148

Automation in Software Testing for Military
Information Systems

Jack Chandler
SSC San Diego

INTRODUCTION

This paper shows how automation can improve test results. At the begin-
ning of this effort, a search was conducted to survey the status of auto-
mated testing. The survey revealed white papers and some commercial
products that help automate testing (see Dustin [1] and Pettichord [2]).
Many of the commercial products are key and cursor recorders that cap-
ture the keystrokes and cursor movements produced by test engineers
during the testing process. This testing works well for testing revisions
of the same product. It is not as appropriate for testing multiple pieces
of software for compliance to a standard.

Dustin's paper on introducing automation to a test team states that the
first phase of designing testing automation is analyzing the testing
process [1]. To be of value, software testing must be a repeatable process
that 1s definable, measurable, consistent, and objective. If the process is
deficient in any of these areas, the testing will not be repeatable. This
paper examines various factors in the testing process (including the
human factor), describes the results of a case study on military informa-
tion systems, reviews the steps required for successful automation, and
provides a conclusion.

COMPONENTS OF THE SOFTWARE TESTING PROCESS

Software under Test

The most essential and basic component of the testing process is the soft-
ware under test. This component cannot be changed to any great extent.
The two basic categories of software under test, depending on the type of
testing, are as follows: (1) testing a software product to determine whether
the product is ready for release or to validate error corrections, and (2)
testing multiple components of software for compliance to a standard. Both
types of testing are valid; they have different requirements and different
automation strategies.

Hardware for Software Testing

The second component of the testing process is the hardware platform on
which the software is loaded. Improvements may be possible in this area.
For example, a different hardware platform may increase the speed of
software testing. Increasing the number of "seats" in use simultaneously

ABSTRACT

Software testing must be definable,
measurable, consistent, and
objective to be a repeatable
process. This paper examines the
components of the testing process,
including software, hardware,

the human element, and the data-
collection process. It also includes
a case study in test automation
derived from the Defense Infor-
mation Infrastructure Common
Operating Environment (DII
COE). A reduction in the number
of buman-controlled steps in the
software process significantly
improved test results during this
case study. Automation was suc-
cessful because the many different
components of software were
tested for compliance to a well-
defined standard. Automation was
straightforward because the test
methodology did not require any
specific assumptions about the
software tested.



Automation in Software Testing for Military Information Systems |

during the testing scenario or increasing the performance of the individ-
ual "seats" is another way hardware can improve testing. The disadvan-
tage of substituting different hardware during the testing process is the
risk of testing on a non-representative platform, which would make test
results questionable. To overcome this potential problem, some testing
must be done on a typical user platform.

Human Testers

The third component of the testing process is the engineer or group of
engineers testing the software. Test engineers make a substantial contri-
bution to the testing process, but the possibility of human error makes
them the weakest factor in the testing process. Even more important is
the fact that the process is not consistent because test engineers do not
consistently make the same mistake. The most dedicated and competent
engineer can err under some circumstances. Thus, eliminating the
"human in the loop" can significantly improve the testing process.
Reducing the number of human-controlled steps can dramatically
improve software testing. An example of how to reduce the human
interface areas in a testing process is described below.

Data Collection

Another major component of the software testing process is the data-
collection function, which often can be improved. The data-collection
function often consists of the test engineer manually filling out a paper
data-collection form. The test engineer will have a test notebook or a
data form in which the test data are recorded. Often, the test data are
re-entered into a spreadsheet or a word processor for report generation
or into an e-mail message for distribution of the test results. Forms,
which provide ample opportunity for errors, could be significantly
improved. For example, if the form is structured in a multiple-alternative,
forced-choice paradigm rather than a less-structured essay format, sub-
jectivity can be reduced.

Another common test procedure consists of the test engineer manually
filling out an electronic data-collection form. The electronic form is bet-
ter than the manual form because data are manipulated only once, thus
reducing transcription errors if the data are input into a report generator
or an e-mail system. Using an electronic form can require investing in
more hardware to support the collection. More time may be needed to
fill out the forms initially, but this method saves time by reducing or
eliminating the need to transpose data.

As with paper forms, the design of the electronic form is critical. One
way to improve the design is to minimize the number of probable
answers while still allowing all possible answers. This is done by prompt-
ing the user to consider certain likely choices while grouping other possi-
ble answers under "other" with a space to insert a comment. A periodic
review of the use of the "other" category is recommended, with the
objective of providing common "other" answers with specific choices of
their own.

Another useful mechanism is to collect data automatically and manually
by enabling software to perform the test. Efficient results are achieved by
automating to the fullest practical extent the test data acquisition process.
The parts of the process that do not lend themselves to automation still

149



150

CA4ISR SYSTEMS INTEGRATION AND INTEROPERABILITY

can be performed manually. A useful, proven procedure is to provide in
the testing software a mechanism to input the manually derived test
information. The "form" that is provided for collecting this manual
information should be designed using the criteria discussed previously.

The most advanced and desirable phase of automation consists of collecting
the testing data with a computer program that involves little or no human
involvement. Only when the testing process is completely automated is a
repeatable process achieved. Whenever a person manually performs a test,
there is a chance that the test cannot be consistently repeated. Human
beings are predictable in a group, but unpredictable individually.

Other Components

The other two major components of software testing are the education of
the test engineers and the testing process itself.

TEST AUTOMATION: A CASE STUDY
Background

This section describes an example of end-to-end testing where the testing
itself has been mostly automated and the areas that cannot be automated
have been analyzed to reduce or eliminate subjectivity. The Department
of Defense (DoD) has created the Defense Information Infrastructure
Common Operating Environment (DII COE). Many DoD systems are
being built using this "plug and play" infrastructure. The components of
software for this system are called segments. A compliance specification
has been created to enhance the "plug and play" capability of this infra-
structure. This specification consists of over 300 requirements. A segment
must pass at least the first 200+ requirements to be considered for inclu-
sion in the DIT COE.

DII COE compliance involves a time-consuming and human-intensive
testing process. In one instance, about 18 person-hours were required to
test a single, simple segment. Significantly greater test durations have
been common in other cases. Compliance testing was a likely candidate
for automation because it is common to all segments. The procedure that
was used to automate this testing process is described below.

Document the Testing Process

In this step, the engineer will discover the current method of testing,
including the acceptable test methods and the methods that are unsatis-
factory. In many cases, the test engineer will be able to learn the test
processes and procedure and to expose many inconsistencies in this step.
The information that needs to be recorded during the test procedure is
documented. From this experience, the test team learned that there were
many "homegrown" solutions to the automation, a situation that had
advantages and disadvantages. On the positive side, some work already
had been completed. Unfortunately, these solutions were not consistent.
After gleaning the currently automated processes, the test team captured
the steps involved in those areas that were not automated.

The test team learned that not all DII COE requirements were tested.
This was not because the untested requirements did not provide any
added value, but rather to reduce the time required for testing. This
prompted the test team to create a "best practices" spreadsheet in which



Automation in Software Testing for Military Information Systems |

to capture the test algorithms, not the test "programs.” To provide better
DII COE compliance, the test team also created algorithms for the
requirements that were not being tested.

Identify Common Processes

The test team identified the common processes from the algorithm
spreadsheet. These will be used later to ensure that a single testing
method will be used. Too often, common testing processes are coded
multiple times because engineers are unaware that some of these processes
are in common use. This causes inconsistencies in the use, application,
and maintenance of these processes, especially if the processes need
debugging or upgrade.

Design the Automation (Software)

The first steps of the automation design consisted of gathering and defin-
ing requirements. Then, the software had to be designed to meet those
requirements. The design called for an object language with a compliance
engine and an individual object for each requirement. Since the DII COE
software is supported on multiple platforms, the test team elected to use
Java as the programming language. In theory, this was expected to
decrease the inconsistencies by providing a common baseline. The test
team wanted to keep the design generic to accommodate any required
testing process where the requirements were structured in hierarchical
levels. To pass at level 5, for example, would require that all tests in levels
1 through 4 be passed as well as all tests in level 5. With this in mind, the
test team designed a compliance engine with a test manager, an applicabil-
ity filter, and some common data-collection agents. We defined an inter-
face to the compliance engine that the test objects will use. The design
included a report generator and a graphical user interface (GUI) that
allows the test engineer to view the data-collection form and to access
the various options. These components are described below in more
detail.

Because many of the DII COE requirements apply only to certain types
of segments, the test team needed an applicability filter to determine the
applicable tests based on the segment type. Each test object specifies to
the applicability filter the segment types to which it applies. The default
was specified as applicable to all segment types.

The test manager launches the test objects at the appropriate times. For
example, certain tests must be run while the segment is installed, whereas
others cannot run until the segment is deinstalled. The test manager also
runs some data-collection agents, which also must be run at certain times.
The relative timing of each test is important to specify clearly when doc-
umenting the testing process.

The data-collection agents determine information about the segment
under test and that segment's effect on the underlying system. The test-
unique data-collection agents (if any) are common processes that collect
other data from the underlying system. This feature was included in the
design, not for the specific purposes of the test team, but only for the
generic case.

The questionnaire object(s) obtain additional information from the test
engineer. Questionnaires are presented twice in the testing process. (Figure 1
shows the testing process.) The first time the questionnaires are presented

151



152

| CA4ISR SYSTEMS INTEGRATION AND INTEROPERABILITY

is before the segment is installed;
software developers provide this
information. The second time is
after installation to obtain informa-
tion that the test engineer can
determine easily, but that the auto-
mated software would not be able
to determine (or be able to deter-
mine uniquely). The question-
naires present multiple-choice
questions, including an "other"
choice, where applicable. These
objects read from formatted text
data files and are therefore
dynamic and easily modified.

The data-collection form and the
menus presented are also dynamic.
They are created by the compli-

ance engine at runtime. The report

generator merely specifies the
state of each test object. This facil-
itates the additional tests as well
as additional report formats. The

INITIALIZATION
DATA (_INI FILE)

RESULTS
DATA-FILE

REPORT
GENERATOR

REPORT

QUESTIONNAIRE
OBJECT
,.I:
LAUNCH
‘,§ TEST OBJECTS
P
TEST MANAGER
F
I
L
T TEST-UNIQUE
3 DATA-COLLECTION
DATA-COLLECTION R AGENTS
AGENTS
ENGINE

FIGURE 1. Block diagram of testing process.

testing process also tracks the test engineer's name and reports separately
any tests that were waived or overridden. The test team found that the
software to automate first should be that which provides the most effi-
cient and largest payoff [2]. A phased approach to automation has proven

most successful.

Designing the Automation Process

The requirements gathering described above also will yield one or more
processes. In the beginning of software testing, all processes may not yet
be in place. It is equally important to design the process. The automation
software works within a process. This process will depend on the auto-
mation, which, in turn, will depend on the process recursively; often,

both should be designed at the same time.

If testing has not been automated previously, the process will need a
major rework. When automated testing is in place, personnel may be
available to be tasked elsewhere. This will not be true in the beginning
since the automation will also be undergoing testing. It is important to
account for the testing assets that will be displaced by the automation.
After some time, however, resource management will have to account for
where to move these displaced testing assets.

Personnel Management Considerations

Test engineers, who will need to be trained how to use the automation,
may have significant technical expertise. The main concern is to induce
the test team to accept the new paradigm in which automation is replac-
ing some of their expertise. It is not uncommon to see a reluctance to
accept or attempts to discredit the automation.

In the author's experience, the best way to prevent this reluctance is to
have the more experienced test engineers help with programming the




Automation in Software Testing for Military Information Systems |

algorithm-design phase if they are capable. It is important to get them to
"take ownership" of the new paradigm. At least a small team of program-
mers will be required to help with the debugging and enhancing of the
automation. The consistency and time savings will pay for these personnel.

The program manager also can redirect some personnel into a quality-
assurance role to ensure that the output of the testing is of the required
quality. Quality assurance is especially important if the results will be
used outside of the test laboratory.

REVIEW

To achieve success in replacing the manual software testing process with
an automated testing process, the test engineer must complete the follow-
ing actions:

1. Document the current testing process.

2. Identify common processes.

3. Complete the following steps in parallel

a. Design the automation software.

b.Design the automation process.

c. Encourage acceptance by the test engineers by inducing them to
"take ownership" of the new process.

d.If appropriate, consider using an object-design for the automation.
Think about using a separate object for each test. Using objects
helps when individual tests need to be modified.

e. Think about a design that allows new tests and new reports to be
added with few or no changes to the underlying data-collection
(engine) process.

f. When designing the software, think of the "big picture." How can
this "machine" be used as part of a bigger system? Perhaps, instead
of generating a report, the output could be used as input to a data-
base. In this case, the report capabilities of the database could be
used or the defects could be tracked automatically.

CONCLUSION

Replacing manual software testing with automated software testing can
yield numerous rewards. A repeatable test process is the major advantage,
leading to improved software quality and avoidance of a non-repeatable
test. The depth of test coverage also can be increased, and the time
requirements can be reduced. The combination of these two factors will
improve the quality and cost savings of the software that supports DoD
systems compliant with DII COE requirements. This testing methodology
could be applied to testing software for government agencies outside
DoD, such as the Department of Transportation Federal Aviation
Administration and the Department of the Energy, both of which have
exacting standards related to safety and security.

ACKNOWLEDGMENTS

This work was sponsored by the Defense Information Systems Agency—
Defense Advanced Projects Research Agency (DISA-DARPA) Joint

|
Jack Chandler

BS in Computer Engineering,
University of New Mexico, May 1991
Current Research: Automation of
repetitive tasks and removal/reduction
of subjectivity; collaboration research.

153



154 | CA4ISR SYSTEMS INTEGRATION AND INTEROPERABILITY

Program Office. The author thanks the entire test team, especially Pho Le,
Steve Bitant, Will Greenway, Todd Webb, Randy Schiffman, MAJ Greg
Csehoski and CAPT Stuart Kurkowski.

REFERENCES

1. Dustin, E. 1997. "Process of Introducing Automated Test Tools to a
New Project Team," Proceedings of the Rational User Conference.
URL: http://www.autotestco.com/html/sld001.htm

2. Pettichord, B. 1996. "Success with Test Automation," Proceedings of
Quality Week 96, URL: http://www.io.com/~wazmo/succpap.htm

O



