
70

ABSTRACT
We define Knowledge
Amplification by Structured
Expert Randomization (KASER).
A KASER can automatically
acquire a virtual rule space
exponentially larger than the
actual rule space and with an
exponentially decreasing nonzero
likelihood of error. The KASER
cracks the knowledge acquisition
bottleneck in intelligent systems
by amplifying user-supplied
knowledge. This enables the
construction of an intelligent
system, which is creative, fail-
soft, learns over a network, and
otherwise has enormous potential
for automated decision-making.

On Knowledge Amplification by Structured
Expert Randomization (KASER)
Stuart H. Rubin
SSC San Diego

FIGURE 1. The comparative costs of
knowledge acquisition.

VIRTUAL RULE SPACE

REAL RULE SPACE

CONVENTIONAL

COST

KN
OW

LE
DG

E

BREAK-EVEN
KASERS

INTRODUCTION TO RANDOMIZATION
The theory of randomization was first published by Chaitin and
Kolmogorov [1] in 1975. Their work may be seen as a consequence of
Gödel's Incompleteness Theorem [2] in that it shows were it not for
essential incompleteness, a universal knowledge base could, in principle,
be constructed––one that need employ no search other than referential
search. Lin and Vitter [3] proved that learning must be domain-specific to
be tractable. The fundamental need for domain-specific knowledge is in
keeping with Rubin's proof of the Unsolvability of the Randomization
Problem [4]. This paper went on to introduce the concept of knowledge
amplification. Production rules are expressed in the form of situation
action pairs. Such rules, once discovered to be in error, are corrected
through acquisition. Conventionally, a new rule must be acquired for
each correction. This is linear learning.

The acknowledged key to breakthroughs in the creation of intelligent
software is cracking the knowledge acquisition bottleneck [5]. Learning
how to learn is fundamentally dependent on representing the knowledge
in the form of a society of experts. Minsky's seminal work here led to the
development of intelligent agent architectures [6]. Furthermore, Minsky
[7] and Rubin [4] independently provided compelling evidence that the
representational formalism itself must be included in the definition of
domain-specific learning if it is to be scalable.

A KASER is defined to be a knowledge amplifier that is based on the
principle of structured expert randomization. A Type I KASER is one
where the user supplies declarative knowledge in the form of a semantic
tree using single inheritance.

A Type II KASER can automatically induce this tree through the use of
randomization and set operations on property lists, which are acquired
by way of database query and user-interaction. An overview of a Type II
KASER is provided below. Unlike conventional intelligent systems,
KASERs are capable of accelerated learning in symmetric domains.

Figure 1 plots the knowledge acquired by an intelligent system vs. the
cost of acquisition. Conventional expert systems will generate the curve
below break-even. That is, with conventional expert systems, cost
increases with scale and is never better than linear. Compare this with
KASERs where cost decreases with scale and is always better than linear
unless the domain has no symmetries (i.e., it is random). Note that such

On Knowledge Amplification by Structured Expert Randomization (KASER) 71

domains do not exist with scale in practice. Similarly, purely symmetric
domains do not exist with scale in practice either. The more symmetric
the operational domain, the less the cost of knowledge acquisition and
the higher the curve appears in the graph. It is always the case that the
virtual rule space >> the real rule space.

INDUCING PROPERTY LISTS
We will define a production system that can automatically acquire a vir-
tual rule space that is exponentially larger than the actual rule space with
an exponentially decreasing non-zero likelihood of error. Moreover, the
generalization mechanism will not only be bounded in its error, but other
than for a straightforward user-query process, it will operate without any
a priori knowledge supplied by the user.

To begin, define a production rule (e.g., using ANSI Common LISP) to
be an ordered pair––the first member of which is a set of antecedent
predicates, and the second member of which is an ordered list of conse-
quent predicates. Predicates can be numbers (e.g., [1..2] � [10..20]) or
words [8].

Previously unknown words or phrases can be recursively defined in
terms of known ones. For example, the moves of a Queen in chess (i.e.,
unknown) can be defined in terms of the move for a Bishop (i.e., known)
union those for a Rook (i.e., known). This is a union of property lists.
Other basic set operations may likewise be used (e.g., intersection, differ-
ence, not, etc.). The use of fuzzy set operators here (e.g., "almost the
same as") pertains to computing with words [8].

In a Type I KASER, words and phrases are entered through the use of
pull-down menus. In that manner, semantically identical concepts (e.g.,
Hello and Hi) are not ascribed a distinct syntax, which would otherwise
serve to dilute the efficiency of the learning mechanism. In a Type II
KASER, distinct syntax may be equated to yield the equivalent normal-
ized semantics. To better visualize this, think of a child who may ask,
"What is a bird?" to which the reply is, "It is an animal that flies," to
which the question is, "What is an animal?" to which the reply is, "It is a
living thing," to which the question is, "What is a living thing?" to which
the reply (often) is, "Eat your soup!" (i.e., a Type I delimiter, or stop
marker gene).

Two sample rules and their representation follow.

Hydrogen 	 Oxygen 	 Spark → Steam

R1: ({Hydrogen, Oxygen, Spark} (Steam))

Hydrogen 	 Oxygen 	 Match → Steam

R2: ({Hydrogen, Oxygen, Match} (Steam))

R1 and R2 may be generalized, since the consequent predicates are identi-
cal (i.e., the right-hand sides [RHSs] are equivalent) and the antecedent
terms differ in exactly one predicate. This is termed a level-1 generaliza-
tion because it is one level removed from ground truth. In a level-i gener-
alization, i is the maximum level of generalization for any antecedent
predicate. The need for a generalization squelch arises because contexts
may be presented for which there is no matching rule in the real space.
Generalizations can be recursively defined.

DATA ACQUISITION AND EXPLOITATION72

The advocated approach captures an arbitrary rule's context––something
that cannot be accomplished through the use of property lists alone. If
veristic terms such as "Warm" are generalized to such terms as "Heat"
for example, then qualitative fuzziness will be captured.

A1: ({Heat} {Spark, Match}(X001 Explosive-Gas-Igniter))

Generalization, A1, tells us that antecedent predicate, "Heat" is more
general than either a Spark or a Match. We may also write this as Heat >
{Spark, Match}. Note that the relation ">>" is used to denote ancestral
generalizations (and vice versa). The general predicate is initially specified
as X00i, but this is replaced after interactive query with the user, where
possible. Otherwise, the next-level expansions will need to be printed for
the user to read. Also, "redundant, at-least-as-specific" rules are always
expunged.

The common property list follows the set of instances. Here, the list
informs us that a spark or a match may be generalized to Heat because
both share the property of being an Explosive-Gas-Igniter. Properties are
dynamic. They must be capable of being hierarchically represented, aug-
mented, and randomized. In addition, property lists are subject to set
operations (e.g., intersection). Properties can be acquired by way of data-
base and/or user query.

User-queries can be preprocessed by a companion veristic mining system.
Similarly, system-generated queries can be post-processed by companion
systems. Companion systems can also play a role in imparting tractability
to the inference engine.

Consequent terms, being sequences, are taken to be immutable. The idea
here is to automatically create a hierarchy of consequent definitions to
maximize the potential for rule reuse. Begin by selecting a pair of rules
having identical left-hand sides (LHSs), where possible. Consider:

R3: ({Hydrogen, Oxygen, Heat} (Steam))

R4: ({Hydrogen, Oxygen, Heat} (Light, Heat))

Next, an attempt is made to generalize the consequent sequences with the
following result.

C1: ((Energy) ((Steam) (Light Heat))(X002 Power-Source))

Here, the properties of Steam intersect those of Light and Heat to yield
the property, Power-Source. Thus, a property of Energy, in the current
context at least, is that it is a Power Source. Rules R3 and R4 are now
replaced by their valid generalization, R5:

R5: ({Hydrogen, Oxygen, Heat} (Energy))

A key concept is that further learning can serve to correct any latent
errors. In addition, notice that as the level of randomization increases on
the LHS and RHS, the potential for matching rules, and thus inducing
further generalizations, increases by way of feedback. Consequent ran-
domization brings the consequents into a normal form, which then serves
to increase the possibility of getting antecedent generalizations, since
more RHSs can be equated. Antecedent randomization is similar.

Next, consider R5, where R6 is acquired and appears as follows after sub-
stitution using C1.

R6: ({Candle, Match} (Energy))

On Knowledge Amplification by Structured Expert Randomization (KASER) 73

The system always attempts to randomize the knowledge as much as pos-
sible. Using A1 and C1 leads to the level-1 conjecture, R7, which replaces
R6.

R7: ({Candle, Heat} (Energy))

R7 is not to be generalized with R6. This is because {Match, Heat} is the
same as {Match, Spark, Match}, which of course reduces to Heat and is
already captured by R7.

At this point, learning by the system can be demonstrated. Suppose the
user asks the system what will happen if a spark is applied to a candle.
While this is a plausible method to light a candle, this method will not
usually be successful. Thus, the user must report to the system the cor-
rect consequent for this action:

R8: ({Candle, Spark} (No-Light))

R8 is a more-specific rule than is R7 because the former is a level-1 gen-
eralization, while the latter is at level-0. Thus, R8 will be preferentially
fired when possible by using a most-specific agenda mechanism. It, too,
will be subject to subsequent generalization. Notice that the new conse-
quent will protect against similar error.

The learning process has not completed. We still need to correct the
properties list so that Matches and Sparks can be differentiated in the
context of lighting a candle. The following property (i.e., LISP) list is
obtained.

P1: (Match Explosive-Gas-Igniter Wick-Lighter)

P2: (Spark Explosive-Gas-Igniter)

Now, since Heat is a superclass of Match, its property list is unioned
with the new property(s): Wick-Lighter. Suppose, at this point, the user
poses the same question, "What will happen if a spark is applied to a can-
dle?" Rule R7 informs us that it will light; whereas, R8 informs us that it
will not. Again, the inference engine can readily select the appropriate
rule to fire because of specialization. However, here there is yet more to
learn. Here is what is known: R7 and R8 differ on the LHS in exactly one
predicate and prop (Energy) ∩ prop (No - Light) = ∅ . The reason that the
candle lights for a match, but not for a spark can be delimited by com-
puting, prop (Match) - prop (Spark) = prop(P1) - prop(P2) = (Wick-
Lighter). Rule R7 is now replaced by R7':

R7': ({Candle, (X003 Wick-Lighter)} (Energy))

that is, a property list named X003 has been substituted for Heat. Notice
that X003 is necessarily a subclass of Heat. Then, anything that has (all)
the properties on the property list (i.e., X003) can presumably light a can-
dle (e.g., a torch). Observe that the human in the loop need not know
why a list of properties is relevant, since the reasons will be automatically
discovered. Notice that a Spark can no longer light a candle and only
those items having at least Wick-Lighter in their property classes can
light a candle. Observe the nonlinear learning that has been enabled here!

Consider now the rule:

R9: ({Candle, Match} (Energy))

Clearly, this rule is correct as written. Candles do indeed produce steam,
light, and heat. The usefulness of induction follows from the fact that the

DATA ACQUISITION AND EXPLOITATION74

system has no knowledge that a candle is a hydrocarbon and hydrocar-
bons produce steam as a byproduct of combustion.

Antecedent predicate generalizations can be rendered more class-specific
as necessary to correct overgeneralizations by increasing the number
of levels of available generalization. The rule consequents will not be
affected. For example:

A2: ({Car} {Ford, Fiat})

yields:

A3: ({Car} {Family-Car, Sports-Car})

A4: ({Family-Car} {Ford})

A5: ({Sports-Car} {Fiat})

Property lists can be automatically organized into a hierarchical config-
uration through the use of simple set operations. This means that rules
can be generalized or specialized through the use of the disjunctive or
conjunctive operators, respectively. Such property lists can be associatively
retrieved through the use of a grammatical randomization process [9].
Moreover, matching operations then need to incorporate searching sub-
classes and superclasses as necessary.

Finally, we note that this system can incorporate fuzzy programming
[10]. Fuzzy programming will enable the system to explore a space of
alternative contexts as delimited by optional consequent filters and
ranked by the level of generalization used to obtain a contextual match
(see below).

GRAMMATICAL RANDOMIZATION
Consider the following three property lists:

P3: (Ice A B C)

P4: (Water B C D)

P5: (Steam C E)

Here, ice, water, and steam share a common property, C, which, for
example, might be that they are all composed of H2O. Also, only ice has
property A (e.g., frozen); only water has property D (e.g., liquid); and
only steam has property E (e.g., gaseous). Observe that only ice and
water share property B (e.g., heavier-than-air).

The use of a hierarchical object-representation is fundamental to the
specification of property lists, antecedent sets, or consequent sequences.
For example, when one specifies the object, "aircraft carrier," one implic-
itly includes all of its capabilities, subsystems, and the like. One cannot
and should not have to specify each subsystem individually. We proceed
to develop a randomization for the sample property lists; although, it
should be clear that the same approach will work equally well for the
antecedent and consequent predicates. Perhaps the most relevant distinc-
tion is that one needs to distinguish object sequence dependence from
independence in the notation. Of course, property lists are sequence-
independent.

As the example stands now, to specify the properties of ice or water, one
need state the three properties of each (in any order). This may not seem

On Knowledge Amplification by Structured Expert Randomization (KASER) 75

too difficult, but this is only because the list-size is small. Consider now
the randomized version of the property lists:

P3: (Ice A Precipitation)

P4: (Water Precipitation D)

P5: (Steam C E)

P6: (Precipitation B C)

Here, the property of precipitation has been randomized from the prop-
erty data. Observe, that if the user states property B, then the system will
offer the user exactly three choices (e.g., by way of a dynamic pull-down
menu): B, Precipitation, or Random. The Random choice allows the user
to complete the specification using arbitrary objects. In other words, an
associative memory has been defined. Similarly, if the user selects
Precipitation, then the system will offer the user exactly four choices
(e.g., again by way of a dynamic pull-down menu): Precipitation, Ice,
Water, or Random.

Suppose that in keeping with the previously described nomenclature con-
ventions, we had the following property list specifications:

P3': (X004 A Precipitation)

P4': (X005 Precipitation D)

In this case, if the user selects Precipitation, then the system will offer the
user the following four choices: Precipitation, A, D, or Random. In other
words, it attempts to pattern-match and extrapolate the set.

In practice, randomization is based on known classifications––not arbi-
trary ones. Thus, in the previous example, the randomization of P3 and
P4 requires that P6 be known a priori. Again, this still allows for the use
of integer identifiers.

Next, it can be seen that the usefulness of randomization is a function of
its degree. The relevant question then pertains to how to realize the maxi-
mal degree of randomization. First, recall that as rules are generalized, the
possibilities for further predicate generalization are increased. This, in
turn, implies that the substitution and subsequent refinement of property
lists for predicates is increased. Finally, as a result, the virtual space of
properly mapped contexts (i.e., conjectures) grows at a rapid rate.
Experimental evidence to date indicates that this rate may be exponential
for symmetric domains.

Next, we turn our attention to the inference engine, which is common to
Type I and II KASERs. Basically, in a Type I KASER, conflict resolution
is accomplished through the use of a hierarchical tree of objects evolved
by a knowledge engineer, which define generalization and specialization
(see below); whereas, in a Type II KASER, conflict resolution is the same
as in a Type I KASER, but where the system, instead of the knowledge
engineer, evolves hierarchical property lists, which serve to increase the
size of the virtual contextual space––without sacrificing convergence in
the quality of the response. In effect, declarative knowledge is random-
ized to yield procedural knowledge.

ACTIVE RANDOMIZATION
Active randomization is a symbiosis of property lists and grammatical
randomization. Property lists are really just predicates that are subject to

DATA ACQUISITION AND EXPLOITATION76

grammatical randomization. Moreover, randomized predicates allow the
user to specify contexts and associated actions by using minimal effort
[9]. Next, suppose that we had:

(A B C D) (i.e., the properties of A are B, C, D)

Here, A is the randomization of B, C, D. Similarly, we may have

(B E F)

and the two rules (i.e., antecedent differentiation):

R10: A S → W

R11: X S → W

Then, we can create a randomization:

(Q A X)

which, since valid, leads to the following replacement of R10 and R11:

R12: Q S → W

This replacement allows for the possibility of new rule pairings and the
desired process then iterates. Thus, we have

(Q: A � X) {expanding A, X}

These are active transforms [9] in the sense that whenever A or X change
their membership, the properties of Q may change. Evidently, this is a
converging process. However, if subsequently we had

R13: A S → T

R14: X S → G

where, T and G have no properties in common (i.e., neither is a subse-
quence of the other), then it becomes clear that A cannot substitute for X
and vice versa. In other words,

R13: (A-X) S → T

R14: (X-A) S → G

Thus, we have

(A: A - X) {contracting A}

(X: X - A) {contracting X}

These are active transforms, and again, this is a converging process. Next,
suppose that T and G are such that G is a subsequence of T without loss
of generality. Then, it follows that A is a subset of X and

(A: A � X) {contracting A}

(X: X � A) {expanding X}

These are active transforms. This is not, however, necessarily a converg-
ing process. That is not to say that it will diverge without bounds. It is
just not stable. We do not view this as a problem. It is to be viewed as an
oscillatory system that, in some ways, may mimic brain waves. The com-
plexity of interaction will increase as the system is scaled up. The eventual
need for high-speed parallel/distributed processing is apparent. The case
for consequent differentiation is similar. Here though, one is processing
sequences instead of sets.

OBJECT-ORIENTED TRANSLATION MENUS
The Type I KASER requires that declarative knowledge be (dynamically)
compiled in the form of object-oriented hierarchical phrase translation

On Knowledge Amplification by Structured Expert Randomization (KASER) 77

menus. Each class (i.e., antecedent and consequent) of bipartite predicates
can be interrelated through their relative positions in an object-oriented
semantic tree. A declarative knowledge of interrelatedness provides a
basis for commonsense reasoning, as will be detailed in the next section.
The subject of this section pertains to the creation, maintenance, and use
of the object-oriented trees as follows.

1. The phrase-translation menus serve as an intermediate code (as in a
compiler) where English sentences can be compiled into menu com-
mands by using rule-based compiler bootstraps. KASERs can be
arranged in a network configuration where each KASER can add
(post) to or delete from the context of another. This will greatly
expand the intelligence of the network with scale and serves to define
Minsky's "Society of Mind" [6]. Furthermore, the very-high-level
domain-specific language(s) used to define each predicate can be com-
piled through a network of expert compilers. Alternatively, neural
networks can be used to supply symbolic tokens at the front end.

2. Each antecedent or consequent phrase can be associated with a textual
explanation, Microsoft's Text-to-Speech engine (Version 4.0), an
audio file, a photo, and/or a video file. Images may be photographs,
screen captures, scans, drawings, etc. They may also be annotated
with arrows, numbers, etc. Voice navigation may be added at a later
date.

3. Antecedents and consequents can be captured by using an object-
oriented approach. The idea is to place descriptive phrases in an
object-oriented hierarchy such that subclasses inherit all of their
properties from a unique superclass and may include additional prop-
erties as well. Menus can beget submenus, and new phrases can be
acquired at any level.
Consider the partial path, office supply, paper clip and the partial
path, conductor, paper clip. Here, any subclass of paper clip will have
very different constraints depending on its derivation. For example,
anything true of paper clips in the context of their use as conductors
must hold for every subclass of paper clips on that path. Unique
antecedent integers can be set up to be triggered by external rules.
Similarly, unique consequent integers can be set up to fire external
procedures. All we need do is facilitate such hooks for future expan-
sion (e.g., the radar-mining application domain).
Each project is saved as a distinct file, which consists of the
antecedent and consequent trees, the associated rule base, and possi-
bly the multimedia attachments.

4. A tree structure and not a graph structure is appropriate because the
structure needs to be readily capable of dynamic acquisition (i.e., rela-
tively random phrases) and deletion, which cannot be accomplished
in the presence of cycles due to side effects. Note that entering a new
phrase in a menu implies that it is semantically distinct from the exist-
ing phrases, if any, in that menu.

5. A tree structure is mapped to a context-free grammar (CFG), where
the mapping process needs to be incremental in view of the large size
of the trees. Each node or phrase is assigned a unique number, which
serves to uniquely identify the path.

6. Each phrase may be tagged with a help file, which also serves the pur-
poses of the explanation subsystem. This implies that conjuncts are
not necessary to the purpose of the antecedent or consequent trees.

DATA ACQUISITION AND EXPLOITATION78

7. Each menu should be limited to on the order of one screen of items
(e.g., 22). Toward this end, objects should be dynamically subdivided
into distinct classes. That is, new submenus can be dynamically created
and objects moved to or from them.

8. Three contiguous levels of hierarchy should be displayed on the
graphical user interface (GUI) at any time, if available.

9. A marker gene or bookmark concept allows the user to set mark
points for navigational purposes.

10. A list of recently visited menus serves to cache navigational paths for
reuse.

11. A global find mechanism allows the user to enter a phrase and search
the tree from the root or present location and find all matches for the
phrase up to a prespecified depth. The path, which includes the
phrase, if matched, is returned.

12. Entered phrases (i.e., including pathnames) can be automatically
extrapolated where possible. This "intellisense" feature facilitates key-
board entry. It can also assist with the extrapolation of pathnames to
facilitate finding or entering a phrase. Pathname components may be
truncated to facilitate presentation.

13. A major problem in populating a tree structure is the amount of typ-
ing involved. In view of this, copy, paste, edit, and delete functions
are available to copy phrases from one or more menus to another
through the use of place-holding markers. Phrase submenus are not
copied over because distinct paths tend to invalidate submenu con-
tents in proportion to their depth. Again, new integers are generated
for all phrases. Note that the returned list of objects still needs to be
manually edited for error and/or omissions. This follows from ran-
domization theory. This maps well to natural language translation.

14. Disjuncts in a menu serve as analogs and superclasses serve as general-
izations for an explanation subsystem. In addition, help files and
pathnames will also serve for explanative purposes.

15. An "intellassist" feature allows the system to predict the next node in
a contextual, antecedent, or consequent tree. Each node in a tree
locally stores the address (number) of the node to be visited next in
sequence. If a node has not been trained, or if the pointed-to address
has been deleted without update, then a text box stating "No
Suggestion" pops up, and no navigation is effected if requested.
Otherwise, potentially three contiguous menus are brought up on the
screen, where the farthest right menu contains the addressed node.
Navigation is accomplished by clicking on a "Suggest" button.
Otherwise, all navigation is manually performed by default. The user
can hop from node to node by using just the suggest button without
registering an entry. The use of any form of manual navigation
enables a "Remember" button immediately after the next term, if any
is entered. Clicking on this enabled button will result in setting the
address pointed to by the previously entered node to that of the
newly entered node. The old pointer is thus overwritten. Note that
this allows for changing the item selected within the same menu.
Note, too, that if a node (e.g., Toyota) is deleted, then all pointers to
it may be updated to the parent class (e.g., car menu) and so on up the
tree (e.g., vehicle type menu).

On Knowledge Amplification by Structured Expert Randomization (KASER) 79

A pull-down menu will enable one of two options: (1) Always
Remember (by default) and (2) Remember when Told. The
Remember button is not displayed under option (1), but the effect
under this option is to click it whenever it would have otherwise been
enabled. The system always starts at the root node of the relevant
tree.

16. It does not make sense to retain a historical prefix for use by the
intellassist feature. That is, there is no need to look at where you were
to determine where you want to go. While potentially more accurate,
this increase in accuracy is more than offset by the extra training time
required, the extra space required, and the fact that it will take a rela-
tively long time to reliably retrain the nodes in response to a dynamic
domain environment.

AN A* ORDERED SEARCH ALGORITHM
Expert compilers apply knowledge bases to the effective translation of
user-specified semantics [11]. The problem with expert compilers is that
they use conventional expert systems to realize their knowledge bases. A
KASER is advocated because it can amplify a knowledge base by using
an inductively extensible representational formalism.

Here, we present a relatively high-level view of the KASER algorithm.
We claim that it represents a great advance in the design of intelligent sys-
tems by reason of its capability for symbolic learning and qualitative
fuzziness:

1. Click on antecedent menus to specify a contextual conjunct.
Alternatively, a manual "hot button" will bring up the immediately
preceding context for reuse or update. Renormalization is only neces-
sary if a generalization was made––not for term deletion (see below).
Iteratively normalize the context (i.e., reduce it to the fewest terms)
by using the tree grammar. Note that contextual normalization can be
realized in linear time in the number of conjuncts and the depth of
search. Here are the reduction rules, which are iteratively applied in
any order––allowing for concurrent processing:

a. S → A | B | C … then replace A, B, C … with S just in case all of
the RHS is present in the context. This step should be iteratively
applied before moving on to the next one.

b. S → A … and A → B … and B → C … then if S, A, B, C are all
present in the context, then remove A, B, C since they are sub-
sumed by S. It is never necessary to repeat the first step after con-
clusion of the second.

2. Compute the specific stochastic measure. Note that the specific sto-
chastic measure does not refer to validity––only to the creative novelty
relative to the existing rules while retaining validity. For example,
given the antecedent grammar: C5 → C3 | C4; C4 → C1 | C2:

a. {C3 C1} {{C3}, {C2 C3},} covers and matches the first {C3} at level
0. Note that the first covered match, if any, that does not have a
covered superset is the one to be fired––a result that follows from
the method of transposition.

b. {C3 C1} {{C5}, {C2 C3},} matches nothing at the level 0 expansion,
so we expand the RHS with the result, {C3 C1} {{*C5 (C3 C4)},

DATA ACQUISITION AND EXPLOITATION80

{*C2 *C3},} where the C2 C3 are both primitives and *Ci can be
matched, but not expanded again. (..) is used to denote disjunc-
tion. Here, {C5} is matched at level 1. Note that at any level, only
one term inside the parentheses (e.g., C3) need be covered to get a
match of any one disjunct.

c. {C3 C6} {{C2}, {C5 C6},} matches nothing at the level 0 expan-
sion, so we expand the RHS with the result, {C3 C6} {{*C2},
{*C5 (C3 C4), *C6}}, which matches at level 1 because we matched
(C3 OR C4) AND C6. Note that C6 was never expanded because
it was pre-matched by the existing context. This economy is possi-
ble as a result of pre-normalizing the context.

d. The result of applying the method of transposition to the above
step is {{C5 C6}, {C2},}.

e. Each matched {…} fires a consequent, which, if not primitive,
matches exactly one row header (i.e., a unique integer) and step
(2) iterates.

f. Maintain a global sum of the number of levels of expansion for
each row for each consequent term. The specific stochastic meas-
ure is taken as the maximum of the number of levels of expansion
used for each consequent term.

3. Exit the matching process with success (i.e., for a row) or failure
based on reaching the primitive levels, a timer-interrupt, a forced
interrupt, and/or by using the maximum allocated memory.

4. If a sequence of consequent actions has been attached, then the
sequence is pushed onto a stack in reverse order such that each item
on the stack is expanded in a depth-first manner. A parenthesized
sequence of actions will make clear the hierarchy. For example,
((Hold Writing Instrument (Hold Pencil with Eraser)) (Press
Instrument to Medium (Write Neatly on Paper))). Here, the sub-
classes are nested. Such a representation also serves explanative
purposes. Thus, here one has, Hold Writing Instrument, Press
Instrument to Medium, at the general level, and Hold Pencil with
Eraser, Write Neatly on Paper, at the specific level. A companion
intelligent system could transform the conceptual sequences into
smooth natural language (e.g., Pick up a pencil with an eraser and
write neatly on a sheet of paper.) Set the general stochastic measure
(GSM) to zero. Note that the stochastic measures for each predicate
are computed and held in a data structure. The data will be used by
the inference engine.

5. If a match is not found, then since we already have an expanded
antecedent {…}, we proceed to expand the context in a breadth-first
manner (i.e., if enabled by the level of permitted generalization).
Compute the general stochastic measure. Initialize the general sto-
chastic measure to GSM. Note that the general stochastic measure is a
measure of validity. Set the starting context to the context.

a. A specialized match was sought in step (2), and a generalized match
is sought here. Expanding the context can lead to redundancies. For
example, {*C1 *C2 *C3 *C4 C1 C2}. Here, the solution is to sim-
ply not include any term that is already in the (expanded) context.
Stochastic accuracy is thus preserved. Any method that does not
preserve stochastic accuracy is not to be used.

On Knowledge Amplification by Structured Expert Randomization (KASER) 81

b. {C5} {{*C3}, {*C2 *C3},} failed to be matched in step (2), so a
level 1 expansion of the context is taken:

{*C5 C3 C4} {{*C3}, {*C2 *C3},} where C3 is matched at level 1.

c. {C5 C6} {{*C1}, {*C2 *C3},} matches nothing at level 0, so a level
1 expansion of the context is taken:

{*C5 C3 C4 *C6} {{*C1}, {*C2 *C3},} matches nothing at level 1,
so a level 2 expansion of the context is taken:

{*C5 *C3 *C4 C1 C2 *C6} {{*C1}, {*C2 *C3},} matches C1 OR
C2 AND C3 at level 2. The first covered set is the one to be fired
(i.e., even though both sets are covered), since it does not have a
covered superset. Next, the method of transposition is trivially
executed with no resulting change in the logical ordering.

d. Each matched {…} fires a consequent, which, if not primitive,
matches exactly one row header (i.e., a unique integer) and step
(2) iterates.

e. One should maintain a count of the maximum number of levels of
expansion for the context below the initial level. The general sto-
chastic measure is defined by GSM plus the maximum number of
levels that the context minimally needs to be expanded to get the
"first" (i.e., method of transposition) match. This stochastic is
represented by the maximum depth for any expansion.

f. If the context fails to be matched, then generalize each term in the
starting context one level up in the tree. Remove any redundan-
cies from the resulting generalization. If the generalized context
differs from the starting context, then add one to GSM and go to
step (5). Otherwise, go to step (6). For example, the starting con-
text {C2 C3} is generalized to yield {C4 C5}. If this now covers a
{..}, then the general stochastic measure is one. Otherwise, it is
subsequently expanded to yield {*C4 C1 C2 *C5 C3 C4} at the
first level. Notice that the second C4 has a longer derivation, is
redundant, and would never have been added here. Note, too, that
C4 is also a sibling or analog node. If this now covers a {..}, then
the GSM remains one, but the specific stochastic measure is incre-
mented by one to reflect the additional level of specialization.

For another example, Toyota and Ford are instances of the class
car. If Toyota is generalized to obtain car, which is subsequently
instantiated to obtain Ford (i.e., an analog), then the general and
specific stochastic measures would both be one. The general sto-
chastic measure represents the number of levels of expansion for a
term in one direction, and the specific stochastic measure repre-
sents the number of levels of expansion from this extrema in the
opposite direction needed to get a match. The final general (spe-
cific) stochastic is taken as the maximum general (specific) sto-
chastic over all terms.

g. Conflict resolution cannot be a deterministic process as is the case
with conventional expert systems. This is because the number of
predicates in any match must be balanced against the degree of
specialization and/or generalization needed to obtain a match.
Thus, a heuristic approach is required. The agenda mechanism
will order the rules by their size, general stochastic, and specific
stochastic with recommended weights of 3, 2, and 1 respectively.

DATA ACQUISITION AND EXPLOITATION82

6. Exit the matching process with success (i.e., for the entire current
context for a row) or failure based on reaching the primitive levels, a
timer-interrupt, a forced interrupt, and/or by using the maximum
allocated memory. Note that a memory or primitive interrupt will
invoke step (5f). This enables a creative search until a solution is
found or a timer-interrupt occurs. Note, too, that it is perfectly
permissible to have a concept appear more than once for reasons of
economy of reference, or to minimize the stochastic measures (i.e.,
provide confirming feedback). The stochastic measures also reflect
the rapidity with which a concept can be retrieved.

7. Knowledge acquisition:

a. Note that new rules are added at the head.

b. If exit occurs with failure, or the user deems a selected consequent
(e.g., in a sequence of consequents) in error (i.e., trace mode on),
then the user navigates the consequent menus to select an attached
consequent sequence, which is appropriate for the currently nor-
malized context.

c. If the user deems that the selected "primitive" consequent at this
point needs to be rendered more specific, then a new row is
opened in the grammar, and the user navigates the consequent
menus to select an attached consequent sequence.

d. A consequent sequence can pose a question, which serves to
direct the user to enter a more specific context for the next itera-
tion (i.e., conversational learning). Questions should usually only
add to the context to prevent the possibility of add/delete cycles.

e. Ask the user to eliminate as many specific terms (more general
terms will tend to match more future contexts) from the context
as possible (i.e., and still properly fire the selected consequent
sequence given the assumptions implied by the current row).
A context usually consists of a conjunct of terms. This tends to
delimit the generality of each term as it contributes to the firing of
the consequent. However, once those antecedent terms become
fewer in number for use in a subsequent row, then it becomes
possible to generalize them while retaining validity. The advantage
of generalization is that it greatly increases reusability. Thus, we
need to afford the user the capability to substitute a superclass for
one or more terms. Note that this implies that perfectly valid
rules that were entered can be replayed with specific (not general)
stochastics greater than zero. This is proper, since the specific sto-
chastic preserves validity in theory. Thus, the user may opt to
generalize one or more contextual terms by backtracking their
derivational paths. If and only if this is the case, step (1) is applied
to normalize the result. An undo/redo capability is provided.
Validated rule firings are only saved in the rule base if the associ-
ated generalization stochastic is greater than zero. The underlying
assumption is that rule instances are valid. If a pure rule instance
proves to be incorrect, then the incorrect rule needs to be updated
or purged, and the relevant object class menu(s) may be in need
of repair. For example, what is the minimal context to take
FIX_CAR to FIX_TIRE? A companion intelligent system could
learn to eliminate and otherwise generalize specific terms (e.g.,
randomization theory).

On Knowledge Amplification by Structured Expert Randomization (KASER) 83

f. The system should verify for the user all the other {…} in the
current row that would fire or be fired by the possibly over-
generalized {...} if matched. (Note that this could lead to a
sequence of UNDOs.)

For example, ({C5} A2) {({C5} A1) ({C5 C6} A2) ({C5 C7} A2,
A3)} informs the user that if the new C5 acquisition is made, then
A2 and not A1 is proper to fire. If correct, then the result is {{C5}
A2 {C5 C7} A2, A3}. {C5 C6} A2 has been eliminated because it is
redundant. Also, {C5 C7} A2, A3 is fired just in case C5 AND C7
are true––in which case, it represents the most specific selection
since it is a superset of the first set. If the elimination of one or
more specific terms causes one or more {…} to become proper
supersets, then warning message(s) may be issued to enable the
user to reflect on the proposed change(s). If the elimination
and/or generalization of one or more specific terms enables the
firing of another rule in the same row in preference to the general-
ized rule, then the generalization is rejected as being too general.
Note that there is no need to normalize the results, as they would
remain in normal form. Also, any further normalization would
neutralize any necessary speedup.

g. A selected consequent number may not have appeared on the
trace path with respect to the expansion of each consequent ele-
ment taken individually. Checking here prevents cycle formation.

h. It should never be necessary to delete the least frequently used
(LFU) consequent {…} in view of reuse, domain specificity,
processor speed, and available memory relative to processor
speed. Nevertheless, should memory space become a premium,
then a hierarchy of caches should be used to avoid deletions.

8. A metaphorical explanation subsystem can use the antecedent/conse-
quent trees to provide analogs and generalizations for explanative
purposes. The antecedent/consequent paths (e.g., ROOT, FIX_CAR,
FIX_TIRE, etc.) serve to explain the recommended action in a way
similar to the use of the antecedent and consequent menus. The
antecedent/consequent menus will provide disjunction and "user-
help" to explain any level of action on the path. Note that the system
inherently performs a fuzzy logic known as computing with words
[4] (i.e., based on the use of conjuncts, descriptive phrases, and tree
structures). The virtual rule base is exponentially larger than the real
one and only limited by the number of levels in the trees, as well as
by space-time limitations on breadth-first search imposed by the
hardware.

9. A consequent element could be a "do-nothing" element if need be
(i.e., a Stop Expansion). The provision for a sequence of consequents
balances the provision for multiple antecedents. The selected conse-
quent(s) need to be as general class objects as can be to maximize the
number of levels and, thus, the potential for reuse at each level. The
consequent grammar is polymorphic since many such grammars can
act (in parallel via the Internet) on a single context with distinct,
although complementary results. Results can be fused as in a multi-
level, multicategory associative memory. Multiple context-matched
rules may not be expanded in parallel because there can be no way to
ascribe probabilities to partially order the competing rules and

DATA ACQUISITION AND EXPLOITATION84

because any advantage would be lost to an exponential number of
context-induced firings. The consequent {…}s cannot be ranked by
the number of matching terms (i.e., for firing the most specific first)
because the most specific terms are generally incomparable. However,
a covered superset is always more specific than any of its proper sub-
sets. Thus, the first covered set that does not have a covered superset
in the same row is the one to be fired. If it does have a covered super-
set, then the superset is fired only if it is the next covered one to be
tested in order. It is not appropriate to tag nodes with their level, use
a monotonically increasing numbering system, or any equivalent
mechanism to prevent the unnecessary breadth-first expansion of a
node(s) because the menus are dynamic, and it would be prohibitively
costly to renumber, for example, a terabyte of memory. Note that
node traversal here is not synonymous with node visitation. Even if
parallel processors could render the update operation tractable, the
search limit would necessarily be set to the depth of the deepest
unmatched node. Here, the likelihood of speedup decreases with
scale. The contextual terms should only be *’d if this does not inter-
fere with their expansion––even if normalized. Let the context be
given as {C5 C6} and the RHS be {C5 C7}, {C1 …},. Clearly, if the
context had *C5, then the C1 might never be matched.

10. Unlike the case for conventional expert systems, a KASER cannot be
used to backtrack consequents (i.e., goal states) to find multiple can-
didate antecedents (i.e., start states). The problem is that the pre-
image of a typical goal state cannot be effectively constrained (i.e.,
other than for the case where the general and specific stochastics are
both zero) in as much as the system is qualitatively fuzzy. Our
answer is to use fuzzy programming in the forward-chained solution.
This best allows the user to enter the constraint knowledge that
he/she has into the search. For example, if the antecedent menus are
used to specify CAR and FUEL for the context and the consequent is
left unconstrained for the moment, then the system will search
through all instances, if any, of CAR crossed with all instances of
FUEL (i.e., to some limiting depth) to yield a list of fully expanded
consequents. Generalization-induced system queries, or consequents
that pose questions, if any, will need to be answered to enable this
process to proceed. Thus, in view of the large number of contexts that
are likely to be generated, all interactive learning mechanisms should
be disabled or bypassed whenever fuzzy programming is used. Note
that CAR and FUEL are themselves included in the search. Each
predicate can also be instantiated as the empty predicate in the case of
the antecedent menus, if user-enabled. If the only match occurs for
the case of zero conjuncts, then the consequent tree is necessarily
empty. A method for fuzzy programming is to simply allow the user
to split each conjunct into a set of disjuncts and expand all combina-
tions of these to some fixed depth to obtain a list of contexts. This use
of a keyword filter, described below, is optional. For example, the
specification (A � A�� !A�) 	 (B � B�) 	 (C) yields 23 candidate
contexts––including the empty predicate (i.e., if one assumes that A�
is primitive and allows for redundancy), which excludes the empty
context. The exclamation mark, "!", directs the system to expand the
nonterminal that follows it to include (i.e., in addition to itself) all of
the next-level instances of its class. For example, !CAR would yield
(CAR TOYOTA FORD MAZDA HONDA ... �). Here, lambda
denotes the empty predicate and is included as a user option.

On Knowledge Amplification by Structured Expert Randomization (KASER) 85

A capability for expanding to two or more levels if possible (e.g., "!!") is
deemed to be nonessential but permissible (e.g., for use with relatively
few conjuncts). This follows because the combinatorics grow exponen-
tially. One can always take the most successful context(s) produced by a
previous trial, expand predicates to another level by using "!s" where
desired, and rerun the system. Note that, in this manner, the user can
insert knowledge at each stage––allowing for a far more informed, and
thus, deeper search than would otherwise be possible. Moreover, the
fuzzy specialization engine will stochastically rank the generalized
searches to enable an accurate selection among contexts for possible
rerun.

The search may be manually terminated by a user interrupt at any time.
The search is not to be automatically terminated subsequent to the pro-
duction of some limit of contexts because to do so would leave a neces-
sarily skewed distribution of contexts––thereby giving the user a false
sense of completeness. We would rather have the user enter a manual
interrupt and modify the query subsequently. A terminated search means
that the user either needs to use a faster computer, or more likely, just
narrow down the search space further and resubmit. For example, if we
have the antecedent class definitions:

(CAR (FORD TOYOTA)) (FUEL (REGULAR_GAS HIGH_TEST
DIESEL)) (AGE (OLD (TIRES …)) (NEW (TIRES …)))

and the contextual specification:

(!CAR) 	 (!FUEL) 	 (NEW),

then we would have the following 35 contexts allowing for the empty
predicate. Note that the use of the empty predicate is excluded by
default, since its use is associated with an increase in the size of the search
space and since it may not be used with the consequent menus (see
below).

CAR
DIESEL
FORD
FUEL
HIGH_TEST
NEW
REGULAR_GAS
TOYOTA
CAR DIESEL
CAR FUEL
CAR HIGH_TEST
CAR NEW
CAR REGULAR_GAS
DIESEL NEW
FORD NEW
FUEL NEW
HIGH_TEST NEW
REGULAR_GAS NEW
TOYOTA FUEL
TOYOTA DIESEL
TOYOTA HIGH_TEST
TOYOTA NEW
TOYOTA REGULAR_GAS
CAR DIESEL NEW

DATA ACQUISITION AND EXPLOITATION86

CAR FUEL NEW
CAR HIGH_TEST NEW
CAR REGULAR_GAS NEW
FORD DIESEL NEW
FORD FUEL NEW
FORD HIGH_TEST NEW
FORD REGULAR_GAS NEW
TOYOTA DIESEL NEW
TOYOTA FUEL NEW
TOYOTA HIGH_TEST NEW
TOYOTA REGULAR_GAS NEW

The user may also have used the consequent menus to specify an optional
conjunctive list of key phrases, which must be contained in any generated
consequent. Those generated consequents, which contain the appropriate
keywords or phrases, are presented to the user in rank order––sorted first
in order of increasing generalization stochastic and within each level of
generalization stochastic in order of increasing specialization stochastic
(i.e., best-first). For example, (general, specific) (0, 0) (0, 1) (1, 0) (1, 1) …
Recall that only the specific stochastic preserves validity.

The specified antecedent and consequent classes should be as specific as
possible to minimize the search space. Neither the antecedent nor conse-
quent terms specified by the user are ever generalized. For example, if we
have the consequent class definitions:

(COST_PER_MILE (CHEAP MODERATE EXPENSIVE))
(MPG (LOW MEDIUM HIGH))

then we can constrain the space of generated consequents in a manner
similar to the way in which we constrained the space of generated
antecedents. Thus, for example we can write:

(!CAR) 	 (!FUEL) 	 (NEW) �	 (!COST_PER_MILE) 	 (!MPG)

This is orthogonal programming; that is, reusing previous paradigms
unless there is good reason not to reuse them. Each candidate solution
has been constrained so that it must contain at least one phrase from the
four in the COST_PER_MILE class and at least one phrase from the
four in the MPG class––including the class name, but excluding the
empty predicate of course. IF an asterisk, "*" is placed after the arrow,
then the compiler is directed not to filter the produced consequents in
any way.

The user can make changes wherever (i.e., to the antecedents, the conse-
quents, or both) and whenever (e.g., interactively) appropriate and rerun
the system query. This represents computing with words because fuzzi-
ness occurs at the qualitative level. It is not really possible for distinct
classes to produce syntactically identical phrases because pathnames are
captured using unique identifiers. That is, the identifiers are always
unique even if the represented syntax is not.

It is not necessary to weight the consequent phrases because instance
classes preserve validity (i.e., at least in theory) and because it would be
otherwise impossible to ascribe weights to combinations of words or
phrases. For example, "greased" and "lightning" might be synonymous
with fast, but taken together (i.e., "greased lightning"), an appropriate
weight should be considerably greater than the sum of the partial
weights. The degree to which the conjunctive weight should be increased
does not lend itself to practical determination. Moreover, one is then
faced with the indeterminable question (i.e., for ranking) as to which is

On Knowledge Amplification by Structured Expert Randomization (KASER) 87

the more significant metric: the weight or the two stochastics. Besides, if
one follows the dictates of quantum mechanics or veristic computing, it
suffices to rank consequent phrases by group as opposed to individually.

Feedback produced, in the form of implausible generalizations, serves to
direct the knowledge engineer to modify the involved declarative class
structures by regrouping them into new subclasses so as to prevent the
formation of the erroneous generalizations. This, too, is how the system
learns. The iterative pseudocode for accomplishing the combinatorial
expansion follows.

1. Initialize the list of Candidate Contexts to λ.
2. Each conjunct––e.g., (A � A� � !A�)––in the starting list––e.g., (A � A� �

!A�) 	 (B � B�) 	 (C) will be processed sequentially.
3. Note that !A� means to expand the disjunct to include all members of

its immediate subclass, if any. Similarly, !!A� means to expand the dis-
junct to a depth of two. The provision for multilevel expansion is
implementation-dependent and is thus optional. Each expanded con-
junct is to be augmented with exactly one � if and only if the user has
enabled the �-option. This option is disabled by default.

4. Expand the first conjunct while polling for a manual interrupt. Here,
the result is
(A � A� � A� � A�.a � A�.b � λ) .

5. Note that the fully expanded list of conjuncts for illustrative purposes
appears:
(A � A� � A� � A�.a � A�.b � λ) 	

(B � B� � λ) 	 (C � λ)
6. Initialize a buffer with the disjuncts in the first conjunct. Here, the

first six buffer rows are populated.
7. Copy the contents of the buffer to the top of the list of Candidate

Contexts;
8. Current Conjunct = 2;
9. Note that there are three conjuncts in this example.

10. WHILE (Current Conjunct <= Number of Conjuncts) and NOT
Interrupt DO
{

11. Expand the Current Conjunct while polling for a manual interrupt.
12. Let d = the number of disjuncts in the Current Conjunct;
13. Using a second buffer, duplicate the disjuncts already in the first

buffer d times. For example, here, the second conjunct has three dis-
juncts and would thus result in the buffer: A, A, A, A�, A�, A�, A�, ... ,
λ , λ, λ.

14. FOR each element i in the buffer WHILE NOT Interrupt DO
15. FOR each Disjunct j in the Current Conjunct WHILE NOT

Interrupt DO
{

16. Buffer [i] = Buffer [i] || Current Disjunct [j].
17. (For example, AB, AB�, A λ, A�B, A�B�, A� λ, ..., λB, λB�, λλ .)

}
18. IF the �-option has been enabled THEN

Append the contents of the buffer to the bottom of the list of
Candidate Contexts while polling for a manual interrupt.

DATA ACQUISITION AND EXPLOITATION88

19. Current Conjunct++
}

20. An interrupt may be safely ignored for the next two steps.
21. IF the �-option has been enabled THEN

Final Contexts = Candidate Contexts - λ
22. ELSE

Final Contexts = contents of the buffer.
23. Duplicate contexts are possible due to the use of � and possible dupli-

cate entries by the user. Searching to remove duplicate rows is an
O(n2) process. Thus, it should never be mandated, but rather offered
as an interruptible user-enabled option.

The iterative pseudocode for constraining the generated consequents
follows.
1. Expand each conjunct—e.g., (A � A�� !A�)—in the starting list—e.g.,

(A � A� � !A�) 	 (B � B�) 	 (C). Note that the λ-option is disabled.
2. Here, the result is

(A � A�� A� � A�.a � A�.b) 	 (B � B�) 	 (C).
3. FOR each consequent sequence (i.e., rule) WHILE NOT Interrupt

DO
{

4. match = FALSE;
5. FOR each expanded conjunct (i.e., required key concept)

WHILE NOT Interrupt DO
{

6. FOR each predicate in an expanded conjunct (i.e., PEC)
WHILE NOT Interrupt DO
{

7. FOR each predicate in a consequent sequence (i.e.,
PICS) WHILE NOT Interrupt DO
{

8. IF PEC = PICS THEN
{

match = TRUE;
BREAK;
BREAK;
(Each BREAK transfers
control to the next statement
outside of the current loop.)

}
}

}
9. IF NOT match THEN BREAK

}
10. IF NOT match THEN remove current rule

from the candidate list
11. ELSE the rule is saved to the set of candidate

rules, which is sorted as previously described.
}

On Knowledge Amplification by Structured Expert Randomization (KASER) 89

SUGGESTED NAVAL APPLICATIONS
Figure 2 presents a screen capture of a Type I KASER
for diagnosing faults in a jet engine. Observe that the
general and specific stochastics are both one. This
means, in the case of the general stochastic, that the
KASER needed to use a maximum of one level of
inductive inference to arrive at the prescribed action.
Similarly, the specific stochastic indicates that a maxi-
mum of one level of deduction was necessarily
employed to arrive at this prescribed action.
Contemporary expert systems would not have been
able to make a diagnosis and prescribe a course of
action, since they need to be explicitly programmed
with the necessary details. In other words, the
KASER is offering a suggestion here that is open
under deductive process. Simply put, it created new
and presumably correct knowledge. Here are the two
level-0 rules, supplied by the knowledge engineer
(i.e., R15 and R16), that were used in conjunction with the declarative
object trees to arrive at the new knowledge, R18:

R15: If Exhaust Flaming and Sound Low-Pitched Then Check Fuel
Injector for Carbonization

R16: If Exhaust Smokey and Sound High-Pitched Then Check Fuel
Pump for Failure

R17: If Exhaust Smokey and Sound Low-Pitched Then Check Fuel
Pump for Failure

Upon confirmation of R17, R16 and R17 are unified as follows.

R18: If Exhaust Smokey and Sound Not Normal Then Check Fuel
Pump for Failure

The KASER finds declarative antecedent knowledge, which informs the
system that the three sounds that an engine might make, subject to
dynamic modification, are high-pitched, low-pitched, and normal. By
generalizing high-pitched sounds one level to SOUNDS (see Figure 3)
and then specializing it one level, one arrives at the first-level analogy:
low-pitched sounds. This analogy enables the user context to be
matched and leads to the creation of new knowledge. Figure 4 depicts
the consequent tree and is similar to the antecedent tree shown in
Figure 3. The consequent tree is used to generalize rule consequents so
as to maximize reusability. Object reuse may simultaneously occur at
many levels, even though this example depicts only one level for the
sake of clarity. There are many more algorithms, settings, and screens
that may be detailed.

Another application is the automatic classification of radar signatures.
Basically, the radar data are assigned a feature set in consultation with an
expert. Next, a commercial data-mining tool is applied to the resulting
very large database to yield a set of rules and associated statistics. These
rules are manually fed into the Type I KASER, which interacts with the
knowledge engineer to create the antecedent and consequent trees, as
well as a fully generalized rule base and miscellaneous sundry. Upon
completion of the manual acquisition, the KASER is given a procedure

FIGURE 2. Screen capture of an operational Type I kaser.

FIGURE 3. Screen capture of an
antecedent tree.

FIGURE 4. Screen capture of a
consequent tree.

DATA ACQUISITION AND EXPLOITATION90

to link it through open database connectivity (ODBC) to an external
electronic intelligence (ELINT) database. This database supplies the radar
signatures in approximately real time. The signatures are then automati-
cally classified by the KASER's virtual rule space and the generated sto-
chastics provide an indication of reliability. The KASER, having a virtual
rule space >> real rule space can produce erroneous advice if the general
stochastic is greater than zero. In this event, the user is requested to sup-
ply a corrective consequent(s), which may be "radioed" to the base com-
puter for subsequent update on a daily basis, followed by uploading the
more learned KASER. The main benefit here is that the KASER can sup-
ply solutions to complex signature-identification problems that would
not be cost-effective to supply otherwise (see Figure 1). A Type II
KASER should be able to automatically acquire the feature set.

CONCLUSIONS
This project seeks to demonstrate (1) a strong capability for symbolic
learning, (2) an accelerating capability to learn, (3) conversational learning
(i.e., learning by asking appropriate questions), (4) a metaphorical expla-
nation subsystem, (5) probabilistically ranked alternative courses of
action that can be fused to arrive at a consensus that is less sensitive to
occasional errors in training, and (6) a capability to enunciate responses.
It is argued that the intelligent components of any Command Center of
the Future (CCOF) cannot be realized in the absence of a strong capabil-
ity for symbolic learning.

Randomization theory holds that the human should supply novel knowl-
edge exactly once (i.e., random input), and the machine should extend
that knowledge by way of capitalizing on domain symmetries (i.e., expert
compilation). In the limit, novel knowledge can only be furnished by
chance itself. This means that, in the future, programming will become
more creative and less detailed, and thus, the cost per line of code will
rapidly decrease. According to Bob Manning [12]: "Processing knowl-
edge is abstract and dynamic. As future knowledge management applica-
tions attempt to mimic the human decision-making process, a language is
needed that can provide developers with the tools to achieve these goals.
LISP enables programmers to provide a level of intelligence to knowledge-
management applications, thus enabling ongoing learning and adaptation
similar to the actual thought patterns of the human mind."

Moreover, according to Erann Gat at the Jet Propulsion Laboratory,
California Institute of Technology, working under a contract with the
National Aeronautics and Space Administration [13]: "Prechelt concluded
that 'as of JDK 1.2, Java programs are typically much slower than programs
written in C or C++. They also consume much more memory.' "

Gat states that "We repeated Prechelt's study by using Franz Inc.'s
Allegro Common LISP 4.3 as the implementation language. Our results
show that LISP's performance is comparable to or better than C++ in
execution speed; it also has significantly lower variability, which trans-
lates into reduced project risk. The runtime performance of the LISP
programs in the aggregate was substantially better than C and C++ (and
vastly better than Java). The mean runtime was 41 seconds versus 165 for
C and C++. Furthermore, development time is significantly lower and less
variable than either C++ or Java. This last item is particularly significant
because it translates directly into reduced risk for software development.

On Knowledge Amplification by Structured Expert Randomization (KASER) 91

Memory consumption is comparable to Java. LISP thus presents a viable
alternative to Java for dynamic applications where performance is
important."

In conclusion, the solution to the software bottleneck will be cracking
the knowledge-acquisition bottleneck in expert systems (compilers).

ACKNOWLEDGMENTS
I would like to thank Robert Rush, Jr., and James Boerke for their techni-
cal programming support in the implementation of the Type I KASER.
The Office of Naval Research sponsored this In-house Laboratory
Independent Research project.

REFERENCES
1. Chaitin, G. J. 1975. "Randomness and Mathematical Proof," Scientific

American, vol. 232, no. 5, pp. 47–52.

2. Uspenskii, V. A. 1987. Gödel’s Incompleteness Theorem, translated from
Russian. Ves Mir Publishers, Moscow, Russia.

3. Lin, J-H. and J. S. Vitter. 1991. "Complexity Results on Learning by Neural
Nets," Machine Learning, vol. 6, no. 3, pp. 211–230.

4. Rubin, S. H. 1999. "Computing with Words," IEEE Transactions on Systems,
Man, and Cybernetics, vol. 29, no. 4, pp. 518–524.

5. Feigenbaum, E. A. and P. McCorduck. 1983. The Fifth Generation, Addison–
Wesley Publishing Company, Reading, MA.

6. Minsky, M. 1987. The Society of Mind. Simon and Schuster, Inc., New
York, NY.

7. Clark, C. T. 2000. "An Interview with Marvin Minsky," Knowledge Manage-
ment, (June) pp. 26–28.

8. Zadeh, L. A. 1999. "From Computing with Numbers to Computing with
Words––From Manipulation of Measurements to Manipulation of
Perceptions," IEEE Transactions on Circuits and Systems, vol. 45, no. 1,
pp. 105–119.

9. Rubin, S. H. 1999. "The Role of Computational Intelligence in the New
Millennium," Plenary Speech, Proceedings of the 3rd World Multiconference
on Systemics, Cybernetics, and Informatics (SCI ’99) and 5th International
Conference on Information Systems Analysis and Synthesis (ISAS ’99),
pp. 3–13.

10. Rubin, S. H. 1998. "A Fuzzy Approach Towards Inferential Data Mining,"
Computers and Industrial Engineering, vol. 35, nos. 1-2, pp. 267–270.

11. Hindin, J. 1986. "Intelligent Tools Automate High-Level Language
Programming," Computer Design, vol. 25, pp. 45–56.

12. Manning, B. 2000. "Smarter Knowledge Management Applications: LISP,"
PC AI, vol. 14, no. 4, pp. 28–31.

13. Gat, E. 2000. "LISP as an Alternative to Java," Intelligence (winter),
pp. 21–24.

❖

Stuart H. Rubin
Ph.D. in Computer and
Information Science, Lehigh
University, 1988
Current Research: Intelligent
systems; knowledge manage-
ment.

