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INTRODUCTION

In many robotic and remote operation applications, depth (or range) information at various points
in the scene is required. These include autonomous navigation, landing site selection, scene recon-
struction, or postprocessing interpretation of video footage.

Theoretically, depth, motion, and optical flow (generated by the relative movement between the
camera and scene) are three parameters of a circular problem:

� Given the camera motion and three-dimensional structure of the scene, we can generate the
optical flow, and hence construct a sequence of images of the moving scene (3-D simulation).

� Given knowledge of the three-dimensional scene and the optical flow, we can compute the
motion which generated it (motion recovery).

� And finally, given the camera motion and the resulting optical flow, we can extract depth
information and reconstruct the three-dimensional scene that gave rise to the flow (scene recon-
struction).

When only the optical flow is available, the problem becomes much harder, and the exact depth and
motion cannot be determined [Horn, 1986]. Only the relative depth between various scene points, and
the relative motion (or direction) can be recovered. Recovering depth and motion from a sequence of
images only is an active research area. For example, Horn [1986] described a least-squares method
wherein an iterative process may be used to solve a set of seven simultaneous equations involving the
optical flow. Fermuller presented a tracking technique [1991] and a pattern-matching technique [in
Aloimonos, 1993] to estimate motion parameters. This general problem is outside the scope of this
report.

We concentrate on finding the depth given a sequence of images and known motion or direction of
motion. This problem is appropriate for many real-world applications, where robot (and camera)
motion can be dictated by open-loop control, or motion information can be supplied by non-visual
means, such as wheel encoders, accelerometers, gyroscopes, or other non-visual feedback control
schemes. Albus [1990] computed range given known motion under various conditions using the opti-
cal flow. However, the optical flow itself is difficult to compute from a sequence of images (only a
component of it, the normal flow, is easily computable). We will show how to obtain range data with-
out having to find the optical flow itself, and analyze the method’s sensitivity to inaccuracies in the
known motion. Since the method uses only temporal and spatial first derivatives, which can be com-
puted easily from any two consecutive frames, the depth map can be computed quickly in one pass,
and thus is more suitable for real-time navigational problems. Finally, we describe the result of this
method when applied to a well-known sequence of test images.
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BACKGROUND

We will first discuss several concepts necessary for the development of the algorithm: namely, the
difference between the optical flow and the normal flow, camera geometry, computation of the normal
flow, and the focus-of-expansion.

OPTICAL FLOW AND NORMAL FLOW

As the camera moves in a static environment or as an object moves in front of the camera, relative
motion occurs between the camera and the objects. The motion field assigns velocity vectors to points
in the camera image. These vectors are projections of the corresponding real-world motion vectors.
On the other hand, the optic flow is the apparent motion of the image pattern, which is not necessarily
the same as the motion field. Consider a fixed object being illuminated by a moving light source. The
motion field is zero since the object is stationary. However, the optic flow is non-zero, since the
brightness pattern in the image changes. Except for a few selected scenarios, we expect the optic flow
to be the same as the motion field. This assumption is used by researchers in deriving useful informa-
tion about the scene from visual motion. Figure 1 illustrates the calculated optical flow generated by a
spinning sphere [Horn, 1986].

Figure 1 .  The optical flow computed by an iterative algorithm on
simulated data of a spinning sphere on a randomly patterned
background [Horn, 1986]. Note that erroneous vectors sometimes
occur at boundaries, where the brightness is discontinuous.

Many vision algorithms depend on the assumption that the optic flow is available to the processing
system. However, when camera motion is not known, accurate optic flow is usually not available due
to a phenomenon known as the aperture problem, as demonstrated in figure 2. As a line of constant
brightness moves across the image, which vector represents the correct optic flow at point P? That is,
to which position (Q�, Q�, ...) has point P moved? This illustrates the fact that the optic flow is not
uniquely determined by local computations. It is often estimated by interpolating between locations
where it is available (such as brightness comers or specific scene features), by making assumptions
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on its smoothness (which is often incorrect) or using coarse-to-fine region-based techniques [Barron
et al., 1992], or by iterative solutions [Ballard & Brown, 1982]. The normal flow, however, is unique
and always simple to derive. It is the component of the optical flow perpendicular to the brightness
contour (i.e., along the brightness gradient—PQ� in figure 2). We will give the derivation of the nor-
mal flow after we introduce the camera geometry in the next section.

Figure 2 .  The aperture problem.

CAMERA GEOMETRY

We define the geometry of the camera and scene as in figure 3. The image plane is placed at a focal
length f from the lens O along the optical axis, which is our Cartesian Z axis. Technically, the image
plane appears on the other side of the lens. However, we have placed the image plane on the same
side with the scene for convenience (the input devices normally invert the projected image so that in
effect the output image appears as depicted).

Figure 3 .  Perspective projection of camera and scene.
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From the perspective projection, we can see that any point (X, Y, Z) in the scene is projected on to
the image plane at (x, y) where:

x�
Xf
Z

            y�
Yf
Z

COMPUTATION OF THE NORMAL FLOW

Let E(x, y ,t) be the image brightness at time t at image point (x, y). After the motion has occurred,
the same image brightness will appear at point (x+�x, y + �y) at time t + �t. Thus,

E(x� �x,y� �y, t� �t) � E(x,y, t) . 

Assuming that image brightness varies smoothly with x, y, and t, we can use the Taylor series
expansion on the left-hand side to get

E(x,y, t)� �x�E�x� �y�E�y� �t�E�t � high–order terms� E(x,y, t) . 

Canceling E(x, y, t), dividing both sides by �t, and taking the limit as �t approaches 0, the higher
order terms drop out and we are left with

�E
�x  dx

dt
��E
�y  

dy
dt
��E

�t � 0 . 

With u(x, y) = dx/dt and v(x,y) = dy/dt defined as the components of the optical flow along the X and
Y axes, we have the well-known optical flow constraint equation

�E
�x u��E

�y v��E
�t � 0 , 

which can also be expressed as a dot product:

��E
�x  , �E�y

� · (u,v) ���E
�t  . 

Since the brightness gradient is ��E�x  , �E�y
� and the optical flow is (u, v), the normal flow (the compo-

nent of the optical flow in the direction of the brightness gradient) is

��E
�x  , �E�y

�

��E
�x
�2� ��E�y�

2�
 · (u,v) �

��E
�t

��E
�x
�2� ��E�y

�2�
� Un , (1)

with the minus sign reflecting the fact that the normal flow is in the opposite direction to the gradient

vector whenever ��E�t � is positive (e.g., at the leading edge of a bright object), and vice versa (the gra-

dient vectors point toward brighter areas).

Note that all computations in deriving the normal flow involve only local derivatives and do not
require advanced knowledge of object or camera motion. It is the only representation of image motion
that can be robustly computed [Aloimonos, 1990].
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THE FOCUS OF EXPANSION

As the camera moves relative to the static environment, or as an object in the scene moves with
respect to the camera, the translational components of the optic flow converge at a point on the image
plane, the focus of expansion (FOE)—see figure 4. The FOE is very useful in navigation problems
because it is the projected image of the ray along which a camera undergoing translational motion
moves. If the FOE falls inside an object, that object will collide with the camera.

Figure 4 .  The FOE from an optical flow map.

If we use the camera geometry of figure 3, a rigid object moving with translational velocities (U, V,
W) (with no rotation) that was at (X, Y, Z) initially will be imaged at (x�, y�) at time t, where

�x�,y�� � �(X�Ut)f
Z�Wt

,
(Y�Vt)f
Z�Wt

� . 
	����� ���� ���� ��� ���� ��
��� ��� ���� ������ 
�� �� �� ������ ���������� ��� ���� �� ��� ��� ��� 
�
� ���
��

FOE� �Uf
W

,
Vf
W
�

��� ���� ��
��� ��
���

If a rotational velocity is involved, then the FOE is tied to the center of rotation. This is because
rotation about any arbitrary center can be expressed as rotation about another center plus a compen-
sating translation. The motion of any point (X, Y, Z) on an object undergoing translational velocities
(U, V, W) and rotational velocities (A, B, C) around a center of rotation (X�, Y�, Z�) can be
expressed as:



	




X
.

Y
.

Z
.

�

�
�

	



U
V
W


�
�
�

	



A
B
C


�
�
�

	




X� X0

Y�Y0

Z� Z0



�

�
 . 
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Now if we introduce another arbitrary point, (X�, Y�, Z�), we can rewrite the above equation as

�
�

�

X
.

Y
.

Z
.�
	



��
�
�

U
V
W
�
	


��
�
�

A
B
C
�
	


��
�

�

X� X1

Y�Y1

Z� Z1

�
	



��
�

�

X0� X1

Y0� Y1

Z0� Z1

�
	



��
�
�

A
B
C
�
	


 , 

which is an expression of motion of the point (X, Y, Z) around the new center of rotation (X�, Y�, Z�).
The second cross product, which does not involve the variables (X, Y, Z), is the compensating transla-
tion for the entire object.

Figure 5 demonstrates this property by showing the same optical flow vectors decomposed into
two different sets of translational and rotational flows corresponding to two different centers of rota-
tion, and their appropriate FOEs. The FOE is most useful under purely translational motion or when
the rotational component is known.

RANGE DERIVATION

DERIVING RANGE WITH KNOWN CAMERA MOTION

Often in mobile robotics applications, estimates of the robot’s motion are available from non-visual
sources. When camera motion is known, the problem of determining distances to objects in the envi-
ronment is much simplified. The full optical flow is not required, but only the normal flow (or equiv-
alently, the local derivatives), which can be robustly computed.

COMPUTING RANGE USING LOCAL IMAGE DERIVATIVES

Let the translational velocities of the camera be (U V W) and the rotational velocities be (A, B, C)
with respect to the origin. Using the same coordinate system as stated previously, we can express the
velocity of any point (X, Y, Z) on a moving object as which can be rewritten as

�X
.
,Y

.
,Z

. � �� (U,V,W)� (A,B,C)� (X,Y,Z),

which can be rewritten as

X
.
��U�BZ�CY,

Y
.
��V�CX�AZ,

Z
.
��W�AY�BX

 . 

We can then express the optical flow (u, v) as

u� dx
dt
� d

dt
�Xf

Z
� � X

.
f

Z
�

XZ
.
f

Z2           v�
dy
dt
� d

dt
�Yf

Z
� � Y

.
f

Z
�

YZ
.
f

Z2

or

u�
�Uf� xW

Z
�A

xy
f
�B�x2

f
� f��Cy

v�
�Vf� yW

Z
�A�y2

f
� f��B

xy
f
�Cx

 . (2)
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Figure 5 .  Effect of moving the center-of-rotation (COR) on the focus-of-expansion (FOE) of the
same set of optic flow vectors. The dark vectors represent the optic flows. R = rotational
component, T = translational component.
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Substituting these definitions of u and v into the normal flow equation (1), and abbreviating the unit

gradient vector, (nx,ny) �
��E
�x ,�E

�y
	

��E
�x
	2 � ��E

�y
	2


 we have

Un � ��Uf� xW
A

�A
xy
f
�B�x2

f
� f	�Cy�nx���Vf� yW

Z
�A�y2

f
� f	�B

xy
f
�Cx�ny . 

The only unknown in this equation is Z, the depth dimension of the point of interest. Thus, Z can be
computed as

Z�
(� Uf � xW)nx� (� Vf� yW)ny

Un��Axy
f
�B�x2

f
� f	�Cy�nx��A�y2

f
� f	�B

xy
f
�Cx�ny

(3)

or, in terms of the partial derivatives,

Z�
(Uf� xW)�E

�x � (Vf� yW)�E
�y

�E
�t ��Axy

f
�B�x2

f
� f	�Cy��E

�x ��A�y
2

f
� f	�B

xy
f
�Cx��E

�y

Note that Z cannot be found where Un � �xy
f

–B�x2

f
� f	�Cy�nx ��A�y2

f
� f	–B

xy
f

–Cx�ny

(where the normal flow is due entirely to camera rotation). This is because only the translational com-
ponent of the optical flow (and hence translational component of the normal flow) is dependent on
depth.

Once Z is found, the other space coordinates are also known, since X� xZ
f
 and Y�

yZ
f

. There-

fore, given any point (x, y) in the image and the camera velocities, the position of the corresponding
point in the real world (and hence its range) can be computed directly from the normal flow or the
spatial and temporal derivatives. Of course, as with all flow methods, the range can be found only for
regions of high texture, or at brightness edges, where the derivatives are non-zero. The depth of
homogenous regions must be interpolated from the surrounding edges.

Accuracy Analysis

Accuracy of the Normal Flow . Many authors have criticized the accuracy of gradient-derived opti-
cal flows [Albus, 1990; Barron et al., 1992]. Some of these criticisms also apply to our gradient-
based normal flow derivation technique.

Since, from equation (1), the normal flow has magnitude

|Un|�
��E
�t
�

��E
�x
	2 � ��E

�y
	2


 , 
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we can see that quantization errors and noise-contributed errors will be minimized where both the
spatial brightness gradient and temporal change are greatest. Fermuller and Aloimonos [1991] have
also shown that the normal flow most accurately represents the normal component of the physical
motion field where the brightness gradients are large. Therefore, in practice we should only compute
the normal flow at points where the spatial derivatives exceed a minimum threshold. These factors
often result in a sparse range map.

Low-pass filtering is necessary for most flow-determination methods [Barron et al., 1992], and
especially so for derivative-based techniques, since smoothness in brightness variations is assumed in
the derivation of the optical flow equation. Low-pass filtering helps enable derivatives to be taken at
step edges and helps attenuate the effects of noise and quantization errors, but cannot undo the effects
of aliasing due to spatial or temporal frequency components that are higher than the sampling rate. On
the other hand, smoothing also removes sharp features that contain the most accurate information.

Albus [1990] noted that besides aliasing problems, smoothing requirements, and sparse output
maps, gradient-based techniques also suffer from the non-uniform sensitivity of photodetectors in any
array, and from low-frequency thermal drift in detector noise. Even so, derivative-based methods are the
simplest and fastest of all flow-determination techniques, and most appropriate for real-time imple-
mentation on conventional hardware. The combination of speed and lack of accuracy favors their use
in real-time qualitative vision techniques [Aloimonos, 1990].

Computing Derivatives and Gradients in Discrete Domain . There are several ways to compute
derivatives in the discrete domain [Rosenfeld & Kak, 1982]. The usual method is to take first-order
differences along the desired direction, either using two adjacent pixels (x and x+1) or across the cur-
rent pixel (x–l and x+1). The first method produces a poorer approximation [Cheney & Kincaid,
1980], unless the result is associated with the crack between the two pixels. This concept of associat-
ing derivatives with cracks between pixels was used by Horn [1986]. He performed the differenti-
ation using first-order differences at the center of a three-dimensional cube. The derivative along any
axis is taken as the difference between two slices of image data averaged in a plane perpendicular to
that axis (see figure 6).

Figure 6 .  “Slice averaging” method: the derivatives are associated with the center of the cube. A
derivative along any one axis is the difference between two slices in the plane perpendicular to that
axis. Thus,

�E(x, y, t)
�t

� 1
4
��E1,1,2� E1,2,2� E2,1,2� E2,2,2

� � �E1,1,1� E1,2,1� E2,1,1� E2,2,1
��
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The derivative can be further improved by using 4 or more points (or averaged slices) around the
point of interest, instead of the simple difference. For example, a more accurate estimate of the first
derivative is [Cheney & Kincaid, 1980]:

f	(x3) �
f (x4)� f (x2)

2
�

f (x5)� 2f (x4)� 2f (x2)� f (x1

12
 . (4)

We use the combination of this formula and slice averaging for computing derivatives.

Once the spatial derivatives, �E
�x and �E�y are found, the brightness gradient is normally computed as

��E
�x
�2���E�y�

2� . However, with the square pixel tesselation used by most imaging systems, this

often leads to biases in one direction over the others. The biases associated with the two derivative
methods (associated with pixels and with cracks between pixels) are illustrated in figure 7. The exam-
ple shows a step edge at which the gradient should be 1 (and it would be if the edge was vertical or
horizontal). However, as shown in the table in figure 7, the gradients associated with this diagonal
edge are either over or under 1, caused by errors in the derivatives themselves. These errors are
associated with the square pixel tesselation, and can only be eliminated if the camera and framegrab-
ber manufacturers move to another type of tesselation, such as a hexagonal one. This is unlikely to
happen in the near future.

Figure 7 .  A diagonal two-dimensional edge showing errors associated with
the discrete square pixels.

Errors in Translational Velocities . Assume that there is no rotational motion. Let (U�, V�, W�) be
the true translational velocities, where

(U	,V	,W	) � (U��U,V��V,W��W)
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and (U, V, W) are the velocities used for our computations. Then from Eq. (3), the true Z coordinate
should be

Z
 �
[� (U��U)f� x(W��W)]nx� [� (V��V)f� y(W��W)]ny

Un

    � Z�
(��Uf� x�W)nx� (��Vf� y�W)ny

Un

    � Z�
(�Uf� x�W)�E

�x � (�Vf� y�W)�lE
�y

�E
�t

Thus, for the case of purely translational motion, inaccuracies in the knowledge of U and V (motion
parallel to the image plane) will result in a constant shift (more prominent for longer focal lengths) of
the computed depth over the whole image. Inaccuracies in W will result in linearly increasing depth
errors away from the optical axis.

Errors in Rotational Velocities . We will examine the case where rotation is being kept as close to
zero as possible, but not perfectly. Again, from equation (3), the unwanted rotational velocities, (A,
B, O), show up in the true range as

Z
 �
(�Uf� xW)nx� (�Vf� yW)ny

Un���A
xy
f
��B(x

2

f
� f)��Cy�nx���A(

y2

f
� f)��B

xy
f
��Cx�ny

   �
(� Uf� xW)nx� (� Vf� yW)ny

Un

   � 1

1� 1
Un

���A
xy
f
��B(x

2

f
� f)��Cy�nx���A(

y2

f
� f)��B

xy
f
��Cx�ny	

   � Z� 1

1� 1
�E
�t

���A
xy
f
��B(x

2

f
� f)��Cy� �E

�x���A(
y2

f
� f)��B

xy
f
��Cx� �E

�y	
The right-hand side of the product is the error multiplier, which approaches 1 where Un (or the tem-
poral change) is large. Thus, we should only look at these pixels for the most accurate results when
rotational motion cannot be held to exactly zero.

DERIVING RELATIVE RANGE WITH KNOWN TRANSLATIONAL DIRECTION

In some instances, the exact translational velocities are difficult to obtain, while the direction of
travel and rotational motion are much easier to establish. For example, the camera is mounted on a
moving platform on a straight rail. The translational direction is the angle between the rail and the
camera. The rotational motion is controlled by the camera s pan-and-tilt unit, but the translational
velocity is tied to the rail platform and is not easily accessible. In many other instances, while the
velocities are difficult to obtain, the straight course of travel of a platform can also be easily accom-
plished with simple accelerometers, gyroscopes, steering lock, or by applying equal torque to the
wheels of a land robot. For these cases, we can still obtain the relative range to various points in the
scene.
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When there is forward motion (i.e., W � 0), knowing the direction of travel means that the FOE,
the point (x�, y�) in the image where the line of travel intersects the image plane, is known. Since (x0,
y0) = (Uf/W, Vf/W), we can rearrange equation (3) and get

Z
W
�

(x� x0)nx� (y� y0)ny

Un��Axy
f
�B(x

2

f
� f)�Cy�nx��A(

y2

f
� f)�B

xy
f

0Cx�ny

   �
(x0� x)�E�x� (y0� y)�E�y

�E
�t ��Axy

f
�B(x

2

f
� f)�Cy� �E�x��A(

y2

f
� f)�B

xy
f
�Cx� �E�y

 . (5)

Thus, the relative range to points in the image can be obtained with just the normal flow or local
derivatives. The exceptions are points where the translational component of the normal flow is zero—
and at the FOE, (x0,y0), but the flow is also zero there. The Z/W ratio is known as the time to adja-
cency (the time it takes for an object to impact an infinitely largeimage plane). In the neighborhood of
the FOE (which is where the camera is headed), this ratio is also known as the time to collision.

With a relative-range map, the true range to all available points can be computed if the range to one
of the points is found. This can be done by many different methods, including simple triangulation
using a laser and the same video camera [Nguyen, 1995].

In the absence of rotation, we obtain an even simpler set of equations for the relative range with
only direction of motion known:

Z
W
�

(x� x0)nx� (y� y0)ny

Un
�

(x0� x)�E�x� (y0� y)�E�y
�E
�t

(6)

for W � 0.

If the motion is frontal parallel (W= 0), then

Z
Uf
�� nx

Un
�
�E
�x
�E
�t

                                    for  motion along the horizontal axis,
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                                    for  motion along the vertical axis, and 
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          for diagonal motion.
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TESTING

To test the method, we used the familiar NASA Coke can image sequence (figure 8a), available
from many image archives. The only external information used was that the sequence contains only
translational motion, and the motion was toward the center of the Coke can. The images were passed
through a Gaussian smoothing filter with convolution stencil:

Three frames were used. One half of the pixel brightness difference between the third and the first
frame was used as the temporal derivatives. Since the images were prefiltered this approximates the
“slice difference” method of computing derivatives, but with the results associated with the pixels and
not the “cracks.” Equation (4) was used on the second frame for computing spatial derivatives. The
derivatives were then substituted into equation (6) to compute the relative range. As expected, the
method was sensitive to sampling errors. About 5 of the pixels gave negative values for the range.
These were obviously erroneous and were discarded. The resulting range image is shown in figure
8b, where dark pixels correspond to farther points, and lighter pixels to progressively closer points.
White areas denote locations where no information was available (no temporal or spatial change) or
where negative results were obtained.

Figure 8 .  (a) One frame from the NASA Coke can sequence. (b) Range image obtained.
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Examining figure 8b, we found that, in general, the results gave correct relative distances to the
various objects. The outline of the metal flange was lightest, followed by the pencils and Coke can.
The outlines of the sweater and the ring on the back board were darkest. Errors can also be noted. The
horizontal dark bar in the range image (under the box) was erroneous and probably due to a combina-
tion of the extreme contrast of the white strip in the foreground and the filtering operation (which
spreads out a few bad points along the back edge of the strip). However, most of the errors appear to
be “salt and pepper” types, and should be easily removed using traditional image processing and
computer vision techniques, such as median filtering, region growing, etc.

SUMMARY

Given no knowledge of the motion, deriving range from image motion is a difficult problem. How-
ever, in many instances the motion is either known within some degree of accuracy, or the direction
of movement is known. We described how range can be computed from a sequence of images given
knowledge of the motion, and supplied an analysis of the accuracy of the results based on the accu-
racy of the known motion. We also discussed how relative range can be computed when only the
direction of movement is known, and described an experiment conducted on a sequence of calibrated
data.
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