
INTRODUCTION

Joint Task Force–Advanced Technical Demonstration (JTF–ATD) was a
Defense Advanced Research Projects Agency (DARPA) project in the
field of distributed, collaborative computing. In a typical JTF command
hierarchy, the critical people, relevant data, and their supporting comput-
ers are geographically distributed across a wide-area network. This causes
many problems that would not exist if they were all in the same location.
The goal of JTF–ATD was to make it easier for people to work together.
A system that facilitated the sharing of data and ideas without compro-
mising security, timeliness, flexibility, availability, or other desirable qual-
ities was needed. After experimentation with numerous architectures and
implementations, the JTF–ATD concluded that an enterprise solution to
data dissemination and access was needed. It also became apparent that
the different types of data needed to support JTF missions were as ubiq-
uitous as the missions themselves. Therefore, planning systems would
need the ability to associate previously unknown data elements to their
plan composition. A distributed, object-oriented design held the most
promise to meet these goals.

Unfortunately, building distributed, object-oriented data servers with the
complex infrastructure to support enterprise solutions was costly and
time consuming. JTF–ATD built the Next Generation Information
Infrastructure (NGII) toolkit to address this problem. The NGII toolkit
allows developers to code generate object-oriented data servers in days
rather than months. The NGII code generator synthesized complex code
dealing with concurrency, replication, security, availability, and persist-
ence for each server, thus ensuring that all servers followed the same
enterprise rules. The NGII toolkit and its descendant, Quava, are widely
used by many projects today to help generate distributed, object-oriented
servers with the intelligence to act in concert across the enterprise. Quava
is available to the public and can be downloaded at
http://www.saic.com/quava/.

RELATED WORK
Work related to the topics discussed in this paper includes research in
program synthesis, code generation, software prototyping, software
reuse, software engineering, and software maintenance.

ABSTRACT
This paper discusses the benefits
of using a code generator to
synthesize distributed, object-
oriented servers for the enterprise
from object models. The primary
benefit of any code generator is to
reduce the amount of repetitive
code that must be produced, thus
saving time in the development
cycle. Another benefit to our
approach is the ability to extend
the services generated, enabling
the code generator to act as a
force multiplier for advanced
programmers. Having a code gen-
erator synthesize complex code
dealing with concurrency, replica-
tion, security, availability, persist-
ence, and other services for each
object server will ensure that all
servers follow the same enterprise
rules. Also, by using a code gener-
ator, developers can experiment
more easily with different archi-
tectures. One of the final benefits
discussed in this paper is that
when using a code generator for
the data layer of enterprise archi-
tecture, changes in software and
evolving technology can be
handled more readily.

Object Model-Driven Code Generation
for the Enterprise
William J. Ray
SSC San Diego

Andy Farrar
Science Applications International Corporation (SAIC)

30

Although much of the research in the fields of program synthesis and
code generation deals mainly with optimization, the process of generating
code for optimizing digital signal processors (DSPs) or machine language
has many similarities to the generation of code for an enterprise data
layer. In earlier work, several researchers have generated code from
descriptive languages or object models [1, 2, 3, and 4]. Whether the code
generated was machine language or code that needed to be compiled is
not material to the process of generating the code from a more abstract
foundation.

Some researchers even took the generation of code a step further to aid
in the creation of control code for multiple processes. In the Computer-
Aided Prototyping System (CAPS), code is generated from a more
abstract language to simulate a real-time system [5 and 6]. Attie and
Emerson synthesized concurrent programs from temporal logic
specifications [7].

Software reuse has always fallen short of its lofty goals. The reasons cited
for its failure are too numerous to list [8]. Some of the most promising
work to help reach the goals of software reuse involves a hybrid
approach of program synthesis by making use of reusable code compo-
nents and code generation [9]. This approach is the one taken by the tools
described in this paper.

CODE GENERATOR
Quava provides application developers with an Integrated Generation
Environment (IGE) that allows them to convert engineering designs from
Computer-Aided Software Engineering (CASE) tools (e.g., Rational
Rose, Oracle Designer, etc.) into Unified Modeling Language (UML)
encoded design objects. Quava can then generate implementation code
that can incorporate Common Object Request Broker Architecture
(CORBA), Remote Method Invocation (RMI), Component Object
Model (COM), or Java 2 Enterprise Edition (J2EE) services. The devel-
oper has complete control over which services, architecture, and language
to use for their application.

Design
The Quava system is composed
of four basic pieces (Figure 1).

The first piece, the repository
adapter, imports data and can
communicate with commercial
off-the-shelf (COTS) modeling
tools, such as Rational Rose or
Designer 2000, or read models
stored in the Object Management
Group's (OMG's) XML Metadata
Interchange (XMI) file format.
XMI is key to interoperability
with other COTS modeling tools.
The repository adapter imports a
model, which is then instantiated
as a UML 1.3 metamodel. Intern-
ally, Quava can store its UML

Object Model-Driven Code Generation for the Enterprise 31

QUAVA COMPONENT =
LEGEND

QUAVA

INFORMATION
REPOSITORIES
ORACLE,
SYBASE, ETC. COTS COMPONENT =

HAND-CODED COMPONENT =

SCHEMA
SERVER

CLIENT

MODEL
EDITOR

REPOSITORY
ADAPTERS

CODE
GENERATOR

BUSINESS
APPLICATION

SERVER

DEVELOPER'S
SOURCE FILES

REMOTE
FILES

GENERATED
SOURCE FILES

TEMPLATES

METADATA

UNIFIED
MODELING
LANGUAGE

IDL

MODELING TOOLS

FIGURE 1. Code generation system.

objects either in an XMI flat file or to a UML server, called the Schema
Server, for enterprise-wide sharing of models.

The second piece is a tool for altering the UML model. While Quava is
not a modeling environment, we did allow for model editing because
many COTS tools only support older versions of the UML standard, and
many do not support the kinds of additional modeling information
designers may want to express. Quava provides the Model Editor, which
allows a user to go in and change or add information to the UML model.
One example of this is the mapping of one model to another. This is very
common when mapping from an application object model to a database
model. Model-to-model mapping can also occur between different UML
models to automatically generate interface code from a specific model to
a shared model. In creating any additional modeling information, Quava
still maintains the UML standard by only using UML metamodel objects
to represent the additional information. This allows changed models to
remain compatible with other COTS modeling tools.

The third piece is a set or sets of templates that guide and direct the gen-
erator to precisely what code to produce. Quava differs from many code
generators that are used to produce code for a specific COTS tool or
environment. Quava users can change or add new templates to allow pro-
duction of any type of output in any language. The templates are written
in either ECMAScript, which is a standardized version of JavaScript, or
in Java. The templates allow for maximum flexibility and provide a mech-
anism for the users to define both the code output and the process flow
the generator takes through the model.

The fourth piece is the generation engine. The generation engine pulls in
a UML model and then proceeds to apply the selected set of templates
against the different elements of the UML model. Processing continues
until all selected templates have been processed against the model. Finally,
unlike many other tools, the code produced is not tied to Quava in any
way and can be imported into whatever development environment the
user typically uses.

TEMPLATES
The templates that drive code generation are the key to both the genera-
tion's output and the level of control the user has over the generation
process. During the course of experimentation with the model-driven
code generation approach, we focused on three main issues. The first
issue was identifying which types of services lend themselves to model-
based code generation. The second issue was how code generation could
help with the composition of services in a large-scale architecture, and the
third issue was how easily the templates could be extended or new tem-
plates added.

Types of Services
To identify which services best lend support to a model-based code gen-
eration approach, we focused on where developers spend most of their
time. Current software products allow users to generate skeleton code for
different architectures, but this code is limited to just a single architecture
and does not help with any of the actual logic of the objects. So, where
would users get the most "bang for the buck"? Architectural services.
Architectural services came to the forefront because they require the

NEXT-GENERATION INFORMATION SYSTEMS32

developer to implement additional functionality into each object in the
schema in support of the service. For example, an Extensible Markup
Language (XML) streaming service may provide a class library for creat-
ing the stream and sending and receiving a stream, but the objects within
the system will need to implement a method to serialize their attributes
to an XML stream. This type of service, where knowledge of the model
can reduce the amount of work a developer has to do, is exactly where
the code generation process fits in. Below is a very simple ECMAScript
template for generating a method to serialize an object to an XML
stream.

/**/
// Xml Example/
function writePackage(modelhdl)
{
var i, interfaceName;
// Get All the element in this model
classesList = modelhdl.getOwnedElement();
// Loop through each element in the model
for(i = 0; i < classesList.size(); i++) {

// GLOBAL class object
xmlClassObj = classesList.elementAt(i);
// If it's a class then process it otherwise look for nested packages

if(xmlClassObj.getClass().getName() =="mil.darpa.ngii.uml.umlClass")
writeClass(xmlClassObj);
else if(xmlClassObj.getClass().getName()==

"mil.darpa.ngii.uml.Package")
writePackage(xmlClassObj);

}

}

/**
******************/

/**
* Write the class structure: header, attributes, and footer.
*/
function writeClass(xmlClassObj)
{

myXMLFile.writeln("public void writeToXML(StringWriter out)");
myXMLFile.writeln("{");
myXMLFile.writeln(" out.write(/"<class>/");");
myXMLFile.writeln("

out.write(/"<classname>"+xmlClassObj.getName()"+</classname>\n/");
");

myXMLFile.writeln(" out.write(/"<attributes>\n/");");
writeAttributes();

myXMLFile.writeln(" out.write(/"</attributes>\n/");");
myXMLFile.writeln(" out.write(/"</class>/");");
myXMLFile.writeln("};");

}

Object Model-Driven Code Generation for the Enterprise 33

/***
*****************/

/**
* Write-out attributes, operations, associations, etc. of a class.
*/
function writeAttributes(xmlClassObj)
{
featureVector = xmlClassObj.getFeatureList(null);

for (i=0;i<featureVector.size();i++)
{

thisFeature = featureVector.elementAt(i);
thisFeatureType = new

java.lang.String(thisFeature.getClass().getName());
if (thisFeatureType.equals("mil.darpa.ngii.uml.Attribute"))
{
myXMLFile.writeln("out.write(/"<attribute>\n/");");

myXMLFile.writeln("out.write(/"<name>"+thisFeature.getName()+"
</name>\n/");");

myXMLFile.writeln("out.write(/"<type>"+thisFeature.getType().
getName()+"</type>\n/");");

myXMLFile.writeln("out.write(/"<value>/"+"+thisFeature.getName()+"
+/"</value>\n/");");

myXMLFile.writeln("out.write(/"</attribute>/");");
}

}
}

This portion of template code when applied to a simple class:
Class A with attributes:

String name
String address
long age

would produce the following code:

public void writeToXML(StringWriter out)
{
out.write("<class>");
out.write("<classname>A</classname>");
out.write("<attributes>");

out.write("<attribute>");
out.write("<name>name</name>");
out.write("<type>String</ type >");
out.write("<value>"+name+"</ value >");
out.write("</attribute>");
out.write("<attribute>");
out.write("<name>address</name>");
out.write("<type>String</ type >");
out.write("<value>"+ address +"</ value >");
out.write("</attribute>");
out.write("<attribute>");
out.write("<name>age</name>");

NEXT-GENERATION INFORMATION SYSTEMS34

out.write("<type>long</ type >");
out.write("<value>"+age+"</ value >");
out.write("</attribute>");
out.write("</attributes >");

out.write("</class>");
};

Service Composition
Service composition is the second area we focused on, and it proved to be
the most challenging. Composing components within a system is usually
a process of plugging in interfaces to well-defined units of functionality,
such as Java Beans. Composition of services within an object in a systems
schema is much more difficult. We discovered and implemented a number
of different ways to compose services without affecting other aspects of
the objects although each comes with its own unique issues. The first
approach we took was to have the template developer insert calls to out-
side functions/methods at the correct place in the generation process.
This approach, while it did work, did not prove to be very scaleable to a
large number of different services because of the knowledge required
about each service by the template developer. The second approach was
to allow a template developer to implement a set of interfaces, which get
calls based on the type of interface or based on template execution. This
approach proved to be much more scaleable to a wide number of optional
services, but does require the template developer to be much more versed
in software development because it currently works only with the Java
templates.

Template Modification and Addition
Our third area of focus was the ease of extending and adding new tem-
plates. Templates can currently be written in either Java or ECMAScript.
Java templates allow for many developers to use the same language that
they are using to code their templates. ECMAScript allows developers
who have used VBScript or JavaScript to jump in and begin making use
of a powerful development tool.

Our conclusion from our work with the code generation template was to
concentrate on the Java-based templates. This conclusion was reached
based on having the power of a full object-oriented programming lan-
guage and using the language most developers were familiar with. In
addition, because experts in the different areas of software development
are usually the people writing templates, they prefer to write in a lan-
guage that they commonly use.

BENEFITS
Many of the benefits of code generation are obvious, such as the decrease
in time to market of new applications and systems, reduction in the
amount of new code to be tested, and a reduction in the number of
human errors. In this section, we will explore time reduction and some of
the other benefits of code generation.

Code generation allows reuse of one of the scarcest resources in most
companies: specialized experts. Experts in distributed transactions, security,
or concurrence can be used to write specialized templates, thus allowing
for corporate capture of that specialized knowledge and providing a force

Object Model-Driven Code Generation for the Enterprise 35

multiplier to other developers in an organization. Code generation also
allows groups to define how they want the code to "look." Styles and
enterprise-wide coding standards can be enforced by using templates that
follow the standards. Because Quava allows the user to select which sets
of templates to apply to their model, developers can experiment with a
wide array of architectures and design patterns to see which best fits their
specific requirements. Finally, code generation allows developers to be
free of their underlying technology. Currently, when a new technology
comes out, the developer must go back and re-code an application or sys-
tem to make use of it. With code generation, new technologies can be
merged with current systems, or underlying technologies can be com-
pletely replaced by new technology.

Reduction in Development Time
A reduction in development time is the main reason for using code gener-
ation techniques. Quava allows the developer to jump straight from the
design into the coding phase with very little effort. Normally, the devel-
oper is handed a design document and must start from, at best case, gen-
erated code skeleton, or at worst case, from scratch. Quava reduces the
amount of code a developer must write far more than generators that
provide a code skeleton because it is generating object behavior, not just
code file structure. Take the example used above for an XML streaming
method. This would not be hard to write by hand, but why waste the
developer's time doing something that could be generated? A reoccurring
benefit of generating methods such as the XML streaming is that any
time the model changes, those changes are quickly reflected in the source
code. Eliminating human errors that result from typos and simple logic
errors also reduces development time. Once a template has been tested,
the code that it produces requires far less code testing, allowing the tester
to focus more on the business logic of the system.

In our research on code generation, we measured a number of projects
with varying object schemas to gather some quantifiable numbers of the
kinds of savings code generation could produce. Table 1 shows values
captured from some of these projects. The values for lines of code gener-
ated have been rounded off to the nearest thousand.

Overall, code generation has
been proven to increase the speed
at which systems and applica-
tions can be implemented, and,
with Quava's generation tech-
nologies, the reduction is magni-
fied by the experience of the
developer.

Force Multiplier
Concurrency issues, complex services issues, and other difficult program-
ming tasks can be encapsulated in templates. By having your best soft-
ware engineers develop templates, every software engineer that generates
an object server with that template may take advantage of their knowl-
edge. In essence, with a software development model where experts create
templates and junior programmers develop applications using object

NEXT-GENERATION INFORMATION SYSTEMS36

Case

A
B
C

Number
of Classes

Average Attributes
per Class

Average Operations
per Class

Lines of Code
Generated

7
120
321

30
22
12

24
6
8

8,000
257,000
750,000

TABLE 1. Code generation case study.

servers generated from such templates, an organization can produce
much more high-end software. Of course, the exact value to the organi-
zation is only measurable by the number of times a template can be used.

Standardization of Enterprise Rules
By code generating the entire set of object servers with the same tem-
plates, a system engineer is guaranteed adherence to these enterprise
rules. Different developers can interpret enterprise rules differently.
Ambiguities in the software requirements specification can lead to major
additional costs later on in the software development process [10].

If developers are allowed to produce object servers with different tools or
different templates, it is impossible to guarantee that the system will per-
form as intended. These differences may even allow for correct execution
when the interpretation is constant throughout the enterprise. However,
when these different interpretations exist in the same enterprise, errors
occur. When the problem domain consists of millions of objects and
thousands of object servers, the only feasible solution is to code generate
the object servers.

Experimentation
By allowing a system engineer to try different service implementations
and middleware without having to encode all of the possible combina-
tions by hand, a system engineer can develop prototypes of multiple test
architectures and evaluate their characteristics in realistic deployment
environments.

One DARPA project ran into trouble when the deployment environment
proved to be less reliable than it was assumed to be. The project used
hand-held computers networked with radio waves. When the connec-
tions between the hand-held computers proved unreliable, the system
performance was severely impacted. Basically, the system would connect
to the object servers only to be disconnected by unreliable communica-
tions within minutes. The system spent most of its resources establishing
and re-establishing connections. The project was able to move from a
connection-based architecture using CORBA to a connectionless archi-
tecture using HyperText Transfer Protocol (HTTP)/XML by regeneration
of the object servers with different templates.

Technology Evolution
By building your data access and dissemination layer for the enterprise
with Quava, your enterprise architecture can handle changes in software
technology more readily. When advanced implementations of core services
become available, a new template that implements the glue code between
the new service implementation and the objects is created, and the object
servers are regenerated without having to change any client application
software. Also, when new middleware technologies arise, the object
servers can be regenerated with additional interfaces so that the object
servers can support client applications using the previous interfaces and
new client applications using the new interface simultaneously. Older
interfaces can be removed when client applications no longer need them
by regenerating the object servers without the deprecated interface.

Object Model-Driven Code Generation for the Enterprise 37

CONCLUSION
In our research, we found that model-driven code generation was a very
promising technology with many benefits to the software practitioner.
The benefits of using this approach in an enterprise help elevate many of
the more substantial problems faced when developing large-scale systems.
The openness and flexibility of the Quava implementation gives great
support to life-cycle maintenance and software evolution of the system.

REFERENCES
1. Siska, C. 1998. "A Processor Description Language Supporting Retargetable

Multi-Pipeline DSP Program Development Tools," Proceedings on 11th
International Symposium on System Synthesis, 2–4 December, Taiwan, China,
pp. 31–36

2. Bringmann, O., W. Rosenstiel, and D. Reichardt. 1998. "Synchronization
Detection for Multi-Process Hierarchical Synthesis," Proceedings on 11th
International Symposium on System Synthesis, 2–4 December, Taiwan, China,
pp. 105–110.

3. Leone, M. and P. Lee. 1994. "Lightweight Run-Time Code Generation,"
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, June.

4. Engler, D. 1996. "VCODE: A Retargetable, Extensible, Very Fast Dynamic
Code Generation System," Proceedings of the 23rd Annual ACM Conference
on Programming Language Design and Implementation, 21–24 May,
Philadelphia, PA, pp. 160–170.

5. Berzins, V., O. Ibrahim, and Luqi. 1997. "A Requirements Evolution Model
for Computer-Aided Prototyping," Proceedings of the 9th International
Conference on Software Engineering and Knowledge Engineering, Madrid,
Spain, June.

6. Shing, M., V. Berzins, and Luqi. 1996. "Computer-Aided Prototyping
System (CAPS)," Proceedings of the Software Technology Conference, Salt
Lake City, UT, April.

7. Attie, P. and E. Emerson. 1989. "Synthesis of Concurrent Systems with
Many Similar Processes," Proceedings of the 16th Annual ACM Symposium
on Principles of Programming Languages, 11–13 January, Austin, TX,
pp. 191–201.

8. Lewis, J., S. Henry, D. Kafura, and R. Schulman. 1991. "An Empirical Study
of the Object-Oriented Paradigm and Software Reuse," Conference
Proceedings on Object-Oriented Programming Systems, Languages, and
Applications, 6–11 October, Phoenix, AZ, pp. 184–196.

9. Bhansali, S. 1995. "A Hybrid Approach to Software Reuse," Proceedings of
the 17th International Conference on Software Engineering Symposium on
Software Reusability, 29–30 April, Seattle, WA, pp. 215–218.

10. Henderson-Sellers, B. and J. Edwards. 1990. "Object-Oriented Systems Life
Cycle," Communications of the ACM, vol. 33, no. 9, pp. 142–159.

❖

William J. Ray
MS in Software Engineering,
Naval Postgraduate School,
1997
Current Research: Enterprise
architectures; distributed systems;
object-oriented technologies.

Andy Farrar
BS in Computer Science,
San Diego State University,
1992
Current Research: Middleware
technologies; software synthesis;
distributed systems.

NEXT-GENERATION INFORMATION SYSTEMS38

