Stephen D. Russell, Randy L. Shimabukuro, 
Ayax D. Ramirez, and Michael G. Lovern
SSC San Diego

Yu Wang
Jet Propulsion Laboratory

BACKGROUND
An important aspect of theater missile defense is the multiband spectral
characterization of plume radiation during the boost phase of a missile.
Current Ballistic Missile Defense Organization (BMDO) plans call for
study of the utility of a dual-mode ultraviolet (UV) and mid-wave
infrared (MWIR) seeker. Combining the conventional MWIR sensor with
shorter wavelengths provides increased information content for the image
and can aid in optical target characterization. However, even dual-mode
seekers have potential problems. Onboard optical seekers are subject to
some vehicle self-interference. Sources of optical interference include out-
gassing of vehicle contaminants, and by-products of the vehicle plume
and attitude control systems, especially if solid aluminized propellants are
used. Carbon particles are commonly present in the exhaust plume of
kerosene liquid-oxygen (LOX) motors used by Atlas-type rockets. Once
formed, carbon may contribute a continuum-like feature to the optical
radiation of a rocket exhaust plume, especially in the near-UV [1]. A
carbon monoxide–oxygen chemiluminescence mechanism may also be a
source of radiation for the Atlas propellant because carbon dioxide is a
large plume exhaust species and atomic oxygen is formed in the shear
layer of the plume where the ambient oxygen molecules are dissociated
[2]. Such optical interference effects lead to an increased background
radiation level for the seeker in all spectral bands, but are most problem-
atical in the infrared. Sensor confusion may also be caused by deliberate
countermeasures. Therefore, multi-spectral imaging is important for
ground-based imagery for optical signature characterization and onboard
seekers.

One approach for multi-spectral imaging uses an imaging spectrometer
that acquires images in many contiguous spectral bands simultaneously
over a given spectral range. By adding wavelength to the image as a third
dimension, the spectrum of any pixel in the scene can be calculated.
These images can be used to obtain the spectrum for each image pixel,
which can identify components in the target. The most common method
of image spectroscopy is changing fixed dichroic filters. Existing systems
suffer from large size and weight and operate slowly (approximately a
millisecond). Several tunable filters have been proposed, but they all have
severe problems. For example, the acousto-optic tunable filter is power-
hungry (in kilowatts), while the liquid crystal tunable filter is slow
(approximately tens of milliseconds for nematic liquid crystals) and has
low efficiency.
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The Advanced Technology Branch at SSC San Diego and the Jet
Propulsion Laboratory (JPL) have been developing a novel technology
that can be applied to BMDO's needs for multi-spectral imaging. The
surface plasmon tunable filter (SPTF) described in this paper uses color-
selective absorption by a surface plasmon at a metal-dielectric interface to
achieve its optical selectivity. If an electro-optic (EO) material is used, an
applied voltage can control the resonant frequency of the surface plas-
mon, and an electrically tunable color filter is formed [3, 4, 5, and 6]. The
technology may replace discrete filters and allow for multi-spectral or
hyperspectral imaging with a single filter/camera system. This feature is
particularly important if minimal payload weight and volume is desired
for imager or seeker systems on rockets or missiles.

SURFACE PLASMON TUNABLE FILTER
The surface plasmon (SP) has been studied since the
1960s. It is a collective oscillation in electron density
at the interface of a metal and a dielectric [7]. At SP
resonance, the reflected light vanishes. This resonance
is attenuated total reflection and depends on the
dielectric constants of the metal and the dielectric. If
an EO material is used as the dielectric and a voltage
is applied to change the SP resonance condition, the
reflected light can be modulated [8 and 9]. Using this
principle, an SP spatial laser light modulator with a
contrast ratio greater than 100 has been reported [10].
If we consider the SP light modulator in frequency
space, the photons at the SP resonance frequency will
be absorbed by the free electrons in the metal, and
the photons away from the SP resonance will be
totally reflected. If a voltage is applied to the EO
material, the resonance frequency will change, and a
tunable filter is formed. The SP tunable notch filter
was invented based on this voltage-induced color-
selective absorption [11 and 12]. Figure 1 schematically
shows a reflective-mode SPTF.

The structure of the SPTF in Figure 1 shows white
light incident on the metal-EO interface using a high-
index prism (SF57 glass) for coupling. The color of
the reflected light is determined by the SP resonance
that is a function of the dielectric properties of the
materials. Using a thin (55-nm) layer of silver and a
liquid crystal (Merck E49) as the EO material, a nar-
rowband SP resonance is obtained (Figure 2). Note
that as the applied voltage is increased from 0 to 30 V,
the SP absorption shifts from red to violet. 

Figure 3 shows a symmetric geometry of
metal/EO/metal used to form a transmissive filter.
Two high-index glass prisms are used for the coupling
with a thin metal film evaporated on each prism, and
an EO material sandwiched between the two prisms.
The thickness of EO material layer is less than 1
wavelength. When an SP wave is excited on one side
of the metal/EO material interface by the incident
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photons, the energy of the resonance photons convert
into the motion of free electrons of the metal film.
The optical field penetrates the thin EO layer and
excites another SP wave with the same frequency at
the other EO/metal interface because of the symmetric
structure. The resonance photons will then re-radiate
out as transmitted light. When a voltage is applied
to the EO material, the index of the EO material
changes, leading to a change of the SP resonance fre-
quency and the transmission spectrum. Theoretical
calculation shows that for two silver films separated
by a 150-nm EO material layer (Merck E49), a change
in the index of the EO layer from 1.5 to 2.0 leads to
transmission peak shifts from 450 to 650 nm. 

Varying the thickness of the dielectric layer between
the two metal films can also change the coupling
mechanics. Using a symmetric geometry similar to
what was used in Figure 3, a SPTF can be constructed
using a changeable air gap to select the spectrum.
Figure 4 shows the theoretical calculation of reflectivity vs. wavelength of
the Air Gap SPTF and its effective tuning ability. Using silver as the
metal films, when the thickness of the air gap changes from 300 to 5000
nm, the peak transmission shifts from 400 to 1600 nm. Though the struc-
ture of the Air Gap SPTF is schematically similar to the Fabry-Perot fil-
ter, the physics is totally different. The photons are incident at an angle
greater than the critical angle,
and two metal films must be
used to generate the SP reso-
nance. Furthermore, the tunable
range runs from 400 to 1600 nm
and is not limited by 2X as the
Fabry-Perot filter requires. The
SPTF can also be configured to
operate based on angle of inci-
dence [13]. 

FUTURE ADVANCES
A major advantage of SPFT technology is the ability to integrate it with
various optical sensors and detectors. These products include state-of-
the-art miniature photo-multiplier tubes available commercially (e.g.,
Hamamatsu R5600), microelectronic photo-multipliers [14 and 15], and
solid-state detectors such as charge-coupled devices (CCDs) and active
pixel sensors [16]. Compared with an acoustic-optic tunable filter and
liquid crystal tunable filter, the SPTF is lightweight, low-power, and
works in a wide temperature range. If the glass material is chosen so that
its thermal expansion matches the thermal expansion of the EO material,
this device works in a wide temperature range (-200 to +200°C. Though
liquid crystal material was used in these experiments, the liquid crystal
material can be replaced by solid-state EO materials such as potassium
di-hydrogen phosphate (KDP), potassium titanyl phosphate (KTP),
ethylene oxide (EO) polymers, organic crystals, and organic salts. If a
solid-state material is used, the SP modulator can reach very fast (less
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than 1-µs) modulation speeds. Materials optimized for near-infrared (IR)
and mid-IR can also optimize the device for specific applications. Such
devices can be used for multi-spectral and hyperspectral imaging, for
chemical analysis, and in surveillance and reconnaissance.
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ABSTRACT
An intelligence support system has
been developed using open hyper-
media architecture. This approach
integrates information from dis-
tributed disparate sources into a
knowledge base. A public inter-
face supports access by external
applications. Filtering and change
detection functions have also been
implemented. The approach has
shown promise in multiple
domains, indicating possible wide
application. This paper discusses
the principles of the hypermedia
framework for this system and
how these principles may
influence command, control,
communications, computers,
intelligence, surveillance, and
reconnaissance (C4ISR) systems
in general.

Knowledge Base Formation Using Integrated
Complex Information
Douglas S. Lange
SSC San Diego

INTRODUCTION
Command and control involves three fundamental processes that fit
together in a tight cycle. Situation analysis provides the context on which
to act. Decisions are made based on analysis results. These decisions con-
stitute planned movements, engagement orders, and many other possible
actions. Decisions must be communicated to those who are to carry out
the actions. The results of these actions are observed as part of a new sit-
uation analysis.

As command, control, communications, computers, intelligence, surveil-
lance, and reconnaissance (C4ISR) systems have evolved, system integra-
tion has been the general theme. Stand-alone systems, each with its own
database, were first interfaced to allow some data transfer. Data manage-
ment schemes provide some consistency among databases and operational
units. System federation gradually allowed multiple applications to run
on users' workstations, preventing the need for specialized hardware and
support software for large numbers of individual systems. The current
state of system integration not only allows multiple applications to share
hardware, operating system, and network platforms, but also uses a lay-
ered service architecture that eliminates redundancy of some capabilities. 

The evolution of system integration has broadened the stovepipes that
were so narrow in previous system generations. The resulting view is of a
few broad systems made up of many small applications, any of which
may be accessible through the user's workstation. Some applications
work on common data managed through centralized services. Many data
categories still form separate stovepipes since they are maintained in
separate data repositories because of their differing technical natures and
programmatic backgrounds. Users must associate the tactical situation
shown in one application with the results of a logistical query conducted
through another application.

Information Complexity
The focus on systems integration ignores the true goal in decision sup-
port. Information is of ultimate value to the decision-makers. Integrating
the information is the next step. Unlike data-warehousing applications,
military information is not just collecting and crunching sales and inven-
tory figures from various branch offices. The military environment is
complex. The variety of concepts, events, and situations that can be
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described subjectively or measured and reported objectively is probably
limitless. No ontological study can a priori determine all of the possible
data types needed to describe the military environment. Therefore,
bringing all data into a relational or object database will not completely
accomplish information integration.

Pattern of Analysis
In researching the requirements for an intelligence support system for the
U.S. Defense Intelligence Agency (DIA), a pattern of analysis was uncov-
ered that was common to those used in some other domains. The primary
feature of this pattern is that an analyst's role is to create associations
among existing data. Analysts rarely create data, but search, filter, and
review all available information. As they do, they form networks of related
information [1].

DIA intelligence analysts spend some of their time building up a private
model of their area of expertise. They spend the rest of their time
responding to queries from DIA's various customers. The responses are
typically linear essays. Analysts also periodically produce background
reports on particular matters of interest. These reports also take a strictly
linear, book-like form, even when delivered over a computer network.

Analysis of the current approach yielded the following problems:
· Products were static or updated using a paper publishing schedule.
· Customers with local information have no mechanism to share it with 

others.
· Only a particular question was answered, even if it was not the correct 

question.
· Analyst turnover causes a large loss of knowledge.

As a result of these insights, work was initiated to find a way of record-
ing the knowledge built by the intelligence analyst and communicating
this knowledge to intelligence consumers. The goal was to move away
from the linear essay to a more collaborative communications method.
This method would allow for continuous update of the knowledge jointly
held between the intelligence agency and its customers.

Recording Decisions
Decisions also take the form of associations among data or information
elements. A classic example may be the order for a surface combatant to
engage a hostile aircraft. The decision-maker did not create the aircraft or
the positional and attribute data known about that aircraft. Likewise, the
decision-maker did not generate the information related to the surface
combatant. The value added by the decision-maker is that an engagement
relationship (perhaps with other amplifying information) should exist
between the two.

As the data on the two combatants changes, the association must be
reviewed, but is not necessarily invalidated. Likewise, a reversal of the
decision changes the relationship among the combatants, but does not
change any individual data. This fundamental distinction between the
structural representation of the associations among concepts or real-
world objects and the content that describes them is common between
the knowledge created by analysts and decision-makers.
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HYPERMEDIA ARCHITECTURES
Hypermedia systems automate the management of information that is
structured as described previously. Such systems provide the capability to
work with a wide variety of data, while using the powerful information
available through the structures created by the connections made among
the various data items [2]. Hypermedia accurately records information,
but its non-linearity allows the reader to access information in ways that
the author did not necessarily expect. Users of analysis results can make
new discoveries from the same body of data [3]. Likewise, distribution of
responsibilities in a large command and control environment is aided by
ensuring that not all uses of the data must be preconceived, though accu-
rate representation of constraints is essential.

The basic features of most hypermedia systems are as follows:
· Node. A node is an object that represents a document or some other 

media element. 
· Link. Links create relationships among nodes. 
· Anchor. Anchors connect nodes to the actual media that make up their 

content.

Open Hypermedia
From 1987 to 1991, researchers noted that the hypermedia systems did
not support the needs of collaborative work groups and could not be
integrated into computing environments used in large enterprises [4 and
5]. Requirements were found for hypermedia systems that were not
addressed. These requirements included the following:
· Interoperability to access and link information across arbitrary

platforms, applications, and data sources.
· Link and node attributes to record the author of a link, what the per-

missions are for the particular link or node, and other management 
information.

· Anchors that allow attachment to the exact data desired.
· Link types to provide more information about the meaning of a

particular link and what functions the link is intended to support.
· Public and private links to support collaborative environments.
· Templates for automating routine analysis tasks.
· Navigational aids that can act as filters and supply powerful querying 

mechanisms.
· Configuration control so that information important to the analysis 

effort can be developed and managed in hypertext.
To address these requirements, open hypermedia systems evolved. Open
hypermedia systems have been defined as those that exhibit the following
characteristics [6]:
· A system that does not impose any markup on the data. By marking up

data to create hyperlinks, the data are changed, making the data inac-
cessible to systems that cannot handle the markup.

· A system that can be integrated with any tool that runs under the host 
operating system. This can be extended to mean a system that can be 
integrated with distributed object environments.

· A system in which data and processes may be distributed across a
network and hardware platforms.
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· A system in which there is no artificial distinction between readers and 
authors. This requirement is quite important for systems supporting 
analysis.

· A system to which new functionality can be easily added.
Since analysts and decision-makers are simultaneously readers and
authors of node contents and links, these characteristics are vital in an
information support environment. Likewise, the ability to link objects
without changing them is critical. The information linked together by the
analysts may be coming from other applications and databases integrated
with the hypermedia system. These applications will not understand
changes imposed on the data to support linking. The links must be sepa-
rated from the content. This separation is the basic premise of an open
hypermedia system. It has been demonstrated in
many research systems [7].

The prototypical open hypermedia system is struc-
tured as shown in Figure 1.

Graph-Based Hypermedia
Several other hypermedia system types contribute
capabilities necessary to support analysis functions.
Chief among these is graph-based hypermedia.
Graph-based hypermedia are based on set and graph
theory, providing mathematically defined filter,
search, and navigation methods. This category of
hypermedia also includes human–computer interac-
tion methods featuring graphical depictions of the
hypermedia.

The idea of a schema made of node and link types
provides the basis for much of this method's power
[8]. The relationships among schema types and
between schema entries and the instances created in
the hypermedia closely mirror the relationships in
object-oriented design.

One result of the typing found in graph-based hypermedia systems is
that the resulting hypermedia forms a semantic network. Semantic net-
works are used to model concepts and real-world situations, making
them a natural tool for modeling a tactical situation or the results of
intelligence analysis.

Another result is that sophisticated filtering mechanisms can be defined.
Graph-based hypermedia provide the concept of a perspective. A per-
spective contains three elements. The first element is the perspective pat-
tern. A perspective pattern is a hypergraph that is a subset of the schema
hypergraph. The second element is a filter, which is a constraint on the
instance set. The filter may constrain either through the node and link
attributes, or the content attached through the anchors. Finally, a subset
of the instance set satisfies both of the constraints. 

HYPEROBJECT PROCESSING SYSTEM
The design of the HyperObject Processing System (HOPS) inherits fea-
tures from both open hypermedia systems and graph-based hypermedia
systems. Some modification to the established research architectures was

FIGURE 1.  Open hypermedia architecture [9].
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required to support analysis of the kind performed
by DIA. These same modifications would appear to
be important for related C4ISR systems.

General Architecture
HOPS follows the open hypermedia form with the
architecture shown in Figure 2.

In this figure, circles labeled "RT" represent runtime
applications supporting a user directly or automated
processing. "HOMIS" (HyperObject Multimedia
Information Systems) are modified multimedia infor-
mation systems [8] that can handle hypergraphs
rather than simple graphs [10]. HOMIS function as
structure servers, as called for in generic open hyper-
media systems; however, they provide graph-based
hypermedia functions. Each HOMIS has a schema
and instance set. Perspectives ("P" in Figure 2) and
filters can be defined, and graph-based navigation
interactions are possible. "ORB" represents an object
request broker, in our case, supporting Java Remote Method Invocation.
Object request brokers allow the system to be distributed over multiple
platforms.

Unique Hypermedia Features
Most hypermedia systems found in research literature work with infor-
mation spaces constrained by either the level of diversity and quantity of
the information, or by restrictions on the structure of information, or by
limited change of the underlying data. Several aspects of HOPS are
unique among hypermedia systems. The features are necessary to allow
HOPS to handle the dynamic unbounded nature of military information
integration.

Multiple Anchors
The middle layer of HOPS holds the semantic network. Classical hyper-
media systems use a node to represent a piece of media and anchor to a
single media element to provide content. A semantic network forms that
describes the relationships among media elements rather than the tactical
situation. To remedy this problem, HOPS uses multiple anchors per
atomic node. Use of multiple anchors allows the nodes to define concepts
or real-world objects and allows the links to represent relationships
among them rather than relationships among the content elements.

Large Open-Ended Schema
Schemas imply an ability to predict all the types of information to be
used and the entire range of associations that will exist among the ele-
ments. In some domains this is possible, but not in the military informa-
tion domain [1]. An example can be demonstrated in terms of exercise
plans. During Tandem Thrust 97, one of the primary requirements con-
cerned protecting the Great Barrier Reef. Environmental mitigation
strategies and environmental reports are not typically found in the com-
mand and control systems of our armed forces. There will always be
unpredicted situations in warfare and military exercises. Information sys-
tems must adapt on the fly to allow analysts and decision-makers to see
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FIGURE 2.  HyperObject Processing System.
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and interpret information and record and inform regarding decisions. The
HOPS design allows users to include information not accounted for in
the schema through the object-oriented method of deriving all nodes and
links from common ancestors. This allows users to bypass rules in the
schema and connect nodes and links in ways not previously predicted.
The user or an administrator can then update the schema on the fly to
allow autonomous tools to process the information more easily.

Analysis schemas and instance sets can become quite large. The problems
modeled are quite complex. The size of the schema represents the com-
plexity of the model while the size of the instance set represents the
quantity of information. Consumers of the analysis model must filter
both in terms of the complexity and in terms of the size of the knowledge
base that they work with to avoid being overwhelmed. HOPS allows this
capability through adaptations of the graph-based hypermedia concepts
of perspective patterns and filters [10]. Perspective patterns allow the user
to limit the kinds of information being worked with, while filters focus
attention on information with particular content.

Link and Anchor Integrity
When important decisions are being made based on the information pre-
sented, error is less tolerable than in our daily workings with the World
Wide Web. Anchored content must not disappear unexpectedly.
Likewise, if content changes, the model must be re-evaluated to deter-
mine if it is still valid. The typed links of the storage layer must also be
carefully managed to prevent dangling links. HOPS accomplishes these
goals by caching anchored content and providing periodic checks using
an autonomous change detection agent. Agents used for this purpose can
use whatever rules suit the application.

Link Equality
Although hypermedia relies on associations between elements for its
character, many interaction techniques found in research literature still
focus on the content (e.g., string matching filters and searches, searches
on images). Links are primarily used for navigation. This may be because,
in many applications, links are addresses used to point to more informa-
tion, or typed paths to get to related nodes. Since the primary value
added by intelligence analysts and decision-makers is found in associa-
tions among elements, authors and readers of the products will want the
ability to interact with typed links in ways other than simply using them
for navigation. They themselves provide critical information. HOPS han-
dles this by making links special types of nodes, allowing all the mathe-
matics of filtering, searching, and browsing to work on links. [10].

Framework
HOPS itself is not a command and control system or an analysis system.
HOPS is a hypermedia framework designed to support analysis and to
provide some generic applications for interacting with the hypermedia.
HOPS is intended to be used by adding domain-specific applications
along with an initial schema to create an analysis system of the type needed.
Such work is in support of DIA's mission.

In the Military Operations in the Built-up Areas project, HOPS was
integrated with the Lightweight Extensible Information Framework
(LEIF) to provide geographic and temporal views of the hypermedia.



DATA ACQUISITION AND EXPLOITATION128

An intelligence product creation wizard and intelligence-specific anchors
were also used. Together with the generic applications within the frame-
work, users have a variety of ways to work with the information.

PROSPECTS FOR INFORMATION INTEGRATION
Hypermedia systems hold promise for information integration. Any
number of decision-support tools can access the semantic network
formed of the associations and nodes. Decision-makers can have access to
all the information they need because the hypermedia can be made from
information elements from all available systems. While the semantic net-
work is serving higher level decision tools, the content is left untouched,
and is still accessible by those tools that interact directly with content
databases. 

Beyond executing applications from a single workstation, integrated
information could provide decision-makers with a competitive advantage.
An integration method that brings the information into a semantic net-
work can allow meaningful access to human beings and autonomous
agents. The goal of command and control systems should be to integrate
information rather than just the applications. Architecture such as that
used for HOPS, centered on the structure of information, can accomplish
this goal. Military plans, tactical situations, and their interaction can be
described using hypermedia-induced semantic networks.
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ABSTRACT
A 64 x 128 real-time infrared
(RTIR) complementary metal-
oxide semiconductor (CMOS)/
silicon-on-insulator (SOI) scene
generation integrated circuit (IC)
is described. The RTIR IC offers
real-time dynamic thermal scene
generation. This system is a
mixed-mode design, with analog
scene information written and
stored into a thermal pixel array.
The design uses micro-electro-
mechanical sensors (MEMS) in
conjunction with SSC San Diego�s
0.8-µm CMOS/SOI process to
develop a RTIR IC scene
generator.

A Real-Time Infrared Scene Simulator in
CMOS/SOI MEMS
Jeremy D. Popp, Bruce Offord, and Richard Bates
SSC San Diego

H. Ronald Marlin and Chris Hutchens
Titan Systems Corporation

Derek Huang
Advanced Analog VLSI Design Center

FIGURE 1.  Pixel schematic: the drive
transistor is a BTS device; the access
transistor is an HGATE device.
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INTRODUCTION
The objective of the real-time infrared (RTIR) project is to develop a reli-
able prototype infrared (IR) test set for use in calibration and testing of
IR systems, including built-in-test to ensure the real-time reliability of IR
sensing systems. The potential of RTIR as built-in-test equipment (BITE)
is to improve the reliability of IR sensors, thus lowering the overall sys-
tem cost of operation. Infrared scene simulators that use bulk comple-
mentary metal-oxide semiconductor (CMOS)/micro-electromechanical
systems (MEMS) have been reported previously [1]; however, this work
uses silicon-on-insulator (SOI) as the starting material. The MEMS area
is scaled down to create higher density pixel arrays, with low leakage at
higher temperatures.

DESIGN
The integrated circuit (IC) consists of a data input block, address write
control, and pixel-specific electronics including a microheater suspended
over a micromachined cavity in the silicon substrate. The display IC con-
sists of an array of 64 x 128 thermally isolated, resistive emitters. The
thermal pixel array (TPA) elements have response times less than a mil-
lisecond, making them suitable for real-time scene simulation. The pixel
cell contains a resistive heater element (or infrared emitter), a storage
capacitor, pixel drive transistors, and switches (Figure 1). The user digitally
specifies a specific row and column and then writes a pixel voltage to the
desired cell via the analog multiplexer (MUX). The infrared pixel array
IC is designed for use with a computer or an electronic controller to
service or update the real-time images. The computer sends gray-scale
scene data to the pixel array in the form of voltages, which the TPA
displays as a gray-scale image. The computer controls digital row and
column address lines and writes the analog inputs via a digital-to-analog
converter (DAC) to the RTIR IC. The voltage magnitude reflects the
desired IR intensity of the pixel element, thereby achieving the gray-scale
levels. After writing to the pixel, the desired voltage is stored dynamically
by Chold, producing the desired IR pixel intensity while the remaining
pixels are updated. The pixel electronics of the array are designed to
exploit the low leakage properties of SOI during high-temperature opera-
tion. Voltage droop is the greatest problem affecting pixel dynamic range
and accuracy. Droop is primarily a result of the leakage currents through
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the pn junctions of the sampling switch and secondarily a result of
excessive channel leakage. As an option to further reduce droop, the
designer can place a compensation pn junction by using half a negative-
channel metal-oxide semiconductor (NMOS) transistor at the hold capac-
itor node.

FABRICATION
CMOS/MEMS technology is used as a technique to thermally isolate the
infrared emitter microstructures from the substrate after the CMOS pro-
cessing is completed. SSC San Diego's 0.8-µm CMOS partially depleted
SOI process was selected to fabricate the array of electronically address-
able 20 x 20 micron emitter elements (Figure 2). The process is a single
poly, double metal, salicided process with a high-value resistor option of
up to 1 Kohm/square. This allows modest density arrays, and, together
with the high-value silicon resistor available in the 0.8-µm process,
provides lower pixel current operation. The micromachined cavity is
constructed by using a silicon etchant that undercuts
the desired pattern in the silicon substrate, while
leaving it electrically connected to create a suspended
structure/microheater (Figure 3). This pattern is created
by patterning and plasma etching silicon dioxide after
the CMOS passivation, thereby exposing the sub-
strate silicon of the CMOS chip. The exposed silicon
is then exposed to a tetra-methyl ammonium hydroxide
(TMAH) solution, an aniso-tropic silicon etchant.
The TMAH etchant was chosen because, with the
addition of silicic acid, it does not attack the exposed
aluminum bonding pads [2].

RESULTS
The thermally isolated resistor emitter has been char-
acterized using a calibrated blackbody and adjusting
for fill factor using a method described in [3]. The
temperature of the emitter as a function of voltage
across the resistor is plotted in Figure 4, together with
the current through the resistor. A maximum temper-
ature of 262ºC is achieved at a voltage of 8.25 V and a
current of 0.85 mA.

SUMMARY
A 64 x 128 scene generator RTIR IC architecture has
been described with each key component discussed.
A MEMS device, the TPA, is produced using CMOS/
SOI technology with post CMOS process etching.
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FIGURE 2.  The heater element and pixel
electronics layout.

FIGURE 3.  Scanning electron microscopy (SEM) of a cross-sectioned
sample of suspended microheaters.

FIGURE 4.  Pixel thermal response to applied voltage across resistor.
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